• 回答数

    3

  • 浏览数

    98

一帆杰作
首页 > 学术期刊 > 人工智能高中研究论文题目有哪些

3个回答 默认排序
  • 默认排序
  • 按时间排序

天秤座dan

已采纳

高中有关人工智能的议论文篇一

1977年英国世界上的互联网公司的经理预料,将来任何人都不会在自己的家里拥有一台属于自己的计算机。计算机不会被大多数人使用,然而在日新月异发展的现代化社会里不是用电脑这几乎是不可能的,高楼大厦里职员们正使用计算机记录完成上级布置的任务;漫画家打好画稿在用计算机进行扫描、上色;学校里每一间教室都放置一台,老师则利用计算机为学生讲解课文;打印店里一台台计算机正忙碌的工作着。然而那位经理怎么也想不到将近半个世纪的今天计算机已经在我们的生活中起着不可代替的作用,也从原来笨重的以至于塞满一整个房间的机器到如今教科书厚的液晶。

展望未来。

未来,一个抽象的代名词——触摸不到,感受不到。每个人都有美好的畅想,我畅想畅想着城市美好的未来。城市的美好,必然少不了那一片霓虹灯。繁华的夜景,热闹的人市。那繁荣景象的背后又是什么呢?是一片黑暗吗?不,至少有盏明灯。是那些流浪者的家吗?不,至少有间草屋。光明固然美好,黑暗也将会被无数明灯所点亮。我畅想,畅想城市那份恬静。

当人们迎着朝阳开始一天的工作时,他们的心情是平静而喜悦的。此时,自行车已成“古董”,人们只能在博物馆才能见到。在宽阔、现代化的立交桥上,一辆辆高级轿车来回穿梭。在居民小区里,物业管理是机器人,二十四小时服务。工作的地方没有了原来的狭隘,不再只是人手一台电脑埋头工作,而是两三个人一个办公室,摄像头、监视器什么的都不在有,人们诚实守信、勤勤恳恳。工厂是机器人工作的岗位。

我们把美好的梦想层层堆砌,让高瞻远瞩的目光投向时代的前沿,审视昨天,展望未来,沿着金光大道,一步一步靠近我们心中向往的地方。让我们畅想美好的明天,走向美好的未来!

其实幸福。很难!当黑暗笼罩住了城市,永远没有那一角:有人在打架斗殴。难道这就是美好城市?现在这份重任落下来了,在每个人的肩上,还有我们——新时代的中学生,更落在了我们的笔尖,我们要用笔去描绘未来的城市,画出她最可爱的一面、美丽的一面。我们的校园里,纸屑很珍贵,因为它从不露面。微笑很普通,因为它洋溢在每个人的脸上。城市的美好如同筑房子——第一层是文明,第二层是平安,第三层是繁华,第四层是快乐。只有不停地建造,才能盖上它的屋顶——美好。让我们共同携起手来,建造这幢“美好”的城市!

高中有关人工智能的议论文篇二

诞生初期,人工智能技术(AI)也经历过大起大落,但在过去几年的发展黄金期,AI技术突飞猛进,这都得益于“深度学习”技术开启的新篇章。深度学习旨在模拟人脑结构建立大规模(或者“深度”)神经网络,在充沛的数据支持下,神经网络可以通过训练来处理各种各样的事情。

其实所谓深度学习技术已经默默为我们服务多年了,谷歌搜索、Facebook的自动图片标记功能、苹果的siri语音助手、亚马逊推送的购物清单,甚至特斯拉的自动驾驶汽车都是深度学习的产物。但是这种快速的发展也引发了人们对于安全和失业问题的担忧。霍金、马斯克等科技大佬都公开发声,担心人工智能会失去控制,上演科幻小说中人机大战的情节,其他人则害怕认知工作的自动化会将会导致大面积的失业。两个世纪以后的今天,曾经的“机器问题”卷土重来,我们需要找出可行的解决方案。

“机器问题”和解决方案

启示人们最为担忧的是人工智能技术会破开牢笼,变得邪-恶而不可控。早在工业革命浪潮席卷全球时,人机矛盾已经出现,现在的矛盾不过是披上了人工智能的新外衣,人类的焦虑依旧,《科学怪人》及此后类似的文学作品都是这种担忧的映射。然而,尽管人工智能技术已成为一门显学,但是它们只能完成特定的任务。想在智商上战胜人类,AI还差得远呢。此外,AI是否真能超越人类还未可知。名为安德鲁的AI研究人员表示,对人工智能的恐惧无异于在火星殖民还未实现时就担心人口膨胀的问题。在“机器问题”上,人们更加关注人工智能对人类就业和生活方式的影响。

失业恐惧由来已久。“科技性失业”的恐慌在20世纪60年代(公司开始安装计算机和使用机器人)和80年代(个人电脑开始上市)都曾弥漫开来,似乎大规模的自动化办公马上就要到来,让人类下岗。

但事实上,每一次恐慌之后,科技进步为社会创造的就业岗位远多于它杀死的过时职位,我们需要更多人从事全新的工作。举例来说,ATM机替代了一些银行柜员,为银行设立分行节约了成本,让雇员进入了机器不能做的销售和客服领域。同样地,电子商务的出现增加了零售商的生存空间。而在办公中引进电脑则不是为了取代员工的位置,员工习得新技能后,会成为电脑的辅助。尽管此前曾有报道称,未来10年或20年间,美国47%的岗位将面临自动化,但是我们的研究显示,这一数值恐怕连10%都不到。

尽管短期内一些工作消失的弊端会被全新职位出现的长期影响完全抵消且带来更大的好处,但是19世纪工业革命的经验表明,转变的过程极其痛苦。从停滞不前的生活水平上反映出经济的增长需要几百年,而从显著的收入变化上来看只需几十年。人口从乡村大量涌入城市工厂,在当时的欧洲引发动荡。各国政府花费了整整一百年的时间构建新的教育和福利体系适应这种转变。

这一次的转变似乎更为迅速,当前科技传播的速度可比200多年前快多了。得益于技术的辅助,高技术工作者的薪资会更高,因此收入不平等的现象正在不断加深。这给用人公司和政府带来了两大挑战:如何帮助工作者学习掌握新技能;如何让后代做好准备,在满世界都是人工智能的社会求得工作机会。

聪明的回应

技术的发展使得岗位的需求产生变化,工作者必须适应这种转变。这意味着要调整教育和训练模式,使其足够灵活,从而快速、高效地教授全新的技能。终生学习和在职培训的重要性更加凸显,在线学习和电子游戏式的仿真模拟会更加普遍。而人工智能可以帮助制定个性化计算机学习计划,依照工作者技能差距提供新技术培训机会。

此外,社会交往技能也会变得更加重要。由于工作岗位的更迭变快,技术革新的脚步也逐渐加快,人类的工作年限越来越长,社交技能成了社会的基石。它能在人工智能主导的社会保持人类的优势,帮助人类完成基于情感和人际往来的工作,这是机器无法拥有的优越性。

对人工智能和自动化的担忧也催生了人们对“安”的渴望,有了它普通人就能免受劳动力市场动-乱影响。一些人认为应该革新福利系统,让每个人都享有保障生存的“基本收入”。但是在没有充足证据表明技术革命会导致劳动力需求锐减的形势下,这种做法并不可龋反之,各国应该学习丹麦的“灵活安全系统”制度,让企业裁员更加容易,但是在被裁员的职工接受再培训和再求职期间提供保障。这种制度下,福利、养老金、医保等应该跟随个体本身,而不是与职员身份挂钩。

尽管技术快速进步,工业时代的教育和福利系统并没有完全实现现代化,相关制度也不够灵活。革新势在必行,决策者必须行动起来,否则当前福利系统会面临更大的压力。19世纪40年代,约翰·穆勒写道,“没有什么比立法者对这类人的照顾更为正当了”,他们的生活被技术的发展所累。在蒸汽时代,这是真理,在人工智能的时代,同样也是。

高中有关人工智能的议论文篇三

自然语音理解主要是研究如何使计算机能够理解和生或自然语音的技术,自然语音理解过程可以分为三个层次:词法分析,句法分析和语义分析,由于自然语音是丰富多彩的,所以,自然语音理解也是相当困难的,从话动中,我们可以发现目前水平的自然语音理解能力的一些不足。

广播、电视和网络通过电波、数字线路进行传播,发布的速度快,报纸需要排版印刷,速度慢了一步。杂志、书籍、电影更慢。发布速度快的工具,在发布新闻方面占有很大的优势;发布速度慢的工具,则多用来发布需要思考和研究的材料,如发布各种社会科学和自然科学的研究成果,常采用杂志与书籍的形式。

在信息社会中,利用网络进行进行网络进行交流已经越来越快受到人们的重视,因为网络给人们提供了广阔的空间,缩短了人与人之间的距离。在一定的时间内,我们可以聚集不同地方、不同年龄、不同学历、不同阶层的人们进行交流和探讨,使人们的视野更加广阔,了解到信息更为全面,得到的经验更加丰富,因此,随着信息技术的进一步发展和社会的进步,相信会有更多的人利用网络这种媒介进行交流和学习,但是我们也应该看到,网络上也存在各种各样的问题,如有些人在网上发布一些不良的信息,设置各种信息陷阱。对比我们应该分辨是非,明察秋毫,劫为存真,让因特网成为我们学习交流的好地方。

智能接口技术是研究如何使人们能够方使自然地与计算机交流,为了实现这目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表达方法的研究,因此,智能接口技术已经取得显著成果,文字识别、语言识别、语音合成、图像机器翻译以及自然语言理解等技术已经实用化。

312 评论

annking168

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。【人工和智能】人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。 关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。 人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。详见

341 评论

ryanhui123

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。以下是我精心整理的有关人工智能论文的相关资料,希望对你有帮助!

浅谈逻辑学与人工智能

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1 人工智能学科的诞生

12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N 形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机) ,创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2 逻辑学的发展

逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。 从17世纪德国数学家、哲学家莱布尼兹(G. LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3 逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型, 1978年查德提出的可能性模型, 1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4 人工智能——当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5 结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

269 评论

相关问答

  • 人工智能最新研究进展论文题目

    “人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法

    fightingBB 3人参与回答 2023-12-09
  • 人工智能与法律研究的论文题目

    论建设社会主义法制文明的必要性

    dianpingyao 6人参与回答 2023-12-07
  • 人工智能高中研究论文题目有哪些

    高中有关人工智能的议论文篇一 1977年英国世界上的互联网公司的经理预料,将来任何人都不会在自己的家里拥有一台属于自己的计算机。计算机不会被大多数人使用,然而在

    一帆杰作 3人参与回答 2023-12-07
  • 中国人工智能战争研究论文

    这个充满竞争的世界,每时每刻都有战争发生,发生别的国家和地区,发生在我们的周围,发生在我们的身上,它超越了一切地界限和限制。无法避免,不会停止。如果存在竞争,那

    黑玫瑰1111 6人参与回答 2023-12-05
  • 人工智能论文研究计划

    人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读! 摘要:人工

    油墩子2016 3人参与回答 2023-12-05