• 回答数

    3

  • 浏览数

    281

紫衣Helen
首页 > 学术期刊 > 能源化学学报

3个回答 默认排序
  • 默认排序
  • 按时间排序

月兮月兮

已采纳

张郁,吴慧杰,李小森,陈朝阳,李刚,曾志勇

张郁(1982-),男,助理研究员,主要从事天然气水合物开采技术研究。E-mail:。

注:本文曾发表于《高等学校化学学报》2010年第9期,本次出版有修改。

中国科学院广州能源研究所/可再生能源与天然气水合物重点实验室/广州天然气水合物研究中心,广州510640

摘要:利用定容降压的方法,测定了甲烷水合物在不同的多孔介质中的分解过程实验数据,所使用的多孔介质平均孔径为 nm, nm与 nm,其中孔径为 nm的多孔介质使用了3个粒径范围,分别为~ mm,~ mm,~ mm;其他孔径的多孔介质的粒径范围为~ mm。实验在封闭的条件下,测定了不同温度与不同初始生成压力下甲烷水合物的分解过程实验数据,实验的温度范围为~ K,初始生成压力范围为~ MPa。实验表明:水合物的分解速度随着初始生成压力的增加而增加,随着水浴温度的降低而升高,随着多孔介质粒径的增大而降低,同时随着孔径的增加而增加。在孔径较大,分解温度较低时,多孔介质中水合物的分解引起的温降会造成水结冰,从而减缓水合物的分解速度。

关键词:甲烷水合物;分解特性;多孔介质

Experimental Study on Dissociation Behavior of Methane Hydrate in Porous Media

Zhang Yu,Wu Huij ie,Li Xiaosen,Chen Zhaoyang,Li Gang,Zeng Zhiyong

Guangzhou Centerfor Gas Hydrate Research,Chinese Academy of Science/Key Laboratory of Renewable Energy and Gas Hydrate/Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,China

Abstract:The dissociation behavior of methane hydrate in the porous media are studied when the temperature is above the quadruple phase (hydrate(H)-water(LW)-ice(I)-vapor(V)) point silica gels were applied as the porous media for the experiments,in which the diameter ranges of the silica gel particles are ~ mm, 5~ mm and ~ mm ,respectively,and the mean pore diameters, nm, nm, nm and nm, dissociation experiments were carried out by depressurization in the temperature range of ~ and the initial formation pressure range of ~ experiments indicated that the dissociation rate of methane increases with the increase of the initial formation pressure,the decrease of the bath temperature,the decrease of the particle range and the increase of the mean pore relative big the particle diameter,the water in some pores becomes ice in the dissociation process,which makes the dissociation process relatively slow.

Key words:methane hydrate;dissociation;porous media

0 引言

甲烷水合物是一种由甲烷气体在一定的温度和压力下与水作用生成的一种非固定化学计量的笼型晶体化合物。标准状态下一体积的甲烷水合物可含有164体积的甲烷气体。甲烷水合物在世界范围内的海底与冻土地带广泛的存在,被认为是未来石油与天然气的替代资源。甲烷水合物同时还与全球的气候变化以及地质灾害有着十分密切的关系[1-3]。

为了对这种巨大的能源进行开发,各国的研究者提出了很多方法,比如:注热开采法[4],降压法[5],注化学剂法[6-7],二氧化碳置换法[8]等。在这些方法中,降压法最早被提出来[9],具有独特的优点。由于天然气水合物主要存在于海底的沉积物中,因此,为了发展、改进甲烷水合物的开采方法,对多孔介质中甲烷水合物分解特性的研究就显得尤为重要。

水合物分解特性的研究,主要集中在纯水体系中。Kim等[10]利用带搅拌的反应釜进行了甲烷水合物分解动力学的研究,研究的温度、压力范围分别为274~283 K,~ MPa。研究表明水合物的分解速度与水合物颗粒表面积以及分解逸度与相平衡逸度的差成正比关系。Clarke与Bishnoi[11-13]测定了冰点以上甲烷水合物、乙烷水合物与甲烷/乙烷水合物的分解速率常数。近来,对多孔介质中气体水合物展开了一些研究,但是主要集中在相平衡方面[14-18]。Liang等[19]测定了甲烷水合物在活性炭中的分解动力学数据,研究表明甲烷水合物在活性炭中的分解速度非常快。Liang等[19]同时建立了描述甲烷水合物在活性炭中分解动力学的数学模型。Yousif等[20]利用一维模型研究了多孔介质中水合物的分解动力学特性。研究发现,当多孔介质中水合物的分解速度较大时,能够引起明显的温度降低,当分解温度接近冰点时,温度的降低会使体系中的水结冰从而中断分解过程。然而,在他们的研究中,没有对多孔介质的粒径特性进行研究。海底沉积物一般具有不同的物理特性,比如孔径、粒径等。多孔介质的特性对水合物的生成、分解有着重要的影响,为了研究甲烷水合物开采技术,研究多孔介质的物理特性对甲烷水合物的分解特性的研究显得尤为重要。

为此,在水浴温度~ K,初始生成压力范围为~ MPa的静止条件下,测定了甲烷水合物在不同孔径与粒径的多孔介质中的分解特性数据(压力-时间关系);研究了在多孔介质中,体系的温度、初始生成压力、多孔介质平均孔径与粒径对甲烷水合物分解特性的影响。

1 实验

实验装置

图1 系统组成示意图

图1给出了实验系统图。实验系统的主要组成模块有供液模块、稳压供气模块、反应釜、环境模拟模块和数据采集模块。供液模块主要包括电子天平和平流泵:电子天平为Sartorius BS2202S型,量程2 200 g,测量精度 g,用于精确测量注入反应釜的液体质量;平流泵为北京卫星制造厂制造的2PB00C型平流泵,流量范围0~ m L/min,压力范围0~20 MPa。稳压供气模块包括甲烷气瓶、压力调节阀、稳压器,储气罐等,储气罐的体积为1 091 m L。反应釜的材质为不锈钢,耐压20 MPa,有效体积为416 m L。反应釜内布置有温度传感器和压力传感器,分别实时记录反应釜内温度、压力随时间的变化。其中,温度传感器为Pt1000铂电阻,精度范围±℃。压力传感器的量程为20 MPa,精度范围±%。实验所用气体为体积分数%的纯甲烷气体,由佛山豪文气体有限公司提供。实验开始前,首先进行了纯体系下甲烷水合物的相平衡条件的测定。实验的结果与文献[21]中的数据吻合的很好,结果由图2。实验结果表明系统的实验结果是可靠的。在多孔介质中甲烷水合物的分解实验中,使用了不同粒径与孔径的硅胶。实验采用的多孔介质详细的参数由表1给出。在实验中,首先使用与多孔介质中孔隙体积相同的去离子水与多孔介质充分混合。搅拌均匀后封闭静止5 d,以保证去离子水均被多孔介质吸收。对于不同孔径的多孔介质,实验过程中确保多孔介质所含水量相同,同时移动反应釜底部的活塞保证反应釜中的气体体积相同。实验过程中,对于平均孔径为 nm, nm, nm与 nm的多孔介质,分别使用的质量为 g, g, g与 g。多孔介质中所含水的质量为148 g,反应釜中气体的体积为 m L。

图2 甲烷水合物相平衡条件实验数据比较图[21]

表1 多孔介质参数

实验过程

实验在多孔介质中水合物四相点TQ1(水合物(H)-水(Lw)-冰(I)-气(V))以上进行,四相点由Li等[22]计算。对于孔径为 nm, nm, nm与 nm的多孔介质,TQ1分别为 K, K, K与 K。实验过程中,首先对反应釜进行抽空2~3 h,再用纯甲烷气体对反应釜进行冲洗4~5次,以保证没有空气的存在。随后,将水浴的温度调整到预定的值。当系统的温度达到稳定之后,通过SV向CR注入甲烷气体到预定的压力。反应釜中的压力随之降低,水合物开始生成。当反应釜中压降小于 MPa/3 h,水合物的生成过程可以认为结束。反应釜中的压力随时间的变化由电脑采集并记录。

生成过程结束后,开始进行分解实验。打开阀门,将反应釜CR的压力迅速降低到大气压,然后关闭阀门。在分解的过程中,水浴的温度保持恒定。当分解进行足够长的时间,反应釜中的压力保持不变,分解过程可以认为已经结束。反应釜中的压力再一次降低到大气压以确保没有水合物的存在。结果表明,再次放空后,反应釜中的压力不会再次上升,说明水合物已经全部分解完毕。

甲烷在t时刻的累计摩尔量由下式给出:

南海天然气水合物富集规律与开采基础研究专集

其中:Pc为t时刻反应釜中的压力;P0为初始的分解压力,为 MPa。T为反应釜中的温度,单位为K; Vc为反应釜中气体的体积;Z为分解过程中气体的压缩因子,Z0为压力为P0时气体的压缩因子,由Li等[22]计算。

2 结果与讨论

本工作中,共进行了38组甲烷水合物在多孔介质中的分解实验,详细实验条件见表2。所使用的多孔介质平均孔径为 nm, nm, nm与 nm,其中孔径为 nm的多孔介质使用了3个粒径范围,分别为~ mm,~ mm与~ mm,其他孔径的多孔介质的粒径范围为~ mm。实验的温度范围为~ K,初始生成压力范围为~ MPa。详细的实验结果由表2及图3~10给出。

初始生成压力对分解的影响

表2 实验条件与结果

图3给出了在水浴温度为 K,初始生成压力为~ MPa下不同初始生成压力实验的分解摩尔量及转化率随时间变化图,分别对应于实验10,11与12。实验所用的多孔介质平均孔径为 nm,粒径为~ mm。在本实验中,水合物的分解可以分为2个阶段:在第一阶段,反应釜中的压力被快速释放到大气压,大约在1 min以内,水合物分解产生的甲烷被释放到大气中,这部分甲烷的摩尔量由(n0-ng)计算。在第二阶段,反应釜关闭,分解产生的甲烷被收集到反应釜中,这部分的甲烷摩尔量根据反应釜中的压力变化利用Li等[22]的状态方程计算。分解过程的2个阶段可以从图3中初始生成压力 MPa的实验中看到。图3中,n为t时刻水合物分解产生的甲烷摩尔量,x为t时刻水合物分解转化率,根据n/n0计算。从图3与表2中可以看出,分解的甲烷总摩尔量随着初始生成压力的升高而增加,这是因为在较高的初始生成压力与相同水浴温度下,将有更多的水合物在多孔介质中生成。从图3中还可以看出,甲烷的分解速度随着初始生成压力的上升而上升,这是由于在相同的分解条件下,甲烷的分解速度随着水合物量的增加而增加。然而,转化率的速度随着初始生成压力的上或而降低,这是由于在相同的转化率下,较高累积摩尔量具有较高的反应釜压力,这样分解的驱动力就将减小。同样的现象可以在其他不同初始生成压力的实验中被发现。

图3 分解摩尔量及转化率随时间变化图

水浴温度 K,多孔介质平均孔径 nm,粒径~ mm

图4给出了实验10,11与12的分解过程中反应釜中温度随时间变化的曲线。从图4中可以看出,反应釜中的温度在分解过程中一直低于水浴的温度。温度的变化曲线可以分为3个阶段:在第一阶段,反应釜中的温度在短时间内明显的降低,对于实验10,11与12分别在与 min左右降低到最低温度。在此过程中,由于反应釜中压力降低到大气压,多孔介质中的水合物开始迅速的分解为水与甲烷气体,水合物分解以及气体节流效应需要大量的热量并且所需的热量大于水浴传导给反应釜的热量,因此造成了反应釜中温度的降低。反应釜中的最低温度随着初始生成压力的上升而降低。在第二阶段中,水合物的分解继续进行而反应釜的温度逐渐的升高,这是由于在此阶段中,水合物分解所吸收的热量小于从水浴传导给反应釜中的热量。在第三阶段中,水合物的分解已经结束,反应釜中的温度继续升高并逐渐升高到与水浴的温度相同。图5给出了实验12的3个温度变化阶段。从图5中可以看出,对于相同的水浴温度,某时刻反应釜中的温度随着初始生成压力的上升而降低,这是由于对于较高的初始生成压力,多孔介质中有较多的水合物生成,而较多的水合物分解则需要吸收更多的热量。同样的实验现象可以在其他不同初始生成压力的实验中看到。

水浴温度对分解的影响

图5中给出了在初始生成压力为 MPa,不同的水浴温度下的甲烷分解累积摩尔量及转化率随时间变化图,分别对应于实验9,12与13。实验所用的多孔介质为平均孔径 nm,粒径范围为~ mm。从图5与表2中可以看出,分解后总的甲烷摩尔量随着水浴温度的降低而增加。甲烷产生的速率也随着水浴温度的降低而增加。这是由于对于相同的初始生成压力,在较低的水浴温度下,将有更多甲烷形成水合物,而甲烷分解的速率随着水合物量的增加而增大。然而,水合物的转化率速度随着水浴温度的升高而增加。这可能是由于水合物的分解速率常数与气体扩散常数均随着温度的增加而增加。

图4 反应釜内温度变化随时间变化图

水浴温度 K,多孔介质平均孔径 nm,粒径为~ mm

图5 分解摩尔量及转化率随时间变化图

初始生成压力为 MPa,多孔介质平均孔径为 nm,粒径为~ mm

图6给出了实验9,12与13的分解过程中反应釜中温度随时间变化的曲线。反应釜中温度在整个分解过程中同样可以分为3个阶段。对于实验9,12与13,反应釜中的温度分别在,与时达到最低值。对于相同的初始生成压力,分解过程中反应釜中的温度以及最低温度随着水浴温度的增加而增加。同样的实验现象可以在其他孔径与粒径的多孔介质的实验中观察到。

图6 反应釜内温度随时间变化图

初始生成压力 MPa,多孔介质平均孔径 nm,粒径~ mm

粒径对分解的影响

为了研究不同粒径范围的多孔介质对甲烷水合物分解速度的影响,进行了3个不同粒径范围的多孔介质的实验,分别为~ mm,~ mm与~ mm,多孔介质的平均孔径为 nm。

图7给出了实验12,20与26的甲烷累计摩尔量随时间变化的曲线,实验的初始生成压力为 MPa,水浴温度为 K。从图7与表2中可以看出,实验12,20与26的n。值是基本相同的。这说明,对于相同的初始生成压力与相同的水浴温度,多孔介质中生成的甲烷水合物的量受到多孔介质粒径大小的影响很小。从图7中可以看出,甲烷水合物分解的速度随着多孔介质粒径的增加而变慢,并且粒径为~ mm的多孔介质中,甲烷产生的速率明显的较低。图7同时给出了实验12,20与26的水合物转化率随时间变化的曲线。可以看出,水合物的转化速率也随着粒径的降低而增加。实验表明,多孔介质的粒径对水合物的分解速率以及转化率速度有着明显的影响。这主要是由于随着多孔介质粒径的增大,多孔介质颗粒表面的比表面积减小的原因造成。同样的现象可以在其他初始生成压力与水浴温度的实验中观察到。

图8给出了实验12,20与26的分解过程中反应釜中温度随时间变化的曲线。对于实验12,20与26,在温度变化的第一阶段,反应釜中的温度分别在与 min时降低到最低值。从图中可以看出,对于相同的初始生成压力与水浴温度,反应釜中的最低温度随着粒径的增加而升高,然而在达到最低温度之后,对于较大粒径的多孔介质,温度的升高比较缓慢,这是由于其水合物的分解速度较慢,分解持续的过程较长造成的。同样的现象可以在其他初始生成压力与水浴温度的实验中观察到。

图7 分解摩尔量及转化率随时间变化图

水浴温度 K,初始生成压力 MPa,多孔介质平均孔径 nm

图8 反应釜内温度随时间变化图

水浴温度 K,初始生成压力 MPa,多孔介质平均孔径 nm

平均孔径对分解的影响

研究了不同的平均孔径对多孔介质中水合物分解特性的影响。实验所采用的多孔介质粒径为~ mm,平均孔径分别为 nm, nm, nm与 nm。由于多孔介质中水合物的平衡分解压力随着孔径的减小而增大[21],在相同的水浴温度与初始生成压力下, nm孔径的多孔介质中生成的水合物量是最少的。为了保证能够生成足够量的水合物,对于 nm孔径的多孔介质,使用了较高的初始生成压力,为~ MPa。对水浴温度为 K,初始生成压力为 MPa下的实验进行了比较。

图9给出了实验2,12,32与37的甲烷累积摩尔量与水合物转化率随时间变化的曲线,实验的初始生成压力为 MPa,水浴温度为 K。从图9中可以看出,对于相同的初始生成压力与水浴温度,分解后总的甲烷摩尔量随着孔径的增加而增加。甲烷的分解产生速率也随着孔径的增加而增加。这是由于对于较大的平均孔径,水合物的平衡生成压力较低,将有更多的水合物在多孔介质中生成,更多的水合物分解也会产生更多的甲烷气体。从图9中还可以看出水合物的转化率速率随着孔径的增加而降低。这主要是由于在相同的转化率下,对于较大的孔径,水合物的平衡分解压力较低,这样水合物分解的驱动力较小造成的。从图9中还可以看出,分解过程持续的时间随着平均孔径的增大而增加。对于孔径 nm与 nm,多孔介质中水合物的四相点温度分别为 K与 K,接近分解过程中反应釜中的最低温度。由于所有用的多孔介质有一个孔径的分布范围,所以分解过程中由于温度的降低使得多孔介质较大的孔隙中的水低于四相点温度而结冰,阻止了水合物的分解,这使得孔径 nm与 nm的多孔介质中水合物分解速度比其他孔径的实验明显变慢,分解过程也明显变长。

图10给出了实验2,12,32与37的分解过程中反应釜中温度随时间变化的曲线。对于实验2,12,32与37,在温度变化的第一阶段,反应釜中的温度分别在与 min时降低到最低值。从图中可以看出,分解过程中最低温度随着平均孔径的增大而升高。这是因为相同实验条件下水合物生成结束后系统中的压力随着孔径的减小而增加,当系统中压力降低到大气压,较高的压降引起了较高的温度降低。当温度达到最小值之后,反应釜中的温度开始逐渐的升高,对于较小孔径的多孔介质,温度升高的更快。同样的实验现象可以在其他的水浴温度与初始生成压力的实验中看到。

图9 分解摩尔量及转化率随时间变化图

水浴温度 K,初始生成压力 MPa,多孔介质粒径~ mm

图10 反应釜内温度随时间变化图

水浴温度 K,初始生成压力 MPa,多孔介质粒径~ mm

3 结语

实验研究了在不同孔径与粒径的多孔介质中甲烷水合物的分解特性,实验在水浴温度~ K,初始生成压力~ MPa下进行。分解实验利用定容降压的方法进行。

实验的结果表明甲烷水合物在多孔介质中的分解速度很快,分解过程中甲烷产生的速度随着初始生成压力的增加和水浴温度的降低而增加。然而,水合物转化率的速度随着初始生成压力的增加和水浴温度的降低而降低。反应釜中的温度在分解初期有明显的降低,在达到最低值后开始逐渐的升高,伴随整个的分解过程。分解过程中的温度随着水浴温度的增加以及初始生成压力的降低而增加。

水合物的分解速度随着粒径的增大而减小。然而,水合物转化率的速度随着粒径的增加而降低。分解过程中反应釜中的最低温度随着粒径的增大而升高。水合物的分解速度随着平均孔径的增加而增加,而水合物转化率的速度随着平均孔径的增加而降低。对于孔径较大的多孔介质,在较低的实验温度下,水合物的分解吸热可能会造成水的结冰,从而降低水合物的分解速度。分解过程中反应釜中的最低温度随着平均孔径的增大而升高。

参考文献

[1]Sean W Y,Sato T,Yamasaki A,et and Experimental Study on Methane Hydrate Dissociation Part Under Water Flow[J].AICh E (1):262-274.

[2]Koh C A,Sloan E Gas Hydrates:Recent Advances and Challenges in Energy and Environmental Applications[J].AICh E (7):1636-1643.

[3]Makogon Y F,Holditch S A,Makongon T Y Natural Gas-Hydrate:A Potential Energy Source for the 21stCentury[J]..

[4]Castaldi M J,Zhou Y,Yegulalp T Combustion Methodfor Gas Productionfrom Methane Hydrates[J].J Pet Sci Eng,2007,56:176-185.

[5]Ahmadi G,Ji C,Smith D of Natural Gasfrom Methane Hydrate by a Constant Downhole Pressure Well,Energy Conversion and Management[J].Energy .

[6]LiG ,Li X S,Tang L G,et Investigation of Productionbehavior of Methane Hydrate Under Ethlylene Glycol Injection in Unconsolidated Sediment[J].Energy Fuels,2007,21:3388-3393.

[7]Li X S,Wan L H,Li G,et Investigation into the Production Behavior of Methane Hydrate in Porous Sediment with Hot Brine Stimulation[J].Ind Eng Chem Res,2008,47:9696-9702.

[8]Lee H ,Seo Y,Seo Y T,et Methane from Solid Methane Hydrate with Carbon Dioxide[J]..

[9]Makogon Y F,Holditch S A,Makogon T Field Illustrates Gas-Hydrate Production[J].Oil&Gas J,2005,7(2):43-47.

[10]Kim H C,Bishnoi P R,Heidemann R A,et of Methane Hydrate Decomposition[J].Chem Eng Sci,1987,42 (7):1645-1653.

[11]Clarke M,Bishnoi P ofthe Intrinsic Rate of Ethane Gas Hydrate Decomposition[J].Chem Eng Sci,2000,55:4869-4883.

[12]Clarke M A,Bishnoi P of the Active Energy and Intrinsic Rate Constant of Methane Gas Hydrate Decomposition[J].Can J Chem Eng,2001,79:143-147.

[13]Clarke M A,Bishnoi P and Modelling the Rate of Decomposition of Gas Hydrates Fromed from Mixtures of Methane and Ethane[J].Chem Eng Sci,2001,56:4715-4724.

[14]Clarke M A,Pooladi-Darvish M,Bishnoi P Method to Predict Equilibrium Conditions of Gas Hydrate Formation in Porous media[J]. Chem Res,1999,38(6):2485-2490.

[15]Anderson R,Llamedo M,Tohidi B,et Measurement of Methane and Carbon Dioxide Clathrate Hydrate Equilibria in Mesoporous Silica[J].J Phys Chem B,2003,107(15):3507-3514.

[16]Zhang W,Wilder J W,Smith D of Ethane Hydrate Equilibrium Data for Porous Media Involving Hydrate-Ice Equilibria[J].AICh E J,2002,48(10):2324-2331.

[17]Seshadri K,Wilder J W,Smith D of Equilibrium Pressures and Temperaturesfor Propane Hydrate in Silica Gels with Different Pore-Size Distributions[J].J Phys Chem B,2001,105(13):2627-2631.

[18]Uchida T,Ebinuma T,Ishizaki Condition Measurements sf Methane Hydrate in Confined Small Pores of Porous glass[J].J Phys Chem B,1999,103(18):3659-3662.

[19]Liang M Y,Chen G J,Sun C Y,et and Modeling Study on Decomposition Kinetics of Methane Hydratesin Different Media[J].J Phys Chem B,2005,109(40):19034-19041.

[20]Yousif M H,Sloan E Investigation of Hydrate Formation and Dissociation in Consolidated Porous Media[J].SPE Reservoir (4):452-458.

[21]Adisasmito S,Frank R J,Sloan E of Carbon Dioxide and Methane Mixture[J].J Chem Eng Data 1991,36:68-71.

[22]Li X S,Zhang Y,Li G,et al..Gas Hydrate Equilibrium Dis sociation Conditions in Po rous Media Using Two Thermodynamic Approaches[J].J Chem Thermodyn,2008,40:1464-1474.

246 评论

麦兜爱李公主

李金林,男,1963年9月出生,教授,博士生导师。1983年获中南工业大学化学系工学学士学位;1988年获武汉大学化学系理学硕士学位; 1999年获南非约翰内斯堡大学化学系理学博士学位;1999年—2002年任美国肯塔基应用能源研究中心博士后研究员;2003年起任中南民族大学教授,现为中南民族大学校长,化学与材料科学学院教授、博士生导师,物理化学学科带头人,催化材料科学湖北省重点实验室暨国家民委-教育部共建催化材料科学重点实验室主任,气体净化与精制湖北省重点实验室学术委员会主任,林产化学与工程广西自治区重点实验室学术委员会副主任,中国化学会理事、催化专业委员会委员,湖北省化学化工学会副理事长,《燃料化学学报》、《化学与生物工程》杂志编委,为享受国务院和湖北省政府特殊津贴专家。研究方向: 多相催化和催化材料。

194 评论

成都安美

王树东 研究员 博士生导师1985年在太原工业大学获得工学学士学位,1993年在大连理工大学获得工学博士学位,毕业后来中科院大连化学物理研究所工作。1997年任研究员,现任现代化工研究室主任、能源环境工程组组长。到日本资源环境综合技术研究所做JSPS访问学者;到法国普瓦提(Poitiers)大学做访问教授。先后承担了“天然气干法脱硫”、“煤催化燃烧和固硫机理”、“煤催化燃烧和固硫一体化”、“质子膜燃料电池氢源”等“85”、“95”国家重大攻关项目、“燃烧污染防治”973重大基础研究以及国家自然科学基金课题。在产业化应用中,承担了在“系列NOX治理”、“系列脱硫技术”、“DCL型燃煤固硫剂”、“一步法COS高效精脱硫技术”等多项研究开发、生产放大的工作,为企业和国民经济做出了贡献。近年来,领导课题组全面完成国家及各部委委托的各项研究任务。成功开发出甲醇自热重整制氢燃料电池氢源系统及甲醇水蒸汽重整制氢燃料电池氢源系统,取得了一批具有自主知识产权的创新成果。主持完成了院知识创新工程重大项目“大功率燃料电池氢源”,集成组装了75kW甲醇自热重整燃料电池氢源系统,同燃料电池成功联试;在国际合作方面,与美国Corning公司和德国斯图加特大学开展了制氢及脱NOx等项目的合作研发,取得了重大进展,正在申请国际专利两项。共发表论文九十余篇,申请中国专利二十余项,日本专利一项,鉴定成果五项,获国家技术发明奖二等奖一项,中科院发明二等奖一项,省市级奖励多项。 催化反应工程领域的基础研究和应用开发包括:催化剂工程设计、气固多相催化反应工程、整体结构催化剂,高效集成反应器,化工集成技术,稀土催化材料 1. 燃料电池氢源醇类和烃类重整技术的研究:包括系列催化剂的研究开发,反应器的优化设计,辅助系统及系统集成2. 大气污染治理NOx的催化脱除,VOC催化燃烧脱除 ,CO2减排治理,CH4的催化燃烧脱除 “863”计划能源领域专家组专家中国稀土学会催化专业委员会副主任“Chinese Journal of Chemical Engineering”杂志编委《燃料化学学报》杂志编委

305 评论

相关问答

  • 能源化学工程概论论文

    化学工程技术是支持各类有关化学工程的理论性基础,是一项十分复杂的科学研究。下面是我为大家整理的化学工程建设 毕业 论文论文,供大家参考。 《 能源化学工程专

    青帝织锦 2人参与回答 2023-12-11
  • 绿色化学与绿色能源论文

    化学与环境保护摘要:从环境保护出发,介绍了环境污染的现状及防治方法,综述了绿色化学的定义、特点及研究内容。指出绿色化学是近年来国际上普遍提倡和开展的研究课题,绿

    小苹果花苑 3人参与回答 2023-12-08
  • 山西能源学院学报投稿

    成都理工学院学报(社科)、辽宁师专学报 (社科)、沈阳师范大学学报(社科)、沈阳工程大学学报(社科)、河北农业大学学报(社科)、《山东农业工程学院学报》、《山西

    五百米深蓝 2人参与回答 2023-12-08
  • 能源化学杂志好吗

    一区。《能源化学杂志》中CI影响因子在一区,分别为8.271和9.676。《能源化学杂志》旨在打造一种学术水平高、可读性强、具有全球影响力的学术期刊。

    爱啃狼的木头 2人参与回答 2023-12-07
  • 能源化学学报

    张郁,吴慧杰,李小森,陈朝阳,李刚,曾志勇 张郁(1982-),男,助理研究员,主要从事天然气水合物开采技术研究。E-mail:。 注:本文曾发表于《高等学校化

    紫衣Helen 3人参与回答 2023-12-07