食尚峰汇
摘要: 高炉煤气的利用方式很多,目前我国最主要的利用方式是高炉煤气发电项目(包括燃烧高炉煤气和高炉煤气、煤粉混烧)。分析燃煤锅炉掺烧高炉煤气和全烧高炉煤气后的工况变化,并提出改造措施,对钢铁行业的燃煤锅炉改造具有借鉴意见。 更多高炉煤气论文请进:教育大论文下载中心关键词:高炉煤气;燃煤锅炉;掺烧 在钢铁企业的生产过程中,消耗大量的煤炭、燃油和电力能源的同时,还产生诸如高炉煤气、焦炉煤气和转炉煤气等二次能源,所产生的这类能源,除了满足钢铁生产自身的消耗外,剩余部分用于其他行业或民用。高炉煤气是炼铁的副产品,是高炉中焦炭部分燃烧和铁矿石部分还原作用产生的一种煤气,无色无味、可燃,其主要可燃成分为CO,还有少量的H2,不可燃成分是惰性气体、CO2及N2。CO的体积分数一般在21%-26%,发热量不高,一般低位发热值为2760-3720kJ/m3。高炉煤气着火温度为600℃左右,其理论燃烧温度约为1150℃,比煤的理论燃烧温度低很多。燃烧温度低,使得高炉煤气难以完全燃烧,且燃烧的稳定性差。由于高炉煤气内含有大量氮气和二氧化碳,燃烧温度低、速度慢,燃用困难,使得许多钢铁企业高炉煤气的放散率偏高。利用高炉煤气发电,由于燃料成本低,系统简单,减少了燃料运输成本及基建费用,可以缓解企业用电紧张局面,减少CO对环境的污染,取得节能、增电、改善环境的双重效果,既能为企业创造可观的经济效益,又能创造综合社会效益。根据现在钢铁行业中高炉煤气的主要利用方式,本文对燃煤锅炉掺烧高炉煤气和燃煤锅炉改造为全燃高炉煤气锅炉做了理论分析和相应的改造措施。1 掺烧高炉煤气对锅炉性能的影响 对炉膛内燃烧特性的影响燃煤锅炉中掺烧高炉煤气时,由于高炉煤气的低位发热量很低(2760-3720kJ/m3),而一般的烟煤的低位发热量约为18000kJ/kg,因此,炉膛中的理论燃烧温度必定下降,导致煤粉燃烧的稳定性变差,煤粉颗粒的不完全燃烧量增多,从而增加飞灰含碳量,机械不完全燃烧损失增加,锅炉效率降低。另一方面,掺烧高炉煤气后,送入炉膛内的吸热性介质增多,烟气的热容量增大,火焰中心的温度水平下降,火焰中心位置上移,导致煤粉在炉膛内的停留时间缩短,也造成煤粉的不完全燃烧,飞灰含碳量增加。第三,掺烧高炉煤气后,炉膛内烟气量增加(表1),炉膛内的烟气流速增加,从而缩短了煤粉颗粒在炉膛内的停留时间,也造成了煤粉的不完全燃烧。第四,掺烧高炉煤气后,高炉煤气中存在的氮气等大量的惰性气体阻碍可燃成分与空气的充分混合,减少发生燃烧反应的分子间发生碰撞的几率,导致燃烧不稳定,煤粉颗粒燃烧不完全,增加了飞灰含碳量。可见,掺烧高炉煤气后,飞灰的含碳量增加,锅炉效率降低。试验证明[1],从飞灰含碳量的角度来看,如果不提高炉膛的温度水平,高炉煤气的最佳掺烧率应该在25%以内。表1燃料产生1MJ燃烧热的烟气量众所周知,固体的辐射能力远远大于气体,燃高炉煤气产生的烟气中所含有的具有辐射能力的三原子气体所占的份额远远低于燃煤,在燃气中占很大一部分的N2等双原子气体不具备辐射能力,而且,高炉煤气燃烧产生烟气中三原子气体主要是CO2和少量的H2O,CO2的辐射能力要低于H2O,因此,掺烧高炉煤气后,炉膛内火焰辐射能力减弱,更多的热量流往后面的过热器和尾部烟道。掺烧锅炉煤气后,炉膛内的热交换能力下降,对于以炉膛水冷壁为主要蒸发受热面的锅炉,如果锅炉结构不做调整,则锅炉的蒸发量下降。 对炉膛后烟道的传热特性影响以对流换热为主的过热器系统,吸收烟气热量主要取决于传热温压和传热系数。对于燃煤和掺烧高炉煤气的锅炉来说,两者的炉膛出口烟温相差不大[2],因而其传热温压也相差不大。但是掺烧高炉煤气锅炉的烟气体积流量要比燃煤锅炉大,对流受热面的烟气流速增加,因此提高了传热系数,使得过热器吸热量增加,导致过热器出口温度过热。同样,烟气量增加,如果炉膛后的受热面不改变,则布置在炉膛后烟道中的过热器,省煤器,空气预热器吸热量增多,但是不足以使得排烟温度降低到以前的温度水平,因而排烟温度升高,排烟热损失增加。2 全烧高炉煤气对锅炉性能的影响 对炉膛内燃烧特性的影响高炉煤气中大量的惰性气体N2、CO2等在燃烧时不参与燃烧反应,相反,还吸收大量可燃气体燃烧过程中释放的热量,使得高炉煤气的燃烧温度偏低。虽然高炉煤气是气体燃料,理论燃烧温度(-1150℃)要远低于煤粉颗粒(1800℃-2000℃),但是高炉煤气中含有的大量惰性气体会阻碍火焰传播,使火焰的传播速度变慢(例如层流火焰传播速度仅为),因此,要保证燃烧的稳定性,必须提高燃烧温度。高炉煤气中几乎不含灰分,燃烧时,火焰基本上不产生辐射能量,只有燃烧产生的烟气中的三原子气体具有辐射能力,高炉煤气中大量的氮气不具备辐射能力,所以燃高炉煤气的锅炉,炉膛中的烟气辐射传热能力要低于燃煤锅炉。因此,炉膛内水冷壁的吸热量降低,导致锅炉蒸发量减少。 对炉膛后烟道的传热特性的影响由于高炉煤气中几乎不含有灰尘,所以,燃烧高炉煤气产生的烟气中的飞灰可以忽略不计,因此,对流受热面的污染系数ξ很低,只有,而对于燃煤锅炉,当烟气流速为10m/s时,污染系数ξ为[3],可见,燃烧高炉煤气后,对流受热面的热有效系数增大,使得对流受热面的吸热量增多。高炉煤气中含有大量的惰性气体,产生相同燃烧能量的高炉煤气生成的烟气量要大于纯燃煤时产生的烟气量,因此流经对流受热面的烟气量增大,烟气流速增加,导致对流传热的传热系数变大,对流吸热量增大,因此,吸收对流受热面热量的过热蒸汽温度升高。同样,烟气量增加,如果炉膛后的受热面不改变,则布置在炉膛后烟道中的过热器,省煤器,空气预热器吸热量增多,但是还不足以使得排烟温度降低到以前的温度水平,排烟温度升高,排烟热损失增加。3 掺烧高炉煤气后的改造措施由以上的分析,为了解决掺烧高炉煤气后出现的一系列问题:炉膛温度下降;过热蒸汽温度升高;飞灰含碳量增加;排烟温度变大等,提出下面的解决方案。 改造燃烧器高炉煤气燃烧器一般布置在煤粉燃烧器的下部,当高炉煤气燃烧器具有充当锅炉启动燃烧器的功能时,这种布置可以获得燃烧和气温调节两方面的好处。如果以高炉煤气借助煤的燃烧来稳燃的话,则只对气温调节有利。由于混烧高炉煤气后,炉膛中火焰的中心位置上移,造成煤粉燃烧不完全,排烟温度升高等问题,因此,可以采取让燃烧器位置尽量下移,燃烧器喷嘴向下倾斜等方法,降低火焰中心位置,增加燃料在炉膛内的停留时间。选用能强化煤粉燃烧的燃烧器,如稳燃腔煤粉燃烧器[4],加强煤粉颗粒的燃烧,减少飞灰含碳量,提高锅炉效率。 改造过热器掺烧高炉煤气后,炉膛内辐射吸热量减少,对流吸热量增加,因此在实际允许的情况下,增加较多的屏式过热器,相应的减少对流过热器受热面,这样,可以照顾到全烧煤和掺烧高炉煤气工况下过热器的调温性能,避免过大的增加减温水量。 改造省煤器掺烧高炉煤气后,炉膛内的辐射吸热量减少,直接影响了锅炉蒸发量下降,导致锅炉出力降低,另外,掺烧高炉煤气后,烟气量变大,排烟温度升高,因此,在炉后烟道内增加省煤器换热面积,采用沸腾式省煤器,要保证其沸腾度不超过20%,否则因省煤器内工质容积和流速增大,使省煤器的流动阻力大幅增大,影响锅炉经济性。增加省煤器换热面积,提高了省煤器的吸热量,降低了过高的排烟温度,减小了排烟损失,提高了锅炉效率。4 全烧高炉煤气后的改造措施 炉膛改造燃煤锅炉的炉膛内辐射传热能量很大,炉膛内配置了相应的大量的水冷壁吸收辐射热,改燃高炉煤气后,炉膛内辐射能量减少,过多的水冷壁吸收大量的辐射热能会使得炉内的温度进一步下降,加剧了高炉煤气燃烧的不稳定,因此,敷设卫燃带,降低燃烧区下部炉膛的吸热量,进一步提高燃烧区炉膛温度,改善高炉煤气燃烧的稳定性。增加了卫燃带后,减少了水冷壁的面积,锅炉蒸发量减少,为了保证锅炉的蒸发量,就必然要提高高炉煤气量,提高炉膛的热负荷,但是,高的炉膛热负荷也提高了烟气量和炉膛出口温度,导致过热蒸汽超温和排烟温度升高,锅炉效率下降,因此不可能通过无限制的提高炉膛热负荷来提高锅炉的蒸发量。锅炉改烧高炉煤气后,炉膛内的热交换能力显著下降,对于以炉膛水冷壁作为其全部蒸发受热面的锅炉,如果锅炉的结构不允许做较大的改动,蒸发量必定下降。 燃烧器改造对于高炉煤气来讲,动力燃烧即无焰燃烧其火焰长度短、燃烧速度快、强度大、温度高,是一种比较合适的燃烧方式,但因其体积大、以回火、噪音高、负荷调节不灵活,且流道复杂,成本高,实际中采用很少。而采用扩散燃烧不但火焰太长,而且混合不好,燃烧不完全,不适合高炉煤气。实际中大多数采用预混部分空气的燃烧方式,这种形式的燃烧器结构简单、不易回火、负荷调节灵敏,在煤气的热值和空气的预热温度波动的情况下能保持稳定的工作,调节范围宽广,在锅炉最低负荷至最高负荷时,燃烧器都能稳定工作。燃烧器的布置主要考虑以下几点:火焰应处于炉膛几何中心区域,使火焰尽可能充满炉膛,使炉膛内热量得以均匀分配,受热面的负荷均匀,不会形成局部受热引起内应力增大,防止受热不均匀。对于布置高度,在不影响火焰扩散角的情况下,燃烧器低位布置,有利于增加煤气燃烧时间,保持炉温均匀。 过热器的改造改燃高炉煤气后,烟气量增大引起过热蒸汽超温,可以通过适当减少过热器的面积来控制过热蒸汽的温度在规定范围之内。也可以通过增加减温器的调温能力,来控制过热蒸汽的温度。 增加煤气预热装置加装煤气预热器一方面可以进一步降低排烟温度,提高锅炉效率,另外一方面,可以增加入炉能量,提高燃烧温度,增强火焰的辐射能力,改善高炉煤气的着火和燃尽条件。研究证明[5],高炉煤气温度每提高10℃,理论燃烧温度可以高4℃。但是由于高炉煤气的易燃性和有毒性,要求与烟气之间的换热过程严密而不泄露,理论上只能采用分离式热管换热器。 省煤器的改造改烧高炉煤气后,排烟温度升高,锅炉蒸发量下降,因此,增加省煤器面积,采用沸腾式省煤器可以提高省煤器的吸热量,降低过高的排烟温度,减小排烟损失,提高锅炉效率。另一方面,高炉煤气锅炉炉内火焰黑度和炉内温度低,故不宜单纯以增加敷设受热面的面积来提高锅炉蒸发量,而采用沸腾式省煤器来弥补锅炉蒸发量的减少,这是提高锅炉出力的有效措施。 尾部烟道的改造由于高炉煤气发热量低,惰性气体含量高,因此燃用高炉煤气时,锅炉的烟气量及阻力都讲增加,为此,一般须考虑扩大尾部烟道流通面积降低流动阻力及增加引风机的引风能力。 燃气安全防爆措施从安全方面考虑,有必要建立燃气锅炉燃烧系统,包括自动点火、熄火保护、燃烧自动调节、必要的连锁保护方面的自动化控制。同时为了减轻炉膛和烟道在发生爆炸时的破坏程度,燃气锅炉的炉膛和烟道上应设置防爆装置。此外燃气系统应装设放散管,在锅炉房燃气引入口总切断阀入口侧、母管末端、管道和设备的最高点、燃烧器前等处应布置放散点。采取了以上安全措施后,可以确保锅炉处在安全运行之中。参考文献:[1]湛志钢,煤粉、高炉煤气混烧对煤粉燃尽性影响的研究[D].[硕士学位论文].武汉:华中科技大学,2004.[2]姜湘山,燃油燃气锅炉及锅炉房设计[M].北京:机械工业出版社,2003.[3]范从振,锅炉原理[M].北京:中国电力出版社,1986.[4]陈刚、张志国等,稳燃腔煤粉燃烧器试验研究及应用[J].动力工程,1994(12).[5]刘景生、王子兵,全燃高炉煤气锅炉的优化设计[J].河北理工学院学报.
KING纠结
锅炉、压力容器和管道焊接自动化的新发展 在我国锅炉、压力容器和管道制造行业中,各大中型企业的焊接机械化和自动化程度相对较高,像哈锅,上锅这样的企业已达到80%以上。不过,在国际上对焊接机械化和自动化作了重新定义。焊接机械化是指焊接机头的运动和焊丝的给送由机械完成,焊接过程中焊头相对于接缝中心位置和焊丝离焊缝表面的距离仍须由焊接操作工监视和手工调整。焊接自动化是指焊接过程自启动至结束全部由焊机的执行自动完成。无需操作工作任何调整,即焊接过程中焊头的位置的修正和各焊接参数的调整是通过焊机的自适应控制系统实现的。而自适应控制系统通常由高灵敏传感器,人工智能软件、信息处理器和快速反应的精密执行机构等组成。按照上述标准来衡量,我国锅炉,压力容器和管道焊接的自动化率是相当低的。极大多数仅实现了焊接生产的机械化。因此,为加速本行业焊接生产现代化的进程,增强企业的核心竞争力,应尽快提高焊接自动化的程度。按照当前中央提出的“以人为本”的理念。焊接自动化具有更深刻的意义。它不仅仅是提高了焊接生产率和稳定了焊接质量,而更重要的是使焊工远离了有害的工作环境,减轻或消除了职业病的危害。 以下列举几个在压力容器和管道制造中已得到实际应用现代化自动焊接装备实例。以说明其基本结构和功能以及在焊接生产中所发挥的作用。 1 厚壁压力容器对接接头的全自动焊接装备 德国Babcock-Borsig公司与瑞典ESAB公司合作于1997年开发了一台大型龙门式全自动自适应控制埋弧装备。专用于、厚壁容器筒体纵缝和环缝的焊接。自1998年正式投运至今使用状况良好,为了型厚壁容器对接缝的自动埋弧焊开创了成功的先例。 该装备配置了串列电弧双丝埋弧焊焊头,由计算机软件控制的ABW系统(Adaptive Batt Welding)和激光图像传感器。 在焊接过程中激光图像传感器连续测定接头的外形尺寸,测量数据通过计算机由智能软件快速处理,并确定所要求的焊接参数和焊头位置。也就是说每焊道的尺寸和焊道的排列是由系统的软件以自适应的方式控制的。 系统软件可调整每一填充焊道的4个焊接参数:焊接速度,焊接电流,焊道的排列和各填充层和盖面层的焊道数。因此,该系统可使实时焊接参数自动适应接头整个长度上横截面和几何尺寸的偏差。焊接速度是控制不同区域内的熔敷金属量,而焊接电流是控制焊道的高度和熔敷金属量。焊道的排列是决定每层焊道间的搭接量。每层的焊道数则取决于每层的坡口宽度。该设备的主控制器和监视器以PC机为基础。 多年的使用经验表明,该装备不仅大大提高厚壁容器的焊接生产率,而且确保形成无缺陷的厚壁焊缝,同时显著降低了焊工劳动强度,改善了工作环境。 2 厚壁管件全自动多站焊接装置 火力和核电站的主蒸汽管道,其壁厚已超过100mm,焊接工作量相当大,迫切需要实现焊接生产的全自动化,以提高生产率。每个焊接工作站由焊接操作机,翻转机构,滚轮架,夹紧装置和焊接机头及焊接电源等组成。所有的焊接工作站由中央控制器集成控制。适用的管径范围为139~558 mm,壁厚18~100 mm.管件长度大于1800 mm.可全自动焊接直管对接,直管与弯管接头,直管与法兰以及直管与端盖对接接头。焊接方法采用窄坡口热丝TIG焊。 在该自适应控制系统中,采用黑白摄像机检测坡口边缘的位置。采用彩色摄像机监控电弧和填充丝的位置。通过检则焊丝加热电流控制填充丝的垂直方向的位置。这种控制方法是利用黑白摄像机的图像,经过计算机图像处理,确定内外边缘的照度差。当焊接条件变化时,系统将自动调整摄相机快门的曝光时间。以达到给定的照度,使焊枪始终保持在焊接开始时调整好的位置。壁厚管件全自动多焊接装置基本上实现了焊接作业无人操作。只需要一名操作人员在主控制室内设置管件的原始条件并在焊接过程中进行监控。这种全自动焊接装置已在日本三菱重工公司投入生产试用。 3 大直径管对接全位置自TIG焊机 大直径管对接的全位置TIG焊是一项难度很大的焊接作业,培养一名技能高度熟练的焊工需要耗费大量的人力和物力,而且产品的焊接质量还取决于焊工自身多年积累的生产经验。为了克服对焊工技能的依赖性,消除人为因素对产品焊接质量的不利影响,产生了开发模拟高级熟练焊工的智能和操作要领的全自动焊管机的想法。 该自动焊管机可用于直径165—1000mm,壁厚— mm的不锈钢管环缝的全位置焊,并采用窄间隙填丝TIG焊(单层单道焊工艺)。焊机的自动控制系统采用了视觉和听觉传感器,由计算机程序控制执行机构,模仿熟练焊工的反应和动作。 自适应控制和质量监控系统的作用原理为,自适应控制主要是通过视觉传感器实时检测的信息和计算机图像处理,按模糊逻辑规则,实时控制钨极相对于坡口边缘的位置,填充焊丝相对于钨极的位置以及决定焊接熔池尺寸的焊接参数。而焊缝质量的监控系统则按照激光视频传感器,听觉传感器和电流传感器的信息实时修正焊接熔池尺寸,焊道形状,钨极尖端的形状,电弧燃烧的稳定性和焊接电流,以保证焊缝质量的一致性。 在自适应控制系统中,安装在焊枪前侧的视觉传感器(摄像机)起主要作用,将所摄取的对接区图像输入到计算机,根据计算机软件图像处理结果,可以定量检测钨极相对于坡口边缘的位置,填充焊丝相对于钨极的横向位移,以及焊接熔池的尺寸及钨极的损耗。 激光视频传感器是由摄像机和激光聚光灯组成,安装在焊枪的后侧。所形成的图像可用来测定焊道边缘的润温角,即焊道表面与坡口侧壁之间的角度。控制系统根据这些信息,对焊接参数进行自适应控制。 自适应计算方法的工原理如下。焊接过程中,为调整钨极的位置,引用了模糊逻辑理论,即所谓奇数理论。当前节距内钨极位置的修正速度是按所测定的钨极位移量和前一节距内的修正速度计算的,以此来保证修正精度。 上述大直径管全自动全位置焊管机已在电站锅炉安装工程中得到实际的应用,取得了令人满意的效果。
米帅峰峰
电焊机空载电压触电分析电焊作业中操作者每时每刻都要同电打交道,故危险因素较多,触电伤亡事故屡见不鲜。本文以普遍使用的手工电弧焊为例,谈谈电焊机在空载状态下,二次侧输出电压正常时,其焊接回路致人触电的主要原因,并提出相应的预防措施。1空载电压致人触电的原因我国目前生产的手弧电焊机的空载电压一般为55一99V,工作电压为25一40V。显而易见,空载电压值已远远超过了安全电压范围,对于人的安全而言存在比较大的威胁。一方面由于该电压不像相电压(220V)和线电压(380v)那样高,易使人忽视;另一方面,电焊工及有关操作人员与焊接回路中的焊钳、焊条、焊件、工作台、焊接电线等器材的接触比较频繁。当操作人员的个人防护用品保持齐全良好状态时,如果触及到焊条的焊芯、焊钳的焊口、破损的焊接线等焊接回路带电体时,通过人体的事故电流大约在10mA左右,会使手臂产生酸、麻和疼痛感,但触电者一般都能够摆脱这种局面,不至于造成严重的后果。当操作人员的个人防护用品存在缺陷、环境湿度较大、身体出汗、皮肤上带有导电性粉尘、身处导电性地面(由砖、湿木板、钢筋混凝土、金属等材料制成的地面或金属贮罐、管道、锅炉等金属结构内)或碰触到其他接地的导电物体,如操作人员碰触到处于空载状态下的焊接回路的带电体时,通过人体的事故电流可达4OmA以上,此时触电者的触电部位(如手部)将发生痉挛,甚至昏迷而不能摆脱,触电时间稍长就会有生命危险,若事故电流一旦超过50mA,在较短的时间内就可能造成死亡。2预防空载电压触电的措施(l)加强个人防护。焊工个人防护用品包括完好的工作服、绝缘鞋、绝缘手套(长度不得短于)等,作业时必须按使用规定穿戴整齐。(2)焊接作业前,应先检查工作场所的焊件、工具等放置合理有序,检查各电气设备的摆放和连接应正确可靠,焊接工作点附近不得有易燃易爆物品。(3)在潮湿地方焊接时,操作台附近地面上应铺设绝缘物(如橡胶绝缘垫),或站在垫起的干燥木板上。(4)电焊机至焊钳、电焊机至焊件的二次回路连接电缆(统称焊接电缆)必须选用电焊专用电缆,如YHH型或YHHR型等,其截面要求根据电焊机额定输出电流选用,其长度一般以20一30m为宜。(5)焊钳必须具有良好的绝缘性能和隔热能力,各绝缘部位不得有残缺现象。(6)焊钳与焊接电缆之间的连接要求坚固可靠、接触良好,电缆的橡胶包皮应深入到焊钳手柄内部,以防电缆芯线外露。(7)无论是焊把线(电焊机至焊钳的电缆)还是回线(电焊机至焊件的电缆),最好使用整根的,如果确需中途接头时,每根的接头不宜超过两个,接头处必须连接牢固,保证极低的接触电阻,并做好绝缘处理。(8)无论在高处、斜坡处或沟道等复杂环境还是在常规环境焊接,均不得把焊接电缆缠在腰里或腿上、系在金属物体上,也不要把过长的电缆盘成卷。(9)在金属结构及金属容器(如气柜、锅炉气鼓、管道等)内及其他狭小工作场所焊接时,由于触电的危险性增加,故必须采取专门的防护措施,如在容器外面设有可看见和可听见焊工工作的监护人,以便随时注意焊工的安全动态,或两人的职能轮换工作。(10)在焊接工作场所,要注意对焊接电缆的保护,防止击砸、碾压、烘烤和磨损等,如远离高温的电弧和炽热的焊缝金属体;电缆穿越马路或通道时,应采取保护措施;使用中发现电缆外皮损伤时必须修复,并保证绝缘电阻不小于IMQ。(11)当工作场所气温较高付,操作人员出汗较多,或者在工作服潮湿、空气湿度较大等不利情况下,操作人员均不要靠在操作台、焊件等与二次回路相连接的金属物体上,更不能在接触二次回路的同时,又接触接地的金属物体,在任何情况下都不得把自己的身体作为焊接回路的一部分。(12)为避免电焊二次回路电压致人电击事故的发生,应当安装电焊机空载自动断电保护装置,使更换焊条、整理焊件等正常操作和许多意外的行为均在安全的电压下进行,减小触电的危险性,同时还可节省电力消耗。(上接第38页)外,在施工层外还要支一道3m宽层围栏或搭设安全网。灵,松动断裂,无安全装备或保安全网或立网,立网应高出建筑(6)凡是Zm以上悬空作业险装备。、物lm以上。安全网的质量应符合人员或具有危险性的高处作业人(9)施工设备措施和组装无国家标准GB5725一1985的要求。员必须系好安全带,且安全带的安全和保护措施,材质不符合安(3)施工中搭设的脚手架质量应符合国家标准GB6095一全技术要求。必须坚固、可靠,并符合国家标1985的要求。(10)施工中的各项防护设准;每层要绑护身栏;施工层脚(7)在没有望板的层面上安施、防护用品,其设计搭设强度不手板必须铺严,架子上不准留单装石棉瓦时,应在屋架下弦设安全符合安全技术要求。安全技术措施挑板、探头板。网或其他安全措施,禁止在石棉无可操作性,无法指导施工。(4)凡楼梯口、电梯口、瓦、刨花板、三合板顶棚上行走。3预防措施预留洞口,必须设围栏或盖板、(8)不准在六级以上强风、大(l)高处作业人员必须定架网;正在施工的建筑物所有入雨、雪、雾天从事露天高处作业。期进行身体检查,凡患心脏病、口,必须搭设板棚或网席棚,棚(9)施工用梯子要坚固,高血压病、贫血病、癫痛病、神宽应大于出人口,棚长应根据建踏步高30一40cm,与地面角度为经病或其他不适于高处作业的人筑高度确定,低层时为3一sm,60一70度,地角要有防滑措施。员,严禁从事高处作业。高层时为6一10m。梯子不得缺档,不得垫高使用。(2)高处作业的周边必须设(5)在施工过程中尚未安装(10)高处作业人员的衣着置安全网。凡高4m以上的施工工栏杆的阳台周边、无外架防护的要灵便,不准穿高跟鞋、拖鞋,,首层应设3一6m的安全网;屋面周边、框架工程楼层周边、不准攀爬脚手架或乘坐运料井字施工层与首层之间每隔四层设跑道(或邪道)两侧边、卸料台架吊兰上下。道3m宽的固定安全网;除此之的外侧边等,必须设置lm高的双
写毕业论文用的吧,这要看你的专业方向了,偏向设计的话,不妨搜集一些国内外新型锅炉发展方向和现状的资料,加上自己的想法就是一篇很不错的论文,比如时下新兴的CFB锅
锅炉运行方面技术论文篇二 锅炉经济运行技术浅谈 【摘要】锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的
基于PID的锅炉温度控制系统设计 摘要:利用BP神经网络PID控制具有逼近任意非线性函数的能力,将神经网络PID与LabVIEW友好地人 机交互结合,实现对锅炉
基于PID的锅炉温度控制系统设计 摘要:利用BP神经网络PID控制具有逼近任意非线性函数的能力,将神经网络PID与LabVIEW友好地人 机交互结合,实现对锅炉
去幸福校园网站看看,那的论文很多1引 言1.1热水供热的研究对象人们的日常生活中需要大量的热能,尤其在冬季。现在在北方大多家庭取暖用热水集中供暖,而在淮阴等江苏