• 回答数

    8

  • 浏览数

    190

攀爬—蜗牛
首页 > 学术期刊 > 中国新发布的细胞衰老研究论文

8个回答 默认排序
  • 默认排序
  • 按时间排序

叹久妞子

已采纳

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

138 评论

暗旦无光

人类衰老之谜初见端倪--------------------------------------------------------------------------------作者: 发表时间:2003-2-27 摘自:中国科学院和中国工程院于2003年1月26日联合在北京宣布了由568位中国科学院和中国工程院院士参与评选的"2002年中国十大科技进展新闻"。 "北京大学医学部科学家初步揭开了人类衰老之谜"成为该十大新闻中唯一的一条医学方面的新闻。该成果还在2003年1月25日公布的"2002年公众关注的中国十大科技事件"评比中名列榜首。该项研究成果是在国家自然科学基金面上项目和重点项目及国家 "973"项目共同支持下,由北京大学医学部童坦君、张宗玉两位教授领导的科研小组,在多年潜心研究基础上取得的。该研究初步阐明了P16基因是人类细胞衰老的主导基因,是人类细胞衰老遗传控制程序的主要因素,揭示了P16基因在衰老过程中高表达是细胞衰老的主要原因。衰老是一种有机体的死亡危险随年龄增加而增大的现象。细胞衰老是生物衰老的基本单位、老年病的发病基础。近年来有关衰老的研究取得了一些进展如细胞凋亡与特殊基因的关系、端粒长度的控制等。童坦君、张宗玉教授领导的课题组密切关注国际前沿发展方向,他们将P16基因导入人成纤维细胞,结果衰老加快,而将其反义重组载体导入细胞则抑制P16使细胞较长时间维持年轻态,且使细胞增殖能力与DNA损伤修复能力加强。这些重要发现在国际著名杂志J Biol Chem 上以两篇文章发表。童坦君、张宗玉教授领导的课题组长期从事衰老及肿瘤形成的分子机理研究。主持和完成了5项相关课题的国家自然科学基金面上项目和重点项目,在国际、国内一流杂志发表多篇研究论文,并多次获省部级科技进步奖。他们的研究是对人类细胞衰老机理研究的原创性贡献,为进一步阐明人类细胞衰老问题提供了一条新途径。

161 评论

游客56742389

细胞衰老的原因目前还未确定,但是存在这几种原因。分子机理之差错学派细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有实验证据。代谢废物积累学说细胞代谢产物积累至一定量后会危害细胞,引起衰老,哺乳动物脂褐质的沉积是一个典型的例子,脂褐质是一些长寿命的蛋白质和DNA、脂类共价缩合形成的巨交联物,次级溶酶体是形成脂褐质的场所,由于脂褐质结构致密,不能被彻底水解,又不能排出细胞,结果在细胞内沉积增多,阻碍细胞的物质交流和信号传递。最后导致细胞衰老。研究还发现老年性痴呆(AD)脑内的脂褐质、脑血管沉积物中有β-淀粉样蛋白,因此β-AP可做为AD的鉴定指标。大分子交联学说过量的大分子交联是衰老的一个主要因素,如DNA交联和胶原胶联均可损害其功能,引起衰老。在临床方面胶原交联和动脉硬化、微血管病变有密切关系。自由基学说自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。如O2ˉ··、OH·和各类活性氧中间产物(reactive oxygen metabolite ROM),正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。 自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。蛋白质的变性而失活,膜脂中不饱和酸的氧化而流动性降低。实验表明DNA中OH8dG随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。 大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等人(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。体细胞突变学说认为诱发和自发突变积累和功能基因的丧失,减少了功能性蛋白的合成,导致细胞的衰老和死亡。如辐射可以导致年轻的哺乳动物出现衰老的症状,和个体正常衰老非常相似。DNA损伤修复学说外源的理化因子,内源的自由基本均可导致DNA的损伤。正常机体内存在DNA的修复机制,可使损伤的DNA得到修复,但是随着年龄的增加,这种修复能力下降,导致DNA的错误累积,最终细胞衰老死亡。DNA的修复并不均一,转录活跃基因被优先修复,而在同一基因中转录区被优先修复,而彻底的修复仅发生在细胞分裂的DNA复制时期,这就是干细胞能永保青春的原因。端粒学说染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。生物分子自然交联学说该学说在论证生物体衰老的分子机制时指出:生物体是一个不稳定的化学体系,属于耗散结构。体系中各种生物分子具有大量的活泼基团,它们必然相互作用发生化学反应使生物分子缓慢交联以趋向化学活性的稳定。随着时间的推移,交联程度不断增加,生物分子的活泼基团不断消耗减少,原有的分子结构逐渐改变,这些变化的积累会使生物组织逐渐出现衰老现象。生物分子或基因的这些变化一方面会表现出不同活性甚至作用彻底改变的基因产物,另一方面还会干扰RNA聚合酶的识别结合,从而影响转录活性,表现出基因的转录活性有次序地逐渐丧失,促使细胞、组生进行性和规律性的表型变化乃至衰老死亡。 生物分子自然交联说论证生物衰老的分子机制的基本论点可归纳如下:其一,各种生物分子不是一成不变的,而是随着时间推移按一定自然模式发生进行性自然交联。其二,进行性自然交联使生物分子缓慢联结,分子间键能不断增加,逐渐高分子化,溶解度和膨润能力逐渐降低和丧失,其表型特征是细胞和组织出现老态。其三,进行性自然交联导致基因的有序失活,使细胞按特定模式生长分化,使生物体表现出程序化和模式化生长、发育、衰老以至死亡的动态变化历程。分子机理之遗传论学派认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。细胞有限分裂学说 (1961)报道,人的纤维细胞在体外培养时增殖次数是有限的。后来许多实验证明,正常的动物细胞无论是在体内生长还是在体外培养,其分裂次数总存在一个“极极值”。此值被称为“Hayflick”极限,亦称最大分裂次数。如人胚成纤维细胞在体外培养时只能增殖60~70代。 现在普遍认为细胞增殖次数与端粒DNA长度有关。 Harley等1991发现体细胞染色体的端粒DNA会随细胞分裂次数增加而不断缩短。DNA复制一次端粒就缩短一段,当缩短到一定程度至Hayflick点时,细胞停止复制,而走向衰亡。资料表明人的成纤维细胞端粒每年缩短14~18bp,可见染色体的端粒有细胞分裂计数器的功能,能记忆细胞分裂的次数。 端粒的长度还与端聚酶的活性有关,端聚酶是一种反转录酶,能以自身的RNA为模板合成端粒DNA,在精原细胞和肿瘤细胞(如Hela细胞)中有较高的端聚酶活性,而正常体细胞中端聚酶的活性很低,呈抑制状态。重复基因失活学说真核生物基因组DNA重复序列不仅增加基因信息量,而且也是使基因信息免遭机遇性分子损害的一种方式。主要基因的选择性重复是基因组的保护性机制,也可能是决定细胞衰老速度的一个因素,重复基因的一个拷贝受损或选择关闭后,其它拷贝被激活,直到最后一份拷贝用完,细胞因缺少某种重要产物而衰亡。实验证明小鼠肝细胞重复基因的转录灵敏度随年龄而逐渐降低。哺乳动物rRNA基因数随年龄而减少。衰老基因学说统计学资料表明,子女的寿命与双亲的寿命有关,各种动物都有相当恒定的平均寿命和最高寿命,成人早衰症病人平均39岁时出现衰老,47岁生命结束,婴幼儿早衰症的小孩在1岁时出现明显的衰老,12~18岁即过早夭折。由此来看物种的寿命主要取决于遗传物质,DNA链上可能存在一些“长寿基因”或“衰老基因”来决定个体的寿限。 研究表明当细胞衰老时,一些衰老相关基因(SAG)表达特别活跃,其表达水平大大高于年轻细胞,已在人1 号染色体、4号染色体及Ⅹ染色体上发现SAG。 用线虫的研究表明,基因确可影响衰老及寿限,Caenrhabditis elegans的平均寿命仅天,该虫age-1 单基因突变,可提高平均寿命65%,提高最大寿命110%,age-1突变型有较强的抗氧化酶活性,对H2O2、农、紫外线和高温的耐受性均高于野生型。 对早衰老综合症的研究发现体内解旋酶存在突变,该酶基因位于8号染色体短臂,称为WRN基因,对AD的研究发现,至少与4个基因的突变有关。其中淀粉样蛋白前体基因(APP)的突变,导致基因产物β淀粉蛋白易于在脑组织中沉积,引起基因突变。

177 评论

小璇璇APPLE

人类衰老的本质是:随着年龄增加,我们体内干细胞的数量会逐渐减少,活力会逐渐下降。在新生命刚刚出生时,干细胞数量非常充沛;到30岁左右时,干细胞的储存量只剩下出生时的一半;步入60岁以后,干细胞的数量更是明显减少。人体的衰老,说到底是细胞的衰老。抗衰老最根本的途径是修复细胞、改善细胞代谢、激活衰老细胞的功能。干细胞是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。人体的衰老,皱纹的出现,究其根源实质上都是细胞的衰老和减少。而细胞的衰老和减少则是由干细胞老化引起的。干细胞是各种组织细胞更新换代的种子细胞,是人体细胞的生产厂。干细胞族群的老化严重减弱了其增殖和分化的能力,新生的细胞补充不足,衰老细胞不能及时被替代,全身各系统功能下降,让人一天天老去。而你的皮肤,也因为皮肤干细胞的衰老而无法及时更新,衰老的皮肤得不到修复,所以,你有了皱纹,失去了青春容颜。干细胞美容是通过输注特定的多种细胞(包括各种干细胞和免疫细胞),激活人体自身的“自愈功能”,对病变的细胞进行补充与调控,激活细胞功能,增加正常细胞的数量,提高细胞的活性,改善细胞的质量,防止和延缓细胞的病变,恢复细胞的正常生理功能,从而达到疾病康复、对抗衰老的目的。“原位培植皮肤干细胞再生新皮肤技术”不仅实现了利用干细胞复制皮肤器官,而且做到了人体原位皮肤器官的复制,从而使人类从干细胞体外培植组织成器官移植治疗,直接跨入了人体原位干细胞复制器官。科学家普遍认为:干细胞的研究将为临床医学提供更为广阔的应用前景。如何让细胞抗衰老?通过大量实验和临床对照研究,使人们逐渐认识到:青春之泉不在别处,而是蕴藏于我们体内,是否年轻态主要取决于体内的细胞,只要细胞健康、有活力,机体才能保住青春。而细胞的状态和命运是由干细胞决定的,干细胞可以修复细胞的损伤,补充细胞的消耗,激活细胞的能量。科学家们发现了一些能延长细胞寿命的方法,那就是补充干细胞能延长细胞寿命。干细胞抗衰老,一方面大量补充新鲜的干细胞,替换衰老、病变细胞、改善人体内环境、提高脏器功能;另一方面,进入体内的干细胞可以唤醒原本沉睡的干细胞,增强细胞活性,修复受损细胞,调理人体各个组织器官,维持机体青春活力。

305 评论

ace922apple

针对这些生理改变,医学专家给出了几点健康提示。一、肌肉减少,被脂肪取代。随着年龄增长,人体肌肉比重逐渐下降。对老人来说,持之以恒的体育锻炼,可有效延缓肌肉减少。由于肌肉比重变化,老人对药物的吸收也与年轻人不同。有些药物,老人需用相对更少的剂量,甚至不用,如第一代抗组胺剂、苯二氮平类药物等。二、骨质疏松和骨关节炎。这两种疾病大多由器官正常退化引起,若不注意预防和治疗,后果很严重。骨质疏松的直接后果是跌倒后易骨折,骨关节炎产生的疼痛也会给老人带去很多烦恼。对骨质疏松,常规的诊断方法是骨密度检查,常用的药物治疗是通过二碳磷酸盐化合物。骨关节炎一般也通过临床症状和X光片进行诊断,常使用止痛消炎药。老人平时多做增强肌肉的运动以及低冲击性运动,如游泳、瑜伽、太极等。三、免疫功能下降。老人感冒后不易好,是免疫力降低的表现。有条件的情况下,建议每年打流感疫苗。此外,其他疫苗也需在老年人群中加强,如百白破疫苗,成人一般每10年要打(增强)1次。同时,建议老人平时多晒晒太阳。四、胃肠缺乏活力。老人肠胃周围供血能力下降,会导致肠蠕动变慢,引起便秘或腹泻。再加上不少牙齿脱落,影响咀嚼功能,食欲大减。所以,平时应注意多吃蔬菜等粗纤维食物,刺激肠蠕动,预防便秘。五、感官能力受影响。年龄增长会让听力、嗅觉、视力全面下降。另外,手脚上的周围神经敏感度下降,会使老人反应变慢,易跌倒。建议上了年纪,做事放慢速度,不要着急,以免发生意外。六、记忆力变差。老人的短期记忆和学习新事物的能力会受年龄影响,属于正常现象,不用太紧张。但有时大脑功能受影响是一些疾病引起的,如抑郁症、中风、甲状腺功能减退等,建议老人关注自身变化,定期去医院检查。

111 评论

米儿土土

解开人类衰老之谜 2004-7-24 9:58:00 来源:中国福利网 点击:23 【字体:大 中 小】 【打印本稿】 【读后感言】 【进入论坛】 【推荐 】 【关闭】 人类为什么会衰老?我国医学专家童坦君、张宗玉两位教授经过10多年的研究,破解了人类衰老之谜,得出人类衰老细胞基因调控能力减退与特异转录因子相关的结论。 据童坦君介绍,人类衰老的机理极其复杂,其学说不下几十种,如免疫学说、神经内分泌学说、自由基因学说、蛋白质合成差错累积学说等。近年,从分子与基因水平上提出的基因调控学说、DNA损伤修复学说、线粒体损伤学说以及端区假说已成为国际研究热点,这也是他们在人类衰老机理方面的研究方向。童坦君首先介绍了一个专业名词——端粒(又称端区),它是细胞染色体末端的一种用显微镜可以见到的呈条状的物质。端粒有长短,随年龄增加而越来越短,端粒的消失,会使染色体发生畸变,从而使人类细胞丧失复制能力,最终导致细胞衰老。器官“衰老”有序可循 北京大学衰老研究中心主任童坦君说,衰老是一切生物个体伴随着时间的推移所发生的必然过程,它表现为各组织器官的衰老及其功能的减退,人体器官衰老是有一定程序的。他介绍了人体几个主要器官的衰老变化。 心脏与血管:心脏潜力在成年时最强,之后每过1年减少1个百分点,70岁时为40岁时的50%;老人的血管因弹力纤维逐渐收缩、断裂、消失而导致弹力减退,血管内膜出现动脉粥样硬化斑块,血管变硬,冠状动脉因粥样硬化而口径变小。 呼吸系统:老年人鼻黏膜及咽腔淋巴组织亦趋向萎缩;肺组织萎缩,肺泡变大,弹性减退,胸廓前后径扩大,形成老年性肺气肿。25岁青年每分钟可向组织输氧4升,而70岁老人只能输氧2升,肺功能明显减退。 消化系统:老年人牙周组织发生退行性变,出现牙周炎。75岁老人与儿童比较,味觉感受器丧失80%,因而食不甘味。老人各种消化腺萎缩,胃酸分泌减少,唾液淀粉酶、胃蛋白酶等分泌下降,故消化功能减退;老人的胆囊及胆管变厚,胆汁变浓,并含大量胆固醇,故易于发生胆石症。泌尿生殖系统:老年人肾小球滤过率下降,肾血流量减少,葡萄糖再吸收能力下降。更年期之后,女性卵巢萎缩并硬化,雌激素分泌骤减,同时乳房萎缩,外生殖器变小,宫颈萎缩。男性睾丸也渐趋萎缩并纤维化,阳痿率慢慢增加。 运动系统:人进入中年后,由于久坐不动,每过10年,肌肉会递减5—10个百分点;75岁时的握力只相当于35岁时的75%,肌腱韧带萎缩并变僵硬,故老人腿脚不便,行动迟缓。骨骼大量脱钙,皮质变薄,髓质网眼扩大,形成骨质疏松症、骨质变脆,容易发生骨折;关节软骨发生退行性变,出现纤维化、骨化,形成骨赘,造成骨质增生,70岁老人的骨质增生发生率几乎达百分之百。 神经系统:老年人大脑细胞逐渐减少,老人神经传导速度减慢,一般从40岁时开始,到80岁时减慢15—30个百分点,神经反应时间延长,动作远不如年轻人敏捷;老人体温调节较差,手足发凉,冬季易发生老年性低体温症。 童坦君说,上述各种变化是逐步进行的,随着年龄增长愈来愈明显,且有很大的个体差异。早衰者,虽然只有50多岁,可是组织器官的衰老已达70岁的水平;而老当益壮者,虽然年届70,衰老的程度也不过相当于50岁。由此可见,衰老的进程虽不可抗拒,但我们可以延缓它的进程,减慢各组织器官的老化速度。人体衰老进程受内外环境影响 北京大学衰老研究中心常务副主任张宗玉说,人体衰老进程除遗传因素的影响外,还受包括体液、激素、免疫体系共同形成的内环境以及人类生存的外部环境的影响。她用通俗的语言详细介绍了内环境因素影响人体衰老进程的情形。她说,人们一日三餐中的糖、脂类与蛋白质,在细胞线粒体内经生物氧化产生能量(ATP)供机体一切生理与生化活动的能量需要。糖、脂类、蛋白质代谢物在细胞内被氧化的过程中不断消耗从空气中吸收的氧,进入细胞内的氧90%在线粒体中用于生物氧化,但仍有1%到4%的氧同时被转化为氧自身基,这种东西最易损伤线粒体DNA,从而产生线粒体DNA片段的缺失,影响线粒体的功能,无法对人体供应能量。DNA损伤是影响衰老进程的重要因素。像老年糖尿病、老年痴呆症、帕金森氏病、心脑血管病等,都是因为线粒体DNA均有不同程度片段缺失所致。 张宗玉介绍说,相当一部分人都知道适度节食可以延长寿命,但道理何在,很少有人知道。她说,人吃得多,线粒体负荷就多,氧自由基就会大量产生,对线粒体功能影响就大。氧自由基也会攻击细胞核,使之损伤,攻击蛋白质,使之变性,攻击脂肪,使之氧化,影响细胞功能,加速细胞衰老。如果限食,人体的氧负荷降低,可减少氧自由基的产生,使氧损伤减轻,就可延缓衰老进程,延长寿命。

248 评论

大铭空调

人类细胞衰老之谜初揭人类细胞衰老之谜初揭大众网-生活日报 2002-01-31 07:51:20 shrb20020131 新华社北京1月30日电 (记者 李京华) 北京大学医学部教授童坦君、张宗玉领导的研究组经过多年研究,目前已初步阐明人类细胞衰老的主导基因P16是人类细胞衰老遗传控制程序中的主要环节,揭示了P16基因在衰老过程中高表达的原因,从而初步揭开了人类细胞衰老之谜。 这一衰老分子生物学研究室负责人童坦君和张宗玉在接受记者采访时说:“此研究项目采用国际公认的人类细胞衰老模型,通过对人类细胞衰老的主导基因P16作用机理及其调控的研究,初步阐明了P16基因不仅是细胞衰老遗传控制程序中的主要环节,还可影响细胞寿命与端粒(细胞的生物钟)长度,它通过调节Rb蛋白的活性,而非激活端粒酶起作用。同时发现负调控机制减弱是细胞复制性衰老时P16基因高表达的重要原因。” 童坦君表示,细胞衰老是生物衰老的基本单位,也是人类老年病发病的共同基础。“一切生物学关键问题必须在细胞中寻找”已是当前生物学家的共识。通过“衰老细胞与分子机理研究”的课题研究,我们至少可以说,人类某些细胞的寿命,是可以利用基因重组技术来进行调节的。 编辑圈点 “生老病死”是人类社会的自然规律。不过,“生”多久,并没有一个定数,人的生命或许可以通过某种科学的手段进行适当的调节。科学家已经找到了控制人类细胞衰老的P16,不过,从单纯的科学研究到实际应用还有一段漫长的路要走,至于何时能利用到现实生活中,让我们耐心地等待 2002-01-31 07:51:20 shrb20020131 新华社北京1月30日电 (记者 李京华) 北京大学医学部教授童坦君、张宗玉领导的研究组经过多年研究,目前已初步阐明人类细胞衰老的主导基因P16是人类细胞衰老遗传控制程序中的主要环节,揭示了P16基因在衰老过程中高表达的原因,从而初步揭开了人类细胞衰老之谜。 这一衰老分子生物学研究室负责人童坦君和张宗玉在接受记者采访时说:“此研究项目采用国际公认的人类细胞衰老模型,通过对人类细胞衰老的主导基因P16作用机理及其调控的研究,初步阐明了P16基因不仅是细胞衰老遗传控制程序中的主要环节,还可影响细胞寿命与端粒(细胞的生物钟)长度,它通过调节Rb蛋白的活性,而非激活端粒酶起作用。同时发现负调控机制减弱是细胞复制性衰老时P16基因高表达的重要原因。” 童坦君表示,细胞衰老是生物衰老的基本单位,也是人类老年病发病的共同基础。“一切生物学关键问题必须在细胞中寻找”已是当前生物学家的共识。通过“衰老细胞与分子机理研究”的课题研究,我们至少可以说,人类某些细胞的寿命,是可以利用基因重组技术来进行调节的。 编辑圈点 “生老病死”是人类社会的自然规律。不过,“生”多久,并没有一个定数,人的生命或许可以通过某种科学的手段进行适当的调节。科学家已经找到了控制人类细胞衰老的P16,不过,从单纯的科学研究到实际应用还有一段漫长的路要走,至于何时能利用到现实生活中,让我们耐心地等待

179 评论

菁菁super5man

端粒是位于染色体末端的那些分子钟,每次细胞分裂时其寿命都会缩短,从而建立了个体固定的寿命,因此如果用端粒酶将端粒水解,那么就能够延缓衰老。

213 评论

相关问答

  • 细胞的衰老与死亡论文

    在生命过程中,人体总是有部分细胞不断衰老死亡同时又有性增殖的细胞代替他们,人体出生以后,生长,发育,成熟衰老与死亡是生命过程的必然规律。机体的衰老是细胞衰老的结

    sherilyxia 3人参与回答 2023-12-09
  • 新型细胞最新研究进展论文

    在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研

    343004227qq 2人参与回答 2023-12-11
  • 中国新发布的细胞衰老研究论文

    细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考! 细胞因子的生物学活性 关键字: 细胞因子 细胞因子具有非常广泛的生物学活

    攀爬—蜗牛 8人参与回答 2023-12-06
  • 细胞坏死的研究论文

    长期以来细胞坏死被认为是因病理而产生的被动死亡,如物理性或化学性的损害因子及缺氧与营养不良等均导致细胞坏死。坏死细胞的膜通透性增高,致使细胞肿胀,细胞器变形或肿

    小菜虫娃娃 3人参与回答 2023-12-07
  • ips细胞研究的论文

    一头乌发的人是不会理解头发花白的人痛苦的,特别是少白头,年纪轻轻就要面临求医问药和染发的两个选择,但在白发的背后,我们不能忽视一个重要的健康原因! 为什么会长出

    蛋塔阿姨 5人参与回答 2023-12-07