小胖子老头
综述类: 1、Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions。最经典的推荐算法综述 2、Collaborative Filtering Recommender Systems. JB Schafer 关于协同过滤最经典的综述 3、Hybrid Recommender Systems: Survey and Experiments 4、项亮的博士论文《动态推荐系统关键技术研究》 5、个性化推荐系统的研究进展.周涛等 6、Recommender systems L Lü, M Medo, CH Yeung, YC Zhang, ZK Zhang, T Zhou Physics Reports 519 (1), 1-49 ( ) 个性化推荐系统评价方法综述.周涛等 协同过滤: factorization techniques for recommender systems. Y Koren collaborative filtering to weave an information Tapestry. David Goldberg (协同过滤第一次被提出) Collaborative Filtering Recommendation Algorithms. Badrul Sarwar , George Karypis, Joseph Konstan .etl of Dimensionality Reduction in Recommender System – A Case Study. Badrul M. Sarwar, George Karypis, Joseph A. Konstan etl Memory-Based Collaborative Filtering. Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu,and Hans-Peter Kriegel systems:a probabilistic analysis. Ravi Kumar Prabhakar recommendations: item-to-item collaborative filtering. Greg Linden, Brent Smith, and Jeremy York of Item-Based Top- N Recommendation Algorithms. George Karypis Matrix Factorization. Ruslan Salakhutdinov Decompositions,Alternating Least Squares and other Tales. Pierre Comon, Xavier Luciani, André De Almeida 基于内容的推荐: Recommendation Systems. Michael J. Pazzani and Daniel Billsus 基于标签的推荐: Recommender Systems: A State-of-the-Art Survey. Zi-Ke Zhang(张子柯), Tao Zhou(周 涛), and Yi-Cheng Zhang(张翼成) 推荐评估指标: 1、推荐系统评价指标综述. 朱郁筱,吕琳媛 2、Accurate is not always good:How Accuacy Metrics have hurt Recommender Systems 3、Evaluating Recommendation Systems. Guy Shani and Asela Gunawardana 4、Evaluating Collaborative Filtering Recommender Systems. JL Herlocker 推荐多样性和新颖性: 1. Improving recommendation lists through topic diversification. Cai-Nicolas Ziegler Sean M. McNee, Joseph Lausen Fusion-based Recommender System for Improving Serendipity Maximizing Aggregate Recommendation Diversity:A Graph-Theoretic Approach The Oblivion Problem:Exploiting forgotten items to improve Recommendation diversity A Framework for Recommending Collections Improving Recommendation Diversity. Keith Bradley and Barry Smyth 推荐系统中的隐私性保护: 1、Collaborative Filtering with Privacy. John Canny 2、Do You Trust Your Recommendations? An Exploration Of Security and Privacy Issues in Recommender Systems. Shyong K “Tony” Lam, Dan Frankowski, and John Ried. 3、Privacy-Enhanced Personalization. Alfred 4、Differentially Private Recommender Systems:Building Privacy into the Netflix Prize Contenders. Frank McSherry and Ilya Mironov Microsoft Research, Silicon Valley Campus 5、When being Weak is Brave: Privacy Issues in Recommender Systems. Naren Ramakrishnan, Benjamin J. Keller,and Batul J. Mirza 推荐冷启动问题: Boltzmann Machines for Cold Start Recommendations. Asela Preference Regression for Cold-start Recommendation. Seung-Taek Park, Wei Chu Cold-Start Problem in Recommendation Systems. Xuan Nhat and Metrics for Cold-Start Recommendations. Andrew I. Schein, Alexandrin P opescul, Lyle H. U ngar bandit(老虎机算法,可缓解冷启动问题): 1、Bandits and Recommender Systems. Jeremie Mary, Romaric Gaudel, Philippe Preux 2、Multi-Armed Bandit Algorithms and Empirical Evaluation 基于社交网络的推荐: 1. Social Recommender Systems. Ido Guy and David Carmel A Social Networ k-Based Recommender System(SNRS). Jianming He and Wesley W. Chu Measurement and Analysis of Online Social Networks. Referral Web:combining social networks and collaborative filtering 基于知识的推荐: 1、Knowledge-based recommender systems. Robin Burke 2、Case-Based Recommendation. Barry Smyth 3、Constraint-based Recommender Systems: Technologies and Research Issues. A. Felfernig. R. Burke 其他: Trust-aware Recommender Systems. Paolo Massa and Paolo Avesani
阿岚懒懒
我就推荐我写的。。因为我的议论文老师总说好。。(当年的事了)、一段提论点:精彩,一定要写的精彩,引君入瓮,对你的文章感兴趣.开头用排比更显功力.例如:是谁手握木条,围绕着火堆呐喊.是谁对着太阳做亘古不变的追随,是谁对着大海望洋兴叹,我们在千百年与大自然斗争中,渐渐领悟了这样一个道理:适者生存.二段开始论证.把调子降低,隽永,舒缓,美丽的来从古至今的论证.例如:翻开中国光辉灿烂的5000年文明历史画卷,某某道理,随处可见.分小段:第一小段举树古代例子,可中国可外国.第二小段举现代例子.小故事即可.末了总结下即可.三段"有批判性的,严肃性的正反论证.分小段:1 如果按照论点做会有什么好后果.2 如果不按照论点做,会有什么坏处.末了总结.四段:把你的论点上升到人文,政治,民族的高度.把你的论点融入当今社会,来思考问题,论证你论点的正确性.例如本段总结:如果按照论点来做,可实现整个中华民族的伟大复兴.最后一段:慷慨激昂的最后总结,把你上面所论述的加以全面总结,这最后一段全靠你平时个人文章知识修养,教不来的.但是就算没写好,按照我上面说的那几段论证.老师也会给你高分的.老师会夸你调理清晰,睿智之类的呵呵.成败与否,全看这一篇文章了.你可以把我这个打印出来给你关心的朋友同学,让他们也学习呵呵,别忘记署我的名:天国亡灵第一夜 哈哈
1.中国知网,CNKI,是清华大学和清华同方创办的,是国内最权威是学术期刊数据库,凡是知网收录的期刊一定是正规的,不被知网收录的期刊就不一定了。2.万方数据库,
《意林》不错。《意林》杂志简介 励志激扬人生 《意林》改变命运 励志激扬人生,《意林》改变命运。意林杂志创刊于2003年8月,顾名思义,意韵深长,蔚然成林。“
新来的语文老师和我做了一个约定,这个约定里有一些秘密暗号,只有我们知道。你知道,有些时候你明知道上课做小动作不对,却总也改不掉。就比如坐在我后面的胖虎,喜欢上课
可以这样写: 该学生学习认真努力,思想积极上进,能按校规严格要求自己。专业基础扎实,热心投身社会工作,富有献身精神,有较强的组织能力和协作能力,为人诚实守信,团
建国初期,国家百废待兴,古籍作为我国文化的重要组成部分,由于认识水平、管理漏洞以及有些不法分子的破坏行为等诸多原因,使许多珍贵的古籍被破坏、散佚甚至卖到国外,这