• 回答数

    4

  • 浏览数

    95

善美梅子
首页 > 学术期刊 > 数据挖掘论文格式

4个回答 默认排序
  • 默认排序
  • 按时间排序

雾霭流年

已采纳

题目(黑体不加粗三号居中) 摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下) 首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点我们对问题1用……的方法解决;对问题2用......的方法解决;对问题3用……的方法解决。对于问题1我们用......数学中的......首先建立了......模型I。在对......模型改进的基础上建立了......。模型II。对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为......。,然后借助于......数学算法和......软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)对于问题2我们用......对于问题3我们用......如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。要注意合理性。此推广模型可以不深入研究,也可以没有具体结果。关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。摘要是重中之重,必须严格执行!。页码:1(底居中)一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。篇幅建议不要超过一页。大部分文字提炼自原题。二、问题分析主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。如果有多个小问题,可以对每个小问题进行分别分析。(假设有3个问题) 问题1的分析对问题1研究的意义的分析。问题1属于......数学问题,对于解决此类问题一般数学方法的分析。对附件中所给数据特点的分析。对问题1所要求的结果进行分析。由于以上原因,我们可以将首先建立一个......的数学模型I,然后将建立一个......的模型II,........对结果分别进行预测,并将结果进行比较.问题2的分析对问题2研究的意义的分析。问题2属于......数学问题,对于解决此类问题一般数学方法的分析。对附件中所给数据特点的分析。对问题2所要求的结果进行分析。由于以上原因,我们可以将首先建立一个......的数学模型I,然后将建立一个......的模型II,......。。对结果分别进行预测,并将结果进行比较. ..............................。。三、模型假设(4号黑体)(以下小4号) 假设题目所给的数据真实可靠;2.3.4.5.6..................................... 注意:假设对整篇文章具有指导性,有时决定问题的难易。一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。注意罗列要工整。四、定义与符号说明(4号黑体)(对文章中所用到的主要数学符号进行解释小4号)............................ 尽可能借鉴参考书上通常采用的符号,不宜自己乱定义符号,对于改进的一些模型,符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠近)。对文章自己创新的名词需要特别解释。其他符号要进行说明,注意罗列要工整。如“~第种疗法的第项指标值”等,注意格式统一,不要出现零乱或前后不一致现象,关键是容易看懂。五、模型的建立与求解(4号黑体)第一部分:准备工作(4号宋体)数据的处理 1、......数据全部缺失,不予考虑。 2、对数据测试的特点,如,周期等进行分析。 3、......数据残缺,根据数据挖掘等理论根据......变化趋势进行补充。 4、对数据特点(后面将会用到的特征)进行提取。(二)聚类分析(进行采样) 用......软件聚类分析和各个不同问题的需要,采得。。。组采样,每组5-8个采样值。将采样所对应的特征值进行列表或图示。预测的准备工作根据数据特点,对总体和个体的特点进行比较,以表格或图示方式显示。第二部分:问题1的...模型(4号宋体)模型I(......的模型)该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参考文献。......模型I的建立和求解说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。给出问题1的数学模型I表达式和图形表示式。给出误差分析的理论估计。3.模型I的数值模拟将模型I进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。对误差进行数据分析。模型II(......的模型)该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参考文献。......模型II的建立和求解说明问题1适用此模型来解决,并将模型进行改进以适应问题1。借助准备工作中的采样,通过确定出模型中的参数。给出问题1的数学模型I表达式和图形表示式。给出误差分析的理论估计。3.模型II的数值模拟将模型II进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。对误差进行数据分析 (三)模型III(......的模型) ........................(四)问题1的三种数学模型的比较。对三种模型的优点和缺点结合原始数据和模拟预测数据进行比较。给出各自得优点和缺点。第三部分:问题2的...个模型(4号宋体)........................。第四部分:问题3的...个模型(4号宋体)........................。六、模型评价与推广对本文中的模型给出比较客观的评价,必须实事求是,有根据,以便评卷人参考。推广和优化,需要挖空心思,想出合理的、甚至可以合理改变题目给出的条件的、不一定可行但是具有一定想象空间的准理想的方法、模型。(大胆、合理、心细。反复推敲,这段500字半页左右的文字,可能决定生死存亡。)七、参考文献(4号黑体)(书写格式如下) [1] 作者名1,作者名2.文章名字.杂志名字,年,卷(期):起始页码-结束页码[2] 作者名1,作者名2.书名.出版地:出版社,年,起始页码-结束页码[3] 作者名1,作者名2.文章名字. 年,卷(期):起始页码-结束页码,网页地址。[4] 李传鹏,什么是中国标准书号,,2006-9-18。[5] 徐玖平、胡知能、李军,运筹学(II类),北京:科学出版社,2004。[6] Ishizuka Y, AiyoshiE. Double penalty method for bilevel optimization problems. Annals of Operations Research, 24: 73- 88,1992。注意:5篇以上!八、附件(4号黑体)(正文中不许出现程序,如果要附程序只能以附件形式给出) 数学建模评分参考标准摘要(很重要) 5分数据筛选 35分数学模型 35分数据模拟 15分总体感觉 10分特别注意1.问题的结果要让评卷人好找到;显要位置---独立成段2.摘要中要将方法、结果讲清楚;3.可以有目录也可以不要目录;4.建模的整个过程要清楚,自圆其说,有结果、有创新;5.采样要足够多,每组不少于7个;6.模型要与数据结合,用数据验证过;7.如果数学方法选错,肯定失败;8.规范、整洁;总页数在35~45之间为宜。9.必须有数学模型,同一问题的不同模型要比较;10.数据必须有分析和筛选;11.模型不能太复杂,若用多项式回归分析,次数以3次为好。

267 评论

霸王V风月

关联规则挖掘吧,我刚做完相关的论文.用的是SQL Server2005中的智能挖掘平台.介绍一本书给你看下,就是图片里的那本书.里面有完整的使用sql server数据挖掘的过程.写论文十分辛苦,但一定会有收获!加油!

299 评论

德润天成

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

126 评论

薄荷kokoro

python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白质功能预测。4、基于第三方库的人脸识别系统的设计与实现。5、基于hbase搜索引擎的设计与实现。6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。7、客户潜在价值评估系统的设计与实现。8、基于神经网络的文本分类的设计与实现。

229 评论

相关问答

  • 数据挖掘概述论文

    数据挖掘是从大量数据中提取人们感兴趣知识的高级处理过程, 这些知识是隐含的、 事先未知的, 并且是可信的、 新颖的、 潜在有用的、 能被人们理解的模式。随着信息

    荤淡美食家 3人参与回答 2023-12-12
  • 数据挖掘论文程序

    python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白

    静静19811215 2人参与回答 2023-12-08
  • 数据挖掘应用论文格式

    我给你发个摘要吧随着4G时代的到来,电信市场的竞争越来越激烈,客户资源成为电信企业竞争的焦点。而客户消费行为规律是客户知识的重要组成部分,因此基于消费行为认知的

    鑫宝贝66 3人参与回答 2023-12-07
  • 大数据分析与数据挖掘论文

    浅谈基于大数据时代的机遇与挑战论文推荐 在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您

    Chris大王 3人参与回答 2023-12-07
  • 数据挖掘论文5000字

    数据挖掘在软件工程技术中的应用毕业论文 【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通

    xulisha0221 3人参与回答 2023-12-11