上官雨霖
山大电子科学与技术读博方向:二级学科 电路与系统研究方向 信号检测与处理;大数据与人工智能。 微电子学与固体电子学研究方向 微纳电子器件与集成电路。电磁场与微波技术研究方向空间电磁场与电磁波。物理电子学研究方向柔性电子材料与功能器件。一、学科简介长沙理工大学电子科学与技术学科,2010年获一级学科硕士点,2011年被评为湖南省“十二五”重点学科,2017年获批一级学科博士点。学科现有专任教师73人,教授24名,副教授28名,国家杰青1人,国家百千万人才、有突出贡献中青年专家1 人,湖湘青年英才2人,湖南省杰青1人,湖南省优青1人,湖南省“121”人才工程人选8人。近五年,获国家自然科学基金重点项目、国家科技支撑计划重点项目等国家级科研项目42项;在Nature Communications等国际知名刊物上发表SCI论文300余篇;获湖南省自然科学一等奖1项、二等奖2项、湖南省科技进步二等奖3项;授权发明专利54项。近年来,学科瞄准电子科学与技术学科前沿,紧密结合国家重大需求,重点在空间科学、电子信息材料与器件以及集成电路设计等交叉学科领域开展基础和应用研究,取得了一系列既具基础研究意义又具应用价值的研究成果,在省内外产生较大影响。拥有“柔性电子材料基因工程”湖南省重点实验室、“近地空间电磁环境监测与建模”湖南省普通高校重点实验室和“地球空间环境探测与建模”湖南省高校科技创新团队等省部级科研平台,现有“空间电磁波模拟、探测与天气预报”湖南省研究生培养创新基地、“集成电路设计和制造”湖南省研究生培养创新基地、“柔性电子材料物理”湖南省研究生培养创新基地、“电子信息类专业校企合作人才培养示范基地”、“电子信息类专业校企合作创新创业教育基地”、“光电信息类专业校企合作人才培养示范基地”等6个省级人才培养平台。同时还设有信号检测与信号处理、集成电路设计与验证、集成电路工艺与测试、电磁场测量与电磁兼容、光电器件、光纤传感、嵌入式系统等专业实验室,研究生培养条件优越,科研经费充足,已成为我省电子科学与技术专业高层次高学历人才的重要培养基地。二、培养目标本学科培养德、智、体、美、劳全面发展,政治立场坚定,基础知识扎实,创新能力突出的电子科学与技术专业高层次人才。1.热爱祖国,遵纪守法,品德优良,学风严谨,具备良好的科学敬业和团队合作精神,及高尚的科学道德和创新意识,能积极主动为社会主义现代化建设服务。2.具有坚实的数学、物理基础,掌握本学科的基础理论,对所从事的研究方向具有系统深入的专门知识,掌握电子科学与技术及相关一级学科中的发展现状和趋势,熟练掌握相关的理论方法和实验技术,对本学科的某一方面有深入的研究并有独创性的研究成果。3.具有独立从事创造性科学研究的能力,以及严谨求实的科学态度和工作作风。能独立承担对 学科发展或国民经济建设有意义的研究课题,能胜任研究机构、高等院校和电子信息领域企事业单位有关方面的研究、教学、研发或管理工作。4.至少熟练掌握一门外国语,能熟练地阅读本专业的外文资料,并具有良好的外文写作能力和国际学术交流的能力。三、研究方向本学科主要在以下方向培养博士研究生:
小可爱vivi
近日,来自澳大利亚墨尔本大学的研究人员在Nanophotonics上以 Nanowires for 2D material-based photonic and optoelectronic devices 为题发表综述文章,系统综述了近年来各种纳米线在光电子学和光电子学中的应用,以及纳米线与二维材料的结合。这篇综述文章介绍了纳米线作为谐振器或/和波导,以提高光子集成电路中用于光增强和引导的二维材料的性能。此外,本文还介绍了在光电子领域研究的纳米线和二维材料的混合。本文综述了纳米线与二维材料在光电子学和光电子学中的杂交,并对未来的研究进行了展望。
图1. 二维材料和纳米线耦合的示意图
图源:Advanced Materials 33, 2101589 (2021).
几十年来,光与物质相互作用的研究越来越受欢迎。最近的重点是提高光与物质相互作用的强度,以实现紧凑的集成光子电路、高效的光子器件和多功能光电子系统。二维材料是现代科学中研究最活跃的材料之一。使用二维材料进行研究有很多优点。例如,二维材料提供了良好的机械性能,例如高度可弯曲和可拉伸,而不会造成损坏。此外,通过简单地使用胶带从大块晶体中剥离二维材料,可以轻松创建原子级光滑、单层或几层样品,这增加了实验室研究中二维材料的使用。通过剥离方法,二维材料可以转移或堆叠到任何材料上,而无需考虑晶格失配问题。到目前为止,研究人员已经确定了一个二维材料库,其特性从金属到绝缘体不等,这些材料有时表现出独特的特性,如高导电性、高非线性或依赖谷值的电/光响应。
纳米线与二维材料的杂交使二维材料能够更好地作为光子和电子器件发挥作用。纳米线可以由金属、半导体或绝缘体制成。金属纳米线用途广泛,因为它们既可以用作电极,也可以用作光子元件。银因其高透射率、低电阻和高柔韧性而经常被用作电极材料。通过加入MXene、石墨烯或氧化石墨烯等二维材料,可以解决阻碍其实际使用的一些瓶颈问题。例如,二维导电层连接纳米线并使表面光滑,从而降低电阻。此外,二维绝缘材料保护金属纳米线免受氧化。这些异质结构可以是图1所示的各种配置。除电极外,金属纳米线还起到波导、开放纳米腔和控制发光性能的作用。随着半导体制造技术的进步,半导体纳米线被广泛应用,并作为集成光子电路的平台发挥着重要作用。半导体纳米线的一个显著优势是,它与互补金属氧化物半导体(CMOS)技术兼容,同时还提供了先进的电气和光学功能。当这些纳米线以核壳或纳米线的形式与单层结构上的二维材料结合时,预计会产生协同效应。
图2. 将金属纳米线与二维材料结合用于柔性透明电极
图源:Advanced Materials 33, 2101589 (2021).
柔性和透明电极适用于各种应用,并有望在光电子学中广泛使用。这种电极已用于柔性有机发光二极管(Folders)、太阳能电池和许多其他光电应用。金属纳米线因其高透射率和低片电阻而对柔性透明电极(FTE)的开发特别有吸引力。传统上,氧化铟锡(ITO)是一种广泛采用的柔性透明电极材料。ITO具有高导电性,同时在可见光波长下透明。然而,使用ITO有几个缺点,包括机械稳定性差,弯曲基板时由于裂纹导致电阻增加。此外,铟是地壳中稀缺的原材料,因此需要使用替代材料。金属纳米线因其优异的光学和电学性能而成为很有前途的候选者。它们展示了诱人的特性,有望在商业应用中取代ITO。这是因为纳米结构增加了弹性,同时保持了良好的导电性和光学透明度,因此它们对弯曲和折叠裂纹具有弹性。
然而,金属纳米线仍然存在一些固有的缺点,包括表面粗糙度高,与基底的附着力低,纳米线界面之间的不连续结构,以及快速降解。这些问题可以通过添加额外的材料来克服,即创建一个混合系统。这些混合系统由二维材料组成,其特性适用于克服这些问题。例如,MXene是一种二维材料,由过渡金属碳化物、氮化物和碳氮化物组成,经常用于缓解问题。MXene因其高导电性和大表面积等特点,在传感器和透明电极领域被广泛 探索 。石墨烯由于其独特的电学和光学性质,也是这方面很有前途的二维材料之一。
图3. 纳米线与二维材料耦合以增强光与物质相互作用
图源:Advanced Materials 33, 2101589 (2021).
同样,石墨烯也被用于改善混合系统中电极的导电性。已经有研究工作实验实现了由银纳米线和电化学剥离石墨烯(EG)组成的透明电极。详细地说,首先将含有银纳米线的溶液喷涂到柔性基底上,即聚萘二甲酸乙二醇酯,然后进行电化学剥离石墨烯分散。研究人员比较了不同体积的带有电化学剥离石墨烯层的银纳米线与原始银纳米线的薄片电阻和透射率。此外,为了长期稳定性,样品在空气中暴露120天。在此期间,混合材料的薄片电阻保持不变,而原始样品的薄片电阻在暴露10天后增加。研究报告说,通过部署电化学剥离石墨烯层,他们能够在不显著降低透射率的情况下降低薄片电阻,同时将粗糙度分别从78Ω/sq降低到Ω/sq,从 nm降低到 nm。由于分散层使Ag-纳米线结和孔的表面变平,因此EG涂层降低了薄板电阻和粗糙度。本文进一步展示了该电极作为阳极在有机太阳能电池和聚合物LED中的应用。
二维材料不仅可以降低表面粗糙度,而且可以作为保护层防止金属纳米线氧化。银纳米线是钙钛矿太阳能电池(PVSC)最常用的底部电极金属线之一,由于钙钛矿层中卤化物的释放而导致腐蚀问题。最近有研究人员提出采用大尺寸氧化石墨烯(LGO)片作为银纳米线透明电极的保护层。作为保护层的大尺寸氧化石墨烯片对于减少整体边界面积至关重要,因为片之间的边界允许卤化物物种进入。在这项工作中,采用离心法分离不同尺寸的氧化石墨烯板。将减少的大尺寸氧化石墨烯分散液滴在Ag-纳米线电极上,并使用稳定的热风流进行干燥。电极保持其初始电阻超过45小时,而原始样品在 V偏压下10小时后电阻呈指数增长。本研究证明了构建高稳定性PVSC的可能性。
通过增加发光二维材料的自发辐射率,可以产生更亮的光源。有腔和无腔的自发辐射率速率之比称为Purcell因子,它与Q因子成正比,与光模体积成反比。已经有很多方法可以实现高的光致发光强度,这可以通过纳米线与过渡金属二硫化物的杂交来实现。利用纳米线也是解决光学各向异性的常用方法。通过调整纳米结构的形态,可以控制共振频率和质量因子。随着二维 过渡金属二硫化物与等离子体或光学纳米线的结合,光的有效控制和增强可以应用于实际。
图4. 将半导体纳米线与二维材料结合可用于高性能光探测器
图源:Advanced Materials 33, 2101589 (2021).
总结与展望
如前所述,本文介绍了贵金属纳米线、半导体纳米线和钙钛矿纳米线,以及它们在传统应用、集成光子电路、光增强、路径控制和光电子学中的最新应用。此外,在综述中还介绍了通过加入过渡金属二硫化物层、石墨烯和氧化石墨烯等二维材料而取得的显著改进。研究表明,对这些二维材料的结构特征进行优化至关重要,比如尺寸或纳米线之间的距离。因此,对优化这些特性进行深入研究是有希望的。
本综述回顾了用于基于二维材料的光子和光电子器件的纳米线。纳米线在光子集成电路中具有作为谐振器和波导的潜在用途。介绍了利用纳米线的特性以及纳米线与二维材料的混合。不同类型的纳米线和二维材料的特性和用途有望为 探索 新的杂交材料提供新的视角,并最终改变现有设计,提高性能。
然而,文章认为,这些耦合仍然有一些缺点需要克服。例如,由于它们是纳米材料的混合,因此应该研究简便的合成方法。复杂的合成方法可能导致产率低、耗时且成本相对较高。此外,它们的长期稳定性仍需研究。高湿度、极高或极低的工作温度等恶劣环境可能会导致性能不佳。因此,提高它们的重复性、再现性,并在恶劣环境中对其性能进行试验,对未来的发展至关重要。此外,目前正在努力提高这些材料的性能。例如,已经有研究人员开发了一种用于超灵敏光电探测器的钙钛矿纳米线结晶度增加的制造方法。同样,未来的应用预计将通过提高材料的结晶度和研究设备的最佳布局来实现可扩展和集成的系统,从而提高结果。
参考文献:
XSoumyabrata Roy, Xiang Zhang, Anand B. Puthirath et al. , Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. Advanced Materials 33 , 2101589 (2021).
shaaaronzy
山东大学激光与红外系统集成技术教育部重点实验室电子科学与技术专业的研究方向是非常重要的,山东大学激光与红外系统集成技术教育部重点实验室电子科学与技术专业的研究生阶段主要就是培养学生的科研能力,并不是让你对一个专业的各个方向全面的走马观花式的学习,从很大程度讲山东大学激光与红外系统集成技术教育部重点实验室电子科学与技术专业的研究方向选择的如何将决定你的研究生学习阶段的成败。 山东大学激光与红外系统集成技术教育部重点实验室电子科学与技术专业的研究方向包括下列研究方向:
1、基于纳米颗粒的分子展示应用于超灵敏检测2、SLE患者中几种新型自身抗体的检测及其临床诊断价值的探讨3、多肽酶检测和细胞表面荧光标记的新方法研究4、区域检验服
随着社会的高速发展和全球化的加速推进,各国的学术研究也在不断壮大和深入。中国的学术研究也不例外,各个领域的论文层出不穷,尤其是在一些科技领域,中国的研究成果已经
瑞士洛桑联邦理工学院光子系统实验室的研究人员发明了一种无需外部设备就能重新配置微波光子的滤波器。这为更紧凑、更环保的滤波器铺平了道路,这些滤波器将更实用、更便宜
在对电子元器件外观质量检测时应按照以下操作进行:1、要检查元器件的型号、规格、厂商、产地必须与设计要求相符合,外包装完好。2、电子元器件的电极引线要无压折和弯曲
浙江林学院的吧,鄢圣英老师说