兜兜兜尔
农药对环境的影响 农药对提高粮食产量所作的贡献是不可替换的,据统计,全世界每年因使用农药可增加3×108t~3.5×108t的粮食。如按每人每年250kg口粮计算,这些粮食可以养活12亿~14亿人口,从这个意义上来说,农药对人类发展的重要性是不言而喻的。但同时,农药是一类有毒化学物质,而且是人们主动投入到环境当中,长期大量使用,对环境生物安全和人体健康都将产生较大的不利影响。目前,农药与环境已经成为农业可持续发展中要解决的重要问题之一。农药的广泛使用对生态环境的污染和破坏也带来了严重的后果,毒害事故频频发生。控制农药污染,保护生态环境,已成为环境保护的一个热点问题。 我国农药污染特点及其存在的问题表现在以下几个方面。 (1)农药对土壤微生物的影响。植物化学保护所使用的农药,有的直接施于土壤里防治病、虫、草害的同时直接接触土壤微生物,就是直接喷布于植物地上部的农药也大部分掉在地上残留在土壤里,土壤里这些农药都会直接或间接与土壤微生物产生相互作用。一方面农药对微生物产生有利或不利影响,这关系着土壤肥力、植物发育和病、虫、草害的发展;另一方面土壤微生物对农药的降解代谢也起作用,这关系到农药的残效和残留。农药对土壤微生物的影响,各种药剂作用不同,不同土壤条件、施药时间、浓度等都对作用产生影响。例如:有机磷杀菌剂使用高浓度时对大豆根瘤菌起抑制作用,五氯酚钠和苯胺灵可能降低固氮菌的固氮作用,而扑草灭、草藻灭有时增加胺化作用。 (2)农药对害虫天敌的影响。害虫的天敌种类很多,包括病原微生物(病毒、细菌、真菌和原生动物)、线虫、蜘蛛、昆虫(捕食性及寄生性昆虫)和脊椎动物(蛙类和鸟类)等。在化学防治中,农药对害虫天敌的影响是不可忽视的。在不同类的农药品种中,以杀虫剂对害虫天敌的影响较大,而杀菌剂与除草剂影响较小。由于大量杀伤天敌,破坏害虫与天敌间的生态平衡,可能导致害虫再猖撅,给防治工作带来更大的困难。在农药使用时,应选择适当的剂型、使用浓度、施用的方法、用药时间等,降低农药对天敌的影响。例如:用三氯杀螨醇、石硫合剂防治红蜘蛛,既可以杀卵,又杀成虫、若虫,对天敌也比较安全。选用敌百虫防治荔枝蝽象,对其卵内寄生蜂没有影响,选用%以下浓度的西维因防治果树红蜘蛛,对捕食性天敌钝绥螨没有影响。采用内吸磷包扎果树的茎干,或用久效磷于树干涂环,防治介壳虫或蚜虫,或者把农药施于作物根部,使根部吸收、输导到地上部而起杀虫作用,这种施药方法对天敌基本没有影响。施药时期应根据害虫发生适期和天敌发生适期适当进行安排,若发生矛盾,则必须加以调整,或提早或推迟。为保护寄生蜂,应尽量避开蜂的羽化高峰、幼蜂、化蛹前期和蛹阶段施药。
阿囧小胖只
综述了在环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物降解研究方面的新技术和新方法。文章认为,在农药的微生物降解研究中,应重视自然状态下微生物对农药的降解过程,分离构建应由天然的微生物构成的复合系,利用微生物复合系进行堆肥或把堆肥应用于被污染的环境是消除农药污染的一个有效方法。 关键词:微生物 生物降解 农药降解 农药 20世纪60年代出现的第一 次“绿色革命”为人类的粮食安全做出了重大贡献,其中作为主要技术之一的农药为粮食的增产起到了重要的保障作用。因为农药具有成本低、见效快、省时省力等优点,因而在世界各国的农业生产中被广泛使用,但农药的过分使用产生了严重的负面影响。仅1985年,世界的农药产量为200多万t[1];在我国,仅1990年的农药产量就为万t[2],其中甲胺磷一种农药的用量就达6万t[3]。化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加[3~6]。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 这些农药残留广泛分布于土壤、水体、大气及农产品中,难以利用大规模的工程措施消除污染。实际上,在自然界主要依靠微生物缓慢地进行降解,这是依靠自然力量、不产生二次污染的理想途径。但自然环境复杂多变,影响着农药生物降解的可否和效率。近年随着对农药残留污染问题的重视,科学家们对农药生物降解进行了大量的研究,但许多问题需要进一步探明。本文整理出了近年来对农药生物降解的研究进展,提出存在的问题,建议有效的研究途径,旨在为加强农药的生物降解研究、解决农药对环境及食物的污染问题提供依据。 1 农业生产上主要使用的农药类型 当前农 业上使用的主要有机化合物农药如表1所示。其中,有些已经禁止使用,如六六六、滴滴涕等有机氯农药,还有一些正在逐步停止使用,如有机磷类中的甲胺磷等。 表1 农业生产中常用农药种类简表[7]类 型 农 药 品 种有机磷:敌百虫、甲胺磷、敌敌畏、乙酰甲胺磷、对硫磷、双硫磷、乐果等杀虫剂 有机氮:西维因、速灭威、巴沙、杀虫脒等 有机氯:六六六、滴滴涕、毒杀芬等杀螨剂 螨净、杀螨特、三氯杀螨砜、螨卵酯、氯杀、敌螨丹等除草剂 2,4-D、敌稗、灭草灵、阿特拉津、草甘膦、毒草胺等杀菌剂 甲基硫化砷、福美双、灭菌丹、敌克松、克瘟散、稻瘟净、多菌灵、叶枯净等 生长调节剂 矮壮素、健壮素、增产灵、赤霉素、缩节胺等 人们发现,在自然生态系统中存在着大量的、代谢类型各异的、具有很强适应能力的和能利用各种人工合成有机农药为碳源、氮源和能源生长的微生物,它们可以通过各种谢途径把有机农药完全矿化或降解成无毒的其他成分,为人类去除农药污染和净化生态环境提供必要的条件。 降解农药的微生物类群 土壤中的微生物,包括细菌、真菌、放线菌和藻类等[8,9],它们中有一些具有农药降解功能的种类。细菌由于其生化上的多种适应能力和容易诱发突变菌株,从而在农药降解中占有主要地位[8]。一在土壤、污水及高温堆肥体系中,对农药分解起主要作用的是细菌类,这与农药类型、微生物降解农药的能力和环境条件等有关,如在高温堆肥体系当中,由于高温阶段体系内部温度较高(大于50 ℃),存活的主要是耐高温细菌,而此阶段也是农药降解最快的时期。通过微生物的作用,把环境中的有机污染物转化为CO2和H2O等无毒无害或毒性较小的其他物质[10,11]。通过许多科研工作者的努力,已经分离得到了大量的可降解农药的微生物(见表2)。不同的微生物类群降解农药的机理、途径和过程可能不同,下面简要介绍一下农药的微生物降解机理。 微生物降解农药的机理 目前,对于微生物降解农药的研究主要集中于细菌上,因此对于细菌代谢农药的机理研究得比较清楚。 表2 常见农药的降解微生物[11,12] 农 药降 解 微 生 物 甲胺磷芽孢杆菌、曲霉、青霉、假单胞杆菌、瓶型酵母 阿特拉津(AT)烟曲霉、焦曲霉、葡枝根霉、串珠镰刀菌、粉红色镰刀菌、尖孢镰刀菌、斜卧镰刀菌、微紫青霉、皱褶青霉、平滑青霉、白腐真菌、菌根真菌、假单胞菌、红球菌、诺卡氏菌 幼脲3号真菌 敌杀死产碱杆菌 2,4-D假单胞菌、无色杆菌、节杆菌、棒状杆菌、黄杆菌、生孢食纤维菌属、链霉菌属、曲霉菌、诺卡氏菌、 DDT无色杆菌、气杆菌、芽孢杆菌、梭状芽孢杆菌、埃希氏菌、假单胞菌、变形杆菌、链球菌、无色杆菌、黄单胞菌、欧文氏菌、巴斯德梭菌、根癌土壤杆菌、产气气杆菌、镰孢霉菌、诺卡氏菌、绿色木霉等 丙体六六六白腐真菌、梭状芽孢杆菌、埃希氏菌、大肠杆菌、生孢梭菌等 对硫磷大肠杆菌、芽孢杆菌 七 氯芽孢杆菌、镰孢霉菌、小单孢菌、诺卡氏菌、曲霉菌、根霉菌、链球菌 敌百虫曲霉菌、镰孢霉菌 敌敌畏假单胞菌 狄氏剂芽孢杆菌、假单胞菌 艾氏剂镰孢霉菌、青霉菌 乐 果假单胞菌 2,4,5-T无色杆菌、枝动杆菌 细菌降解农药的本质是酶促反应[13~15],即化合物通过一定的方式进入细菌体内,然后在各种酶的作用下,经过一系列的生理生化反应,最终将农药完全降解或分解成分子量较小的无毒或毒性较小的化合物的过程。如莠去津作为假单胞菌ADP菌株的唯一碳源,有3种酶参与了降解莠去津的前几步反应。第一种酶是A tzA,催化莠去津水解脱氯的反应,得到无毒的羟基莠去津,此酶是莠去津生物降解的关键酶;第二种酶是A tzB,催化羟基莠去津脱氯氨基反应,产生N-异丙基氰尿酰胺;第三种酶是A tzC,催化N-异丙基氰尿酰胺生成氰尿酸和异丙胺。最终莠去津被降解为CO2和NH3[16]。微生物所产生的酶系,有的是组成酶系,如门多萨假单胞菌DR-8对甲单脒农药的降解代谢,产生的酶主要分布于细胞壁和细胞膜组分[5];有的是诱导酶系,如王永杰等 [17]得到的有机磷农药广谱活性降解菌所产生的降解酶等。由于降解酶往往比产生该类酶的微生物菌体更能忍受异常环境条件,酶的降解效率远高于微生物本身,特别是对低浓度的农药,人们想利用降解酶作为净化农药污染的有效手段。但是,降解酶在土壤中容易受非生物变性、土壤吸附等作用而失活,难以长时间保持降解活性,而且酶在土壤中的移动性差[8],这都限制了降解酶在实际中的应用。现在许多试验已经证明,编码合成这些酶系的基因多数在质粒上,如2,4-D的生物降解,即由质粒携带的基因所控制[18]。通过质粒上的基因与染色体上的基因的共同作用,在微生物体内把农药降解。因此,利用分子生物学技术,可以人工构建“工程菌”来更好地实现人类利用微生物降解农药的愿望。 微生物在农药转化中的作用 (1)矿化作用 有许多化学农药是天然化合物的类似物,某些微生物具有降解它们的酶系。它们可以作为微生物的营养源而被微生物分解利用,生成无机物、二氧化碳和水。矿化作用是最理想的降解方式,因为农药被完全降解成无毒的无机物,如石利利等 [19]研究了假单胞菌DLL-1在水溶液介质中降解甲基对硫磷的性能及降解机理后指出,DLL-1菌可以将甲基对硫磷完全降解为NO2-和NO3-。 (2)共代谢作用 有些合成的化合物不能被微生物降解,但若有另一种可供碳源和能源的辅助基质存在时,它们则可被部分降解,这个作用称为共代谢作用,这一作用最初是由Foster等[12]提出来的。如门多萨假单胞菌DR-8菌株降解甲单脒产物为2,4-二甲基苯胺和NH3,而DR-8菌株不能以甲单脒作为碳源和能源而生长,只能在添加其他有机营养基质作为碳源的条件下降解甲单脒,且降解产物未完全矿化,属于共代谢作用类型[5]。关于共代谢的机理,现在还存在争论。由于共代谢作用而推动的顽固性人工合成化合物的降解一般进行的较慢,而且降解程度很有限,参与共代谢作用的微生物不能从中获得碳源和能源,但是自然界中还是广泛存在着大量的具有共代谢功能的微生物,它们可以降解多种类型的化合物。共代谢作用在农药的微生物降解过程中发挥着主要的作用[5,17,20]。 微生物降解农药的生化反应[10,12] 氧化反应 微生物体内的氧化反应包括:羟化反应(芳香族羟化、脂肪族羟化、N-羟化);环氧化;N-氧化;P-氧化;S-氧化;氧化性脱烷基、脱卤、脱胺。 还原反应 还原反应包括硝基还原、还原性脱卤、醌类还原等。 水解反应 一些酯、酰胺和硫酸酯类农药都有可以被微生物水解的酯键,如对硫磷、苯胺类除草剂等。 缩合和共轭形成 缩合包括将有毒分子或一部分与另一有机化合物相结合,从而使农药或其衍生物物失去活性。 应该指出,在微生物降解农药时,其体内并不只是进行单一的反应,多数情况下是多个反应协同作用来完成对农药的降解过程,如好氧条件下卤代芳烃的生物降解,其卤素取代基的去除主要通过两个途径发生:在降解初期通过还原、水解或氧化去除卤素;生产芳香结构产物后通过自发水解脱卤或β-消去卤化烃[6]。 影响微生物降解农药的因素 微生物自身的影响 微生物的种类、代谢活性、适应性等都直接影响到对农药的降解与转化[21,22]。很多试验都已经证明,不同的微生物种类或同一种类的不同菌株对同一有机底物或有毒金属的反应都不同[5,17,23,24]。另外,微生物具有较强的适应和被驯化的能力,通过一定的适应过程,新的化合物能诱导微生物产生相应的酶系来降解它,或通过基因突变等建立新的酶系来降解它[10]。微生物降解本身的功能特性和变化也是最重要的因素。 农药结构的影响 农药化合物的分子量、空间结构、取代基的种类及数量等都影响到微生物对其降解的难易程度[25~28]。一般情况下,高分子化合物比低分子量化合物难降解,聚合物、复合物更能抗生物降解[10];空间结构简单的比结构复杂的容易降解[24]。陈亚丽等 [22]在试验中发现,凡是苯环上有-OH或-NH2的化合物都比较容易被假单胞菌WBC-3所降解,这与苯环的降解通常先羟化再开环的原理一致。Potter等 [29]在小规模堆肥条件下研究了多环芳烃的降解后指出,2-4环的芳烃比5-6环的芳烃容易降解。 自然界中的微生物通常可以降解天然产生的有机化合物,如木质素、纤维素物质等,从而促进地球的物质循环和平衡。但目前的环境污染物大多是人工合成的自然界中本身不存在的生物异源有机物质,其中一些是对人类具有致畸、致突变和致癌作用,往往对微生物的降解表现出很强的抗性,其原因可能是这些化合物进入自然界的时间比较短,单一的微生物还未进化出降解此类化合物的代谢机制。尽管某些危险性化合物在自然界中可能会经自然形成的微生物群体的协同作用而缓慢降解,但这对微生物世界来说仍然是一个新的挑战。微生物通过改变自身的信息获得降解某一化合物的能力的过程是缓慢的,与目前大量使用的人工合成的生物异源物质相比,依靠微生物的自然进化过程显然不能满足要求,因此长期以往将会造成整个生态系统的失衡[6]。因此,研究一些可以使微生物群体在较短的时间内获得最大降解生物异源物质能力的方法非常重要和迫切。 环境因素的影响 环境因素包括温度、酸碱度、营养、氧、底物浓度、表面活性剂等[10,30~33]。刘志培等 [34]研究了甲单脒降解菌的分离筛选;程国锋等 [23]研究了微生物降解蔬菜残留农药;钞亚鹏等 [15]研究了甲基营养菌WB-1甲胺磷降解酶的产生和部分纯化及性质。他们所研究的微生物或其产生的酶系都有一个适宜的降解农药的温度、pH及底物浓度,这与Thomas 等 [31]、Donna Chaw 等[26]的研究结果一致。莫测辉等 [24]指出,堆肥中微生物降解多环芳烃的活性与氧的浓度和水分含量密切相关,当堆肥中氧的含量小于18%、水分含量大于75%时,堆肥就从好氧条件转化为厌氧条件,进而影响多环芳烃的降解效果。Hundt 等 [30]调查了biaryl化合物在土壤中和堆肥中被细菌Ralstonia和Pickettii的降解和矿化情况。在土壤水分适宜的条件下,非离子型表面活性剂吐温80可增强微生物对biaryl类化合物的利用率,如联苯、4-氯联苯。Kastner等 [35]认为,在堆肥与被多环芳烃污染的土壤混合的情况下,堆肥中有机基质含量对于农药降解的作用要大于堆肥中生物的含量对于农药降解的作用;营养对于以共代谢作用降解农药的微生物更加重要,因为微生物在以共代谢的方式降解农药时,并不产生能量,须其他的碳源和能源物质补充能量[12]。对于好氧微生物来说,在好氧条件下可以降解农药,而在厌氧条件下降解效果不好;而对于厌氧微生物来说,情况可能正相反。也有研究指出在好氧条件下,有的厌氧细菌也可以代谢一些化合物[6]。 农药微生物降解的新技术和新方法 转基因技术的应用 20世纪后半叶是分子生物学、分子遗传学等学科迅速发展的时期,各种不同的生物学技术不断涌现;同时在21世纪初,生物信息学、基因组学、蛋白质组学等新的学科迅速兴起。这一切都为人工创造“超级农药降解菌”提供了必要的条件。因此,利用转基因技术进行目的性的人工组装“工程菌”成为有魅力的发展目标。同时,因为微生物降解农药的本质是酶促反应,所以,有人直接提取微生物合成的酶系来离体进行农药等有机化合物污染物的降解研究[15]。 多菌株复合系的构建及应用 以往研究农药的生物降解偏重于用单一微生物菌株的纯培养[17,23],现在已经证明,单一菌株的纯培养效果不如混合培养。因为单个微生物不具备生物降解所需的全部酶的遗传合成信息,而且它们在难降解化合物中驯化的时间不足以进化出完整的代谢途径,同时许多纯培养的研究发现,在生物降解过程中会有毒性中间物质积累,因此彻底矿化通常需要一个或一个以上的营养菌群(如发酵-水解菌群、产硫菌群、产乙酸菌群及产甲烷菌群等)。一种微生物降解一部分,经过数种微生物的接力作用和协同作用,经过多步反应将有毒化合物完全矿化,微生物的群体作用更能抵抗生物降解中产生的有毒物质[6]。笔者等利用菌种间协同关系构建的复合系不仅高效率分解木质纤维素,而且菌种组成长期稳定,不易被杂菌污染[36,37],在此基础上赋予农药分解功能的复合系对多种农药具有强烈的分解能力,其作用机理有待作进一步的细致工作。关于混合培养中的微生物群落的代谢协同作用,至少可以将微生物群落分为7种:(1)提供特殊营养物;(2)去除生长抑制物质;(3)改善单个微生物的基本生长参数(条件);(4)对底物协调利用;(5)共代谢;(6)氢(电子)转移;(7)提供一种以上初级底物利用者[6]。另外,分子生态学技术的应用证明,目前人类能够分离纯化的微生物种类及其有限,甚至自然界中99%的微生物目前无法纯培养[38],因而只有培育复合系才能包含这些重要而无法纯培养的微生物种类。2 研究中存在的问题 虽然农药残留的微生物降解研究已经取得了很大的进展,而且也有了一些应用的实例,但研究大多局限在实验室中,农药降解菌完全走出实验室到实际应用中还有一段路要走。农药微生物降解的问题主要有以下几方面。 单一菌株的纯培养问题 以往的研究主要集中在单一菌株的纯培养上,在实验室内获得纯培养的菌株,然后研究它的特性、降解机理等。然而这一方法完全不符合实际情况,自然状态下,是多种微生物共存,通过微生物之间的共同作用把农药降解。农药残留往往存在于土壤、农副产品、废弃物等复杂环境中,即使在实验室内一株菌的降解活性再大,到了这种复杂条件下可能无法生存或起不到期望的作用。 环境条件对微生物降解农药的影响 外部环境对微生物生长和对农药的降解影响很大,如环境的温度、水分含量、pH、氧含量等,而自然环境中这些因素变化很大,这直接影响到微生物对农药的降解。如何克服环境的影响从而充分发挥目标微生物的作用是需要解决的重大问题。 微生物降解目标化合物对降解的影响 目标化合物的浓度是否能使微生物生长,另外,农药污染环境的化合物组分很不稳定,波动很大,这给以工程措施微生物降解农药化合物带来困难。 微生物与被降解物接触的难易程度 被农药污染的环境有土壤、空气、水体及蔬菜瓜果等,对于土壤和水体的污染,微生物很容易与污染物接触,从而发挥它们的降解功能。但是,对于被农药污染的食品来说,利用微生物降解残留的农药很难,因为微生物无法与存在于物体内部的残留农药接触,无法发挥它们的作用,而只能降解残留在物体表面的部分。这种限制需要人们尽快解决,从而扩大微生物降解农药的应用范围。 微生物的适应性问题 所接种的微生物能否适应污染的环境,这不仅包括上述提到的物理环境,还涉及到生物之间的关系。接种到环境中的微生物受到抑制物的影响,或者受到包括捕食者在内的土著微生物的影响,甚至受到拮抗作用而不能生长等,这些都可以造成接种的微生物不能成为优势菌从而失去对农药的降解作用。构建多菌株复合系,具有稳定性和抗污染性强的优点,但即使是多菌混合培养的复合系也同样存在能否成为优势群体的问题。 3 堆肥法消除污染物 现代城市生活垃圾、有机固体废弃物、污泥中含有大量的有机污染物及重金属,农业有机固体废弃物中也含有大量的残留农药及其由于利用污水灌溉等可能导致的其他污染物。而堆肥法是消除这些污染,使有机固体废弃物无害化、资源化和产业化的有效途径之一。在堆肥过程中,通过堆肥体系中微生物的降解作用和挥发、沥滤、光解、螯合和络合等非生物方法消除污染物。堆肥法消除污染物主要有:(1)将被污染的物质或污染物与堆肥原料一起堆制处理;(2)将污染物质与堆制过的材料混合后进行二次堆制;(3)在被污染的土壤中添加堆肥产品,利用堆肥中的微生物消除土壤污染[39]。所以,堆肥法既可以消除污染,又可得到高质量的堆肥产品,对环境污染治理和农业的可持续发展意义重大。20世纪90年代以来,国内外有很多学者在此方面做了大量研究且取得了一定的进展[26,40~43]。 将人工构建微生物的复合体系,接种到农药污染土壤中,或利用活性的农业有机废弃物堆肥来改良已经被污染的土壤是一个好办法,因为活性堆肥内含有复合的微生物体系,在污染的土壤环境中更容易成为优势菌群。这就涉及到复合系的构建,微生物复合系的构建需要传统的和现代的方法相结合。从已有的堆肥体系中和已经污染了的土壤环境中分别富集培养微生物,得到土著微生物的复合系和堆肥菌复合系,然后进行复合微生物体系内部各个组分的特性、功能和多样性研究。菌株的抗药性鉴定,再把各个有功能的组分重新复合,组成一个新的复合体系,这一复合系不仅具有强有力的功能,又更能适应土著环境。直接应用复合系治理土壤污染,或者利用复合系生产农业有机废弃物堆肥来改良土壤。 4 结 语 很多研究已经证明,在农药污染的一些环境中诱导出天然的降解农药的微生物,那么是否可以采取一些条件控制措施,充分调动这些土著微生物的作用,尽量采用原位生物修复,而不用人为地接种微生物,这值得进一步探讨和研究。
qq496257996
浅谈我国生物农药的现状及发展前景摘要:生物农药对衣业害虫的防治具有明显的效果,同时又具有不杀伤天敌、对生态链影响小、无公害等优点。随着我国政府对生物农药产业的重视,生物农药将逐步地取代化学农药。本文分析了国内生物农药产业的现状,阐述了生物捉药的生产新工艺,最后给出了我国生物衣药产业的发展趋势。关键词:生物衣药,真菌杀虫刺,发酵工艺1992年在“世界环境与发展大会”上,中国承诺2000年国内使用的生物农药将达到国内农药市场的60% 以上 虽然现在还未能达到该比例,但体现了我国政府对生物农药的态度。2007年我国的300多家原药生产厂和1 600多家农药加工企业的生产能力已超过77万吨 年总产量达42 4万吨,化学防治面积达40多亿亩次 几十万吨化学农药的使用 导致病虫抗药性增强、污染环境、破坏生态、杀伤天敌而形成恶性循环,严重地破坏了我国的生态系统。而生物农药由于其与环境的相容性,不杀伤天敌,对生态链的影响很小而备受世界瞩目。目前.全世界生物农药产品已经超过1 00多种,其中生物技术产品有1 0余种在生物农药中,90% 以上是微生物杀虫剂,即真菌杀;中剂。由于生物农药产品开发方面有明显优势.因此世界各国都争相投资,研究和开发新型生物农药。一、我国生物农药产业现状我国生物农药经过多年的发展,随着国家政策的宏观调控及资金的扶持,截止到200 7年,国内有30多家研究机构,研发人员500多人,50多个登记品种,国内生产生物农药的厂家达200余家,年生产生物农药6万吨,形成了一定的产业化规模。由于生物农药属于高新技术领域,其研发和生产都需要高投入和高技术,一些企业具有雄厚的资金,自身科研力量却不足,导致生物农药产品防治效果不好,生产工艺落后、成本高昂 而科研院所具有一定的技术力量,但是却缺少雄厚的资金保障,无法开展毒理学和环境行为学试验。以上两种原因使得我国现有的生物农药种类具备商品化条件的品种却不多,真正能开发成产业化品种或当家品种的更少,直接后果就是国内仍然普遍采用化学农药进行害虫防治。二、国内生物农药的生产工艺我国的生物农药传统生产工艺采用的是深层液体发酵工艺。该生产工艺主要缺点是:产孢率低、发酵参数难以控制 菌种易退化以及产品脱水不充分 生产周期长等.不利于生物农药的大规模生产。目前最新的生产工艺是由江西天人生态工业有限责任公司与安徽省生物防治重点实验室 中国科学院过程工程研究所、中国科学院微生物研究所共同研发的“气相双动态固态发酵”新技术。该生产工艺通过了由国家林业局、中国科学院微生物研究所 清华大学等专家组成的科学技术委员会鉴定。鉴定委员认为该技术与设备填补了国内空白,居国际领先水平。该生产工艺以棉麻混合无纺布作为固体培养的载体.接种茵液,进入气相双动态固态发酵培养室进行培养 7 d~9 d即可大量产孢,干煤、检测后即可包装成品 该生产工艺首次确定了培养基、温度、湿度和光照等因子诱发变异退化的规律 评价了菌种退化在生产上的损失 提出了菌种退化控制途径和管理措施 这在全世界的真菌杀虫剂应用史上是首次, 为指导真菌杀虫剂大规模生产奠定了基础。该工艺还可以筛选出连续20代不退化的优良菌株 并且验证了变异的遗传机制。该工艺主要是吸收了载体生产和平板生产的长处 将工艺参数进一步优化,发展成载体灭菌双相发酵工艺,首次采用先进的理论和设备对真菌杀虫剂的工厂化大规模生产工艺,从根本上解决常规真菌开放式生产发酵参数难以控制,产品质量不稳定的弊病,建立了真菌杀虫剂的固态发酵新工艺,使染菌率降低到0 1% 以下,发酵水平比常规固态发酵提高1倍~2倍,周期比旧工艺缩短51 5% ,成本降低21 35%产品质量的稳定性比以往有了明显改善。三、发展趋势及企业对策随着国家宏观调控的不断强化与引导,扶持政策力度的加大与资金的投入.农药及农产品法律法规的完善,应用技术研究以及产学研实质联合的加强 国外相关生物农药企业的进入, 国内生物农药市场的竞争将成为白热化。预测至201 0年,世界微生物杀虫剂需求量在400万吨每年以上,国内需求量在80万吨每年。国内农药企业应该对生物农药行业引起足够的重视,进行产品结构的调整与优化,将生产重心放到生物农药产品上来 加强与科研院所的合作 加大企业的技术力量投入,大力研发具有自主知识产权的新工艺、新产品。1 企业要积极跟进世界先进技术,不断推进技术进步,降低成本,建立高效的销售体系 在质量 价格和服务方面形成自己的核心竞争力.在技术、研发、管理及生产效率上达到一流水平2 加快研发技术转化和应用.抓住市场的真正需求.快速将适销对路的新技术产品投放市场.才能使公司有更快的发展。不断以创新技术和创新产品来满足曰新月异的市场变化需求。建立和完善企业人才引进、使用、报酬等制度,尤其要高度重视研发团队的培养和企业科技能力建设。3 在各个环节上制定严密有效的事先防范和事后防范措施.建立完善的企业风险管理流程和预警处理机制.及时有效地转移、降低或化解风险。综上所述.随着我国市场经济体制的不断深入、农药及农产品法律法规的不断完善,我国农药企业将面临更加激烈的国际竞争市场,农药企业只有制定和实施正确的发展策略及目标,及时调整产品结构 优化资源配置,推动企业的产品创新,提高企业的市场竞争力.才能在未来的农药市场竞争中占据主动地位,获得长足发展。参考文献:[1]刘助仁:美国捉业生物技术应用蓬勃发展一兼论美国捉业生物产业公共政笼的运用九.财经政法资讯、2 0 0 6.6:1 01—1 0 5[2]李万德 张剑:浅谈我国捉业生物技术产业[J]湖北生态工程职业技术学院学报,2 0 0 6(1)[3]张俊勇:有机氟捉药对食品污染的危害及预防[J].商场现代化 1 987(4)[4]李惠娟:中国第三产业内部结构的产业关联分析[J].改革2 OO3(1)
沙尘暴来袭
1 溴系阻燃剂的毒理学研究进展2 爬行动物应用于毒理学研究的现状3 环境内分泌干扰物对鱼类性别分化的影响4 污染场地中有机氯农药对土壤原生动物群的影响5 铀胁迫对两种蓝藻生长及抗氧化酶活性的影响6 人血淋巴细胞检测浊漳河地表水的遗传毒性7 水体Hg2+对中华绒螯蟹肝胰腺和血淋巴酶活性的影响8 西维因对雄性罗非鱼(GIFT Oreochromis niloticus)内分泌干扰效应的研究9 镉对血管内皮细胞损伤及其致动脉硬化的毒理学机制10 丁烯氟虫腈对家蚕(Bombyx mori)的急性毒性与风险评价11 山西工矿区土壤二氧化硫与多环芳烃复合污染对小麦种子萌发和幼苗生长的影响12 基质诱导硝化测定的土壤中锌的毒性阈值、主控因子及预测模型研究13 镉对不同生态型水稻的毒性及其在水稻体内迁移转运14 氯化镉和敌敌畏突发胁迫下斑马鱼的行为差异15 毒死蜱对雄性小鼠生殖毒性的影响
一般就是从药物的剂型。药代动力学方面。简单的药理学在方面进行研究。这个一般都要找导师。寻求课题,最好的方法是从知网上看,近两年一些研究生毕业的研究方向。
蒋学华教授作为负责人组织开展了国家自然科学基金“p-糖蛋白在口服中药制剂吸收中的作用与调控研究”、“中药口服给药系统设计与评价中的生物药剂学方法研究”和“中药制
很遗憾大蒜不能对抗新冠,所以基本上是没有什么效果的。不过大蒜含有很多抗癌的物质,经常吃对人体有好处。
一般论文中的摘要要写什么? 一、论文摘要的定义 摘要一般应说明研究工作目的、实验方法、结果和最终结论等.而重点是结果和结论。中文摘要一般不宜超过300字,
在医学领域中,中药学是实践性很强的专业学科,不仅要求学生掌握扎实的理论知识,还要求学生具有较强的动手、分析和解决实际问题的能力。下面是我为大家整理的中药学 毕