狂狼行天下
导读
背景
时下,全球各国正在掀起一波研究量子计算机的热潮。大规模的量子计算机将能够解决现有最强大的超级计算机也难以解决的问题。据称,量子计算机有着比经典计算机解决问题快百万倍的速度。量子技术的发展将对科学、工程和 社会 等产生深远影响,并为人工智能、新材料、医学、密码学等诸多领域带来革命性的创新应用。
对于开发量子技术而言,集成量子光子学是一个很有前景的平台,因为它能在小型化的复杂光学电路中生成和控制光子(单个光粒子)。利用成熟的 CMOS硅工业来制造集成器件,可以在一个毫米级的芯片上集成相当于数千条光纤和元件的电路。
创新
采用集成光子学开发可扩展的量子技术的需求非常旺盛。英国布里斯托大学是这一领域的先驱,发表在《自然通信(Nature Communications)》期刊上的新研究证明了这一点。
技术
论文领导作者 Stefano Paesani 博士解释道:“限制集成量子光子技术规模化的一个重要挑战就是,缺少能够生成高质量单光子的片上光源。如果没有低噪声光子源,当电路复杂度增加时,量子计算中的错误会迅速累积,导致计算不再可靠。此外,光源中的光学损耗限制了量子计算机可以生成和处理的光子数量。”
“在这项工作中,我们找到了解决这个问题的一个方法,通过这个方法开发出了首个与大规模量子光子学兼容的集成光子源。为了实现高质量的光子,我们开发出一项称为‘模态间自发四波混频(inter-modal spontaneous four-wave mixing)’的新技术。在这项技术中,通过硅波导传播的多模式光线的非线性干涉,为生成单光子创造了理想条件。”
布里斯托大学的量子工程技术实验室(QETLabs) Anthony Laing 教授课题组的团队与意大利特伦托大学的同事们在“Heralded Hong-Ou-Mandel”实验(该实验是光学量子信息处理中的一个重要实验)中,对这个光源在光子量子计算方面的应用进行了基准测试,并获得了迄今为止观察到的最高质量的片上光子量子干涉(96%可见度)。
Paesani 表示:“这个器件展现了目前对于任何光子源来说最佳的性能:光谱纯度和不可分辨性达到了99%,光子预告效率大于90%。”
重要的是,该硅光子器件是通过CMOS兼容工艺在商业化的工厂中制造出来的,这意味着数千个光源可以轻易集成到单个器件上。这项研究由工程和物理科学研究理事会(EPSRC)量子计算和仿真中心以及欧洲研究委员会(ERC)资助,代表着朝着规模化构建量子电路的目标迈出了重要的一步,并为多项应用铺平了道路。
Paesani 博士表示:“我们解决了之前限制光子量子信息处理规模化的一组关键的噪声问题。例如,数百个这样的光源组成的阵列,可用于构建近程嘈杂性中型量子(NISQ)光子机,在这里可以处理几十个光子来执行专门任务,例如模拟分子动力学或者某些与图论相关的优化问题。”
目前,研究人员们已经思考出如何构建近乎完美的光子源,未来几个月内,这个硅平台的可扩展性将使他们在单颗芯片上集成数十到数百个光子源。以这样的规模开发电路,将使NISQ量子光子机有望解决工业相关的问题,而目前的超级计算机却无法解决这些问题。
Paesani 博士表示:“此外,随着光子源的优化与小型化,我们的技术可能会通向集成光子平台的容错量子操作,充分释放量子计算机的潜力!”
关键字
参考资料
【1】S. Paesani, M. Borghi, S. Signorini, A. Maïnos, L. Pavesi, A. Laing. Near-ideal spontaneous photon sources in silicon quantum photonics . Nature Communications, 2020; 11 (1) DOI:
【2】
香喷喷的耗子
陆朝阳出生于1982年12月,是一位标准的80后,早在2015年,陆朝阳的研究成果,就入选2015年英国物理学会评选的国际物理学年度突破榜首,2017年路长阳获得欧洲物理学会授予菲涅尔奖,2019年分别获得科学探索奖和仁科芳雄亚洲奖,真的非常了不起
孑子孓COMIC
今年6月15日,中国科学家潘建伟团队在量子通讯技术研究上,再次获得世界级突破,相关研究结果也登上了最新一期的《Nature》,取得了举世瞩目的骄人成就。不过在国内,似乎关注的人并不太多,反而西方国家对这一突破 表现出了相当高的关注度。
在这次实验中,潘建伟团队从位于地面以上500公里、人类首颗量子通讯卫星“墨子号”,向位于新疆的两个地面站发射光子,全球首次实现千公里级基于纠缠的无中继量子密钥分发。这次试验的距离是此前类似试验距离的10倍,达到1120公里。外媒评论称,这次试验的成功,意味着中国在人类量子科技发展上取得里程碑式的突破。
量子通讯应用研究为何在近年来受到世界各国的高度重视?这源于一种有趣的物理现象。两个粒子不管相距多远,只要他们建立了相互纠缠的状态,这种状态就会始终保持下去。当对其中一个粒子进行测量造成扰动,另一个粒子的状态也会同步发生改变,这就使得远距离安全通讯成为可能。
当通讯的信息以量子纠缠状态发送出来以后,如有人试图破解或盗取信息内容,必然会扰动这一量子纠缠态, 瞬间会造成通讯的中断,信息归零。科学界认为,这种通讯技术在效率和安全性方面,要比目前的光纤通讯高出上亿倍!这样的技术一旦得以应用,我们国防通讯、商业通讯、民用通讯的安全性和便利性将实现数量级的飞跃!
那么,中国在这场通讯技术研发竞赛中处于什么位置?用美国加州量子技术公司总裁厄尔的话说,“北京远远领先于美国。”这句话并非空穴来风。中国科学家不但在全球首发了量子通讯卫星,还在天-地之间建立了量子通讯链路。
我们的相关研发已进入到量子通讯实际应用的验证阶段,毫不夸张地说,中国是绝对意义上的。
奇怪的是,我们国内有一部分人天天以学术打假的名义高喊抹黑潘建伟,认为量子通信是一场。但仔细一看就会发现,持这种观点的绝大多数人连薛定谔方程都不会写,甚至把量子力学的基本事实都予以否定。千方百计地想凭借抹黑潘建伟而上位,如此看来孰是孰非一眼便知。
其实早在2017年,潘建伟就被世界顶级期刊《Nature》评为年度科学人物,世界各国的量子通信团队都将潘建伟视为学科发展带头人。不知那些抹黑潘建伟的人 看到6月15日这一被国际同行高度认可的重大突破,还会说些什么?
qiuchi0808
量子力学的发展确实伴随着大量的矛盾与争议,特别是在量子通信开始发展后,有部分“消息灵通”人士已经洞察了量子通信的“伪科技”本质,并且还再三指责科普量子通信的文章为伪科学站台!这些诘问到底是科学的吗?
量子通信的原理是什么?
量子通信的原理还要问么,不就是量子纠缠么,传说中的量子通信就是将纠缠中的两个量子分开,即使相隔在宇宙的两端,当A粒子的状态发生改变时,B粒子也会随之发生改变,这个通讯速度超越光速,距离再遥远也是即时通信!
听起来完美的量子通信确实应该如此,但事实上我们并不能做到在观察处在量子叠加态的不触发坍缩,所以从理论上来看,这种完美的通信方式是不可能存在的,这是不是人类的技术不够,而是量子世界的客观坍缩理论所决定的!
客观坍缩理论
薛定谔方程的线性性质允许粒子自然地处于几个不同量子态的叠加态,当然它也允许宏观物体处在几个不同量子态的叠加态,但在大自然中从来都没有观察到过这种现象!因为宏观物体永远都会占据一个确定的位置,因此将微观物质的尺寸加大时,它的位置和动量将会被同时确定!
但在微观状态下,这个处于量子叠加的状态是允许存在的,但根据哥本哈根诠释的波函数坍缩假说,在观察动作之后,叠加态会坍缩为可观察量的几个本征态之中的一个本征态,而坍缩至任何一个本征态的概率遵循玻恩定则!
所以很抱歉,根据哥本哈根诠释,这种直接利用纠缠态的量子通信是不存在的。
EPR佯谬
量子通信的最早起源是来自爱因斯坦向波尔反驳量子论不完备的EPR佯谬,爱因斯坦在第六届索尔维会议上的光箱实验被波尔击败,此后他与波多尔斯基和罗森花了数年时间,整出了一个《量子力学对物理实在的描述可能是完备的吗?》的论文,发表在《物理评论》上。
这个思想实验很容易明白:一个不稳定的大粒子衰变为两个小粒子,假设这两种粒子有可能的量子自旋,粒子A为左旋,为了保持守恒,那么另一个小粒子B必定是右旋!然后将两个粒子分开很远,比如几万光年,但我们在观察之前,并不知道哪个是左旋,哪个是右旋!
但当我们观察粒子A时,那么它的波函数瞬间坍缩,随机选择了一种状态,比如说是右旋,那么B粒子必定会变成左旋,那么请问它们是如何保持一致的呢?既然没有超光速通信,因此认为在分开的一瞬间,粒子A和B的左右旋就被确定了!
阿斯派克特实验
但量子论并不是这样解释,而是认为无论相隔多远,在观测之前,它们仍然处在量子叠加态,所以根本不存在什么超光速通讯,叠加态的观测时坍缩,一个随机选择左旋,一个右旋以保持守恒!
这就是后来用他们名字首字母命名的ERP佯谬!
这个EPR佯谬提出后,由于设备局限,所以爱因斯坦尽管处在下风,但他并不认输,真正的试验要到1980年代的法国奥赛理论与应用光学研究所的阿斯派克特试验才被证明是哥本哈根诠释是比较正确的!因为此时爱因斯坦只输了5个标准方差!
后来关于EPR佯谬试验的设备越来越先进,到1998年奥地利因斯布鲁克(Innsbruck)大学的实验时,爱因斯坦输得就有点惨了:30个标准方差!
现在的量子通信到底是什么量子通信?
准确的说,现在的量子通信并不是量子纠缠通信,而是量子加密通信,要了解量子加密通信的话,必须要来了解下BB84协议!
这个协议是查尔斯·贝内特和吉勒·布拉萨在1984年发表的论文中提到的量子密码分发协议,后来以两个人的名字第一个字母+年份,作为了这个经典协议的名字,任意两组共轭状态都可以用此协议,它利用的是光子的偏振态来传输信息,详细描述有些不容易理解,请看下图:
BB84协议
在这个过程中,如果有人窃听,那么窃听者为了光子的偏振态,那么必须做测量,那么会导致秘钥的误码率增加,双方可以约定误码率超过多少时该组秘钥就被废弃!
这种量子通信的方式有一个缺点,必须用一个量子秘钥发送通道和传统数据传输通道,两者必须配合才能正常工作,因此当前研究的也是如何更高效以及更远距离和更少的误码率发送与接收秘钥,但数据仍将通过Internet网来完成!
当然通信除了速率外最终要的指标就是不可破译,传统的秘钥中总是存在各种缺陷,并不能做到100%保密,但量子秘钥不一样,可以发现秘钥被窥视,因此这种秘钥分发的安全性超出想象!
为什么有人再三指责量子通信?
除了网上那些有的没有的指责各种量子通信周边工程配套外,其他主要集中在如何制造出取得单光子的光源,2016年1月14日潘建伟、陆朝阳在《物理评论快报》(Physical Review Letters)上发表了题为《On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar》的论文,物理评论快报上的截图如下:
当然种花家也看不懂这种论文,不过随后美国物理学会的《物理》(Physics)网站以“全能的单光子源”为题刊发了介绍文章,《自然》(Nature)期刊也以“可实用化的单光子源”在其研究亮点栏目作了深入报道,英国物理学会的《物理世界》(Physics World)和美国光学学会的《光学与光子学新闻》(Optics & Photonics News)也做了长篇报道。
潘建伟(右)、陆朝阳
有一点是我们是可以了解的,到今年为止已经接近5年,这种突破性的进展同行评议时效性很强,很快就会有各大科学团体跟进,当然《物理评论快报》的审核也不是吃素的,这种经过将近5年时间考验的论文,也不是一个推销交通方面作品的老兄可以随便推翻的。
其实还有很多站不住脚的观点,但人家很有耐心,堆砌各种文字,看上去很有说服力,不过种花家实在不想一一辩驳,最后送句古诗词给这位老兄“两岸猿声啼不住、轻舟已过万重山”,当大家在这里呱噪时,人家早已发表多篇SCI论文了,假如真有料,不妨也发表几篇?
《大科技》《科技传播》是科普杂志,不是学术期刊,科学家有时也会看看,但绝不会引用。论文一般都需要数据,没有不包括数据的论文,即便量子力学论文、宇宙大爆炸论文那也
激光与光电子学进展是sci。根据查询相关公开资料描述《激光与光电子学进展》是cscd期刊,也就是中国科学引文数据库收录的期刊,于2021年01月05日发表的。
1.物理学报 2.发光学报 3.原子与分子物理学报 4.光学学报 5.光子学报7.量子光学学报 10.中国激光 12.光谱学与光谱分析 13.物理 14.波谱
中英文都可以刊名称:CHINESE JOURNAL OF CATALYSIS期刊缩写:CHINESE J CATAL中文名称:催化学报发行国家:中国出版社:El
国外的有 Nature 和 Science