• 回答数

    4

  • 浏览数

    358

阿滋猫波斯猫
首页 > 学术期刊 > 光热效应毕业论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

一佛爷一

已采纳

关于光热效应现象,迄今为止的研究者都跨不过相对论的框构。

光的运动姿态到底在“光粒子”(光能量粒子)与“光束波”(光能量的波态运动)两者中选择哪一种运动形式呢?目前还没有定论,人们得不到结论当然不影响空间光线波或光粒波的辐射运动。目前为止,光的运动速度仍然被认为是空间中瞬移传导最快的人眼可见类物质。

太阳光的运动,又作为地球人类探索发现所有可见物质与能量的基础物质能量,被人们仰视崇拜,人们同时又被光速禁冻在行星系,窝内残争,愧对空间阳光。

相对论认为,空间光源通常来源于某个自然光热效应性反应天体,像太阳一类的光热双源体星球,在空间中数以万亿计。双源天体散发的热能量被光能量携带着辐射向八面十六方。

我们在地球封闭空间里研究认为,热的传导形式为辐射、对流与介质传导。其中,热辐射能不能驱逐光速以独立运动,还没研究明白,但可以明确一点,在半开放的星系空间里,热辐射运动不可能驱逐光速,热能量只能伴随着光能量作辐射运动。

在光热双源双能量以光速在空间作辐射运动的过程里,一旦触碰到气体、液体、固体、棉体,热能量会被介质传导形式转移转变消耗,变为其他形式的能量;光被介质阻挡以后,会辨识介质的质性,能穿过则穿透过去继续运动,不能穿透时,光能量则发生坍塌萎缩且将介质的影像投向运动方向上的下一个介质,这叫光能量的影像效应。

还有几个问题,相对论未作解释:

1,空间里的自然光热双源体的起首反应模式与物质是不是一致的?

2,冷光源与热光源的区别到底因为什么呢,是运动空间大小的原因,还是因为热能量在伴光运动过程中被透明星体物质传导吸收?

3,光能量能不能独立于热能量以外发生对流运动导致光萎缩坍塌?光热双源星体的主流能量到底为光还是为热?行星地压热能量与光能量有关系么?

科学理论的有限性,要靠哲学思辨的无限性来推进。

352 评论

maggielj520

爱因斯坦是迄今为止最伟大的科学家之一。其实,小编觉得完全可以把“之一”去掉。这位科学巨匠所缔造的相对论扩展了牛顿的时空观,将我们的宇宙描述成三维的空间加上一维的时间所构成的四维时空。相对论对时空和物质的诠释更是堪称经典——时空告诉物质如何运动,物质告诉时空如何弯曲。

如此出色的理论却没有获得诺贝尔奖。这其中有因为相对论太过超前,当时的技术无法验证的原因。也有因为诺奖委员会过于保守的原因。还有因为爱因斯坦是犹太人的因素。但是爱因斯坦的声望与日俱增,若诺奖委员会再不把诺奖颁给爱因斯坦,其权威性将大打折扣。最后,委员会想到一个折中、保险的办法,就是授予爱因斯坦诺贝尔物理学奖,但只字不提相对论,而是因为他在1905年提出光量子假说,成功解释了光电效应。

爱因斯坦仅仅因为光电效应获得过一次诺奖,这不免让人为他和他的相对论感到惋惜。

话分两端,我们看一些荒野求生的影视剧,会有这样一个现象。主角流落到大洋中的一个荒岛上,为了求生,必须先点起一堆篝火。正值晌午,烈日当空。主角找到易燃的柴草,取出放大镜,让阳光通过放大镜(凸透镜),聚焦成一束拥有高热的光线,最后照到柴草上,将之引燃。太阳越大,阳光越强,温度提升得就越快。我们就越容易将柴草点燃。

回到我们今天谈的光电效应。1887年,赫兹首先发现了光电效应。简而言之,就是当我们用光去照射金属板的时候,金属板上的电子就会被撞飞出去。

这个现象乍一看,和用放大镜引燃柴草类似,没什么怪异之处。可奇就奇在,当实验人员加强光的强度,按理说撞出来的光电子应该更多。就像我们用放大镜引燃柴草,阳光越强烈,其热度越高,柴草就越容易引燃。可光电效应奇了怪了,无论怎样加强光亮度,从金属表面飞出的光电子没有变化。但是当实验人员换成亮度较弱的紫光灯,撞飞出来的光电子瞬间激增。

许多理论物理学家,提出各种理论来解释这一奇怪的现象,都没有成功。其中,普朗克是最为接近真相的。

1900年,普朗克研究黑体辐射发现光的能量并不是连续的,而是一份一份的。他提出量子能量公式E=hv。这个公式十分重要,爱因斯坦根据这一公式迈出了成功解释光电效应最为关键的一步。

E表示光量子具有的能量,h是普朗克常数,v是电磁波(光)的频率。E=hv,告诉我们,光量子具有的能量大小与光的频率是密切相关的,而与光的亮度无关。紫外线的频率高于我们的可见光,所以它携带的能量较大,拥有了更大的能量,冲撞力就更猛。当然撞出来的光电子就更多。

在电磁波中,X射线、γ射线的频率比紫外线还要高。显而易见,它们的光电效应会更加强烈。而我们前文提到的利用放大镜引燃柴草是属于光热效应。这两者看似相似,却有着本质的不同。

1905年,爱因斯坦发表了论文《关于光的产生和转化的一个试探性观点》,提出光量子假说,不仅成功解释了光电效应,还撞开了量子世界的大门。虽然爱因斯坦后来一直质疑量子力学的完备性,但他确实是这一学科的开创者之一。

光电效应在我们现实生活中的应用也非常广泛,利用光电效应制成的光控制电器,可用于自动计数、自动报警等。电视摄像管、光电管、电光度计乃至农业病虫害防治都离不开光电效应。

虽然爱因斯坦解释了光电效应的光量子假说没有相对论出色,但是也绝对配得上诺贝尔奖的光环,同时也是这位科学巨匠留给人类的宝贵财富。

317 评论

跑跑跑pao

目 录一、激光加工的起源和原理-------------------------------------------------------5二、激光加工的特点---------------------------------------------------------------5三、激光加工的应用---------------------------------------------------------------6四、激光的发展趋势---------------------------------------------------------------7五、结论-----------------------------------------------------------------------------8六、致谢-----------------------------------------------------------------------------9现代制造技术特种加工---激光加工1、激光加工的起源和原理随着科学技术的发展和社会需求的多样化,产品的竞争越来越激烈,更新换代的周期也越来越短。为此,要求不但能根据市场的要求尽快设计出新产品,而且能在尽可能短的时间内制造出原型,从而进行性能测试和修改,最终形成定型产品。而在传统制造系统中,需要大量的模具设计、制造和调试等工作,成本高,周期长,已不能适应日新月异的市场变化。为了提高研发和生产速度,快速而精确地制作出高质量、低成本的模具和产品,能对市场变化做出敏捷响应,人们作了大量的研究和探索工作。随着工业激光器价格的不断下降和工业激光加工技术的日益成熟,给模具制造和产品生产工艺带来了重大变革激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。2、激光加工的特点激光具有的宝贵特性决定了激光在加工领域存在的优势:由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。激光加工过程中无“刀具”磨损,无“切削力”作用于工件。激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。它可以通过透明介质对密闭容器内的工件进行各种加工。由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。使用激光加工,生产效率高,质量可靠,经济效益好。3、激光加工的应用激光加工是利用光的能量经过透镜聚焦后在焦点上达到很高的能量密度,靠光热效应来加工的。激光加工不需要工具、加工速度快、表面变形小,可加工各种材料。用激光束对材料进行各种加工,如打孔、切割、焊接、热处理等。 某些具有亚稳态能级的物质,在外来光子的激发下会吸收光能,使处于高能级原子的数目大于低能级原子的数目——粒子数反转,若有一束光照射,光子的能量等于这两个能相对应的差,这时就会产生受激辐射,输出大量的光能。激光加工的应用主要有以下几个方面:、激光打孔采用脉冲激光器可进行打孔,脉冲宽度为~1毫秒,特别适于打微孔和异形孔,孔径约为~1毫米。激光打孔已广泛用于钟表和仪表的宝石轴承、金刚石拉丝模、化纤喷丝头等工件的加工。 、激光切割、划片与刻字在造船、汽车制造等工业中,常使用百瓦至万瓦级的连续CO2激光器对大工件进行切割,既能保证精确的空间曲线形状,又有较高的加工效率。对小工件的切割常用中、小功率固体激光器或CO2激光器。在微电子学中,常用激光切划硅片或切窄缝,速度快、热影响区小。用激光可对流水线上的工件刻字或打标记,并不影响流水线的速度,刻划出的字符可永久保持(图1)。 图1激光刻字 、激光微调采用中、小功率激光器除去电子元器件上的部分材料,以达到改变电参数(如电阻值、电容量和谐振频率等)的目的。激光微调精度高、速度快,适于大规模生产。利用类似原理可以修复有缺陷的集成电路的掩模,修补集成电路存储器以提高成品率,还可以对陀螺进行精确的动平衡调节。 、激光热处理用激光照射材料,选择适当的波长和控制照射时间、功率密度,可使材料表面熔化和再结晶,达到淬火或退火的目的。激光热处理的优点是可以控制热处理的深度,可以选择和控制热处理部位,工件变形小,可处理形状复杂的零件和部件,可对盲孔和深孔的内壁进行处理。例如,气缸活塞经激光热处理后可延长寿命;用激光热处理可恢复离子轰击所引起损伤的硅材料。激光加工的应用范围还在不断扩大,如用激光制造大规模集成电路,不用抗蚀剂,工序简单,并能进行微米以下图案的高精度蚀刻加工,从而大大增加集成度。此外,激光蒸发、激光区域熔化和激光沉积等新工艺也在发展中。、激光焊接激光焊接强度高、热变形小、密封性好,可以焊接尺寸和性质悬殊,以及熔点很高(如陶瓷)和易氧化的材料。激光焊接的心脏起搏器,其密封性好、寿命长,而且体积小。4、激光的发展趋势激光加工用于再制造业和应用于其他制造业一样,有其不可替代的优点,并优于其它加工技术。激光加工用于再制造业是由相变硬化发展到激光表面合金化和激光熔覆,由激光合金涂层发展到复合涂层及陶瓷涂层,从而使得激光表面加工技术成为再制造的一项重要手段。它主要是采用5KW~10KWCO2高功率激光器及其系统。 与国际上激光加工系统相比,我国的激光加工系统差距甚大,仅占全球销售额的4%左右。主要表现为:高档激光加工系统很少,甚至没有;主力激光器不过关;微细激光加工装备缺口较大;而这些领域我国的生产 加工企业正在积蓄力量稳步进入,国内应用市场有很大发展空间。预测今后2-3年内,我国激光加工销售额将会由2008年的35亿人民币上升翻一倍,也就是说会达到70亿元产值。 国内各类制造业接受了激光加工技术,它可使他们的产品增加技术含量,加快产品更新换代,为适应21世纪高新技术的产业化、满足宏观与微观制造的需要,研究和开发高性能光源势在必行。目前正在积极研制超紫外、超短脉冲、超大功率、高光束质量等特征的激光,尤其是能适应微制造技术要求的激光光源更是倍受关注,并已形成国际性竞争。5结论本文对激光加工的原理、起源、应用、发展趋势等做了详细的介绍,并结合激光加工等常见的问题作出分析,对激光加工工艺的理解有一定的帮助。参考文献[1]刘晋春、赵家齐、赵万生.特种加工(第4版)[M].机械工业出版社,2007.[2]宋威廉,激光加工技术的发展[M].北京:机械工业出版社,2008.[3]赵万生.特种加工技术[M].北京:机械工业出版社,2004.[4]张辽远.现代加工技术[M].北京:机械工业出版社,2002.[5]刘振辉,杨嘉楷.特种加工[M].重庆:重庆大学出版社,1991.

112 评论

粉嘟嘟的Pinky

Laser‑Induced Graphene: En Route to Smart Sensing

Libei Huang, Jianjun Su, Yun Song, Ruquan Ye*

Nano‑Micro Lett.(2020)12:157

本文亮点

1. 总结了 激光诱导石墨烯 的制备和工程化策略。

2. 综述 基于LIG的传感器 ,重点介绍其设计原理和工作机制。

3. 讨论LIG传感器与信号传输的集成及其未来 智能化传感系统 的前景。

内容简介

香港城市大学化学系叶汝全教授团队 以设计原理和工作机制为核心,综述了LIG技术在传感器应用上的进展,论文第一作者为香港城市大学化学系博士研究生黄丽蓓。文章首先简要介绍了LIG和LIG复合物的制备原理,包括形貌和组分的调控,物理和化学特性的控制等。接着基于设计原理和工作机制(特异结合型和非特异结合型的化学传感器,基于压阻效应的机械传感器等),对LIG传感器进行总结。最后,作者讨论了LIG的影响及其未来发展。

图文导读

I LIG的制备及其相关机械性能

聚酰亚胺膜等可被CO₂激光转化成石墨烯,无需掩膜板, 任何形状的LIG可通过计算机控制软件的控制进行制备。通过改变制备的气氛,前驱物,激光的参数包括激光扫描速度,工作模式,频率,每点脉冲数等,可对LIG的物理和化学特性进行调控。不仅是红外激光,可见光,紫外光等激光器也可成功制备LIG。红外激光制备LIG主要是源于光热效应,瞬间的高温可是前驱物的化学键断裂和重新组合,这个过程会伴随着气体的生成,这也是LIG高孔隙率的原因之一。

对于紫外光激光来说,LIG的转化主要是一种光化学反应,因为紫外光波长短,能量大,可直接使化学键断裂。而对于可见光激光,光热效应和光化学反应则可能同时存在。相比于丝网印刷,3D打印,光刻等,激光诱导制备石墨烯展现了它制备过程简单、低成本、高效、环保的独特优势。得益于前驱物(有机薄膜)的柔韧性以及LIG易于转移到兼具机械性能和延展性的衬底上的特点,LIG在传感器,特别是可穿戴器件上具有广泛的应用。

图1. (a)PI转化成LIG的示意图。(b)LIG的SEM,HRTEM图。比例尺为10 μm和5 nm。(c)在不同气氛下,LIG的接触角。(d)纤维状的LIG的SEM图。

图2. LIG及其复合材料的机械特性。(a)弯曲状态下的硼掺杂的LIG。(b)不同弯曲半径下硼掺杂的LIG电容的电容保持率。(c-d)LIG超级电容器在不同拉伸强度下的测试。(e)LIG与水泥复合。(f)基于LIG-水泥复合物的气体传感器。

II 基于LIG的化学传感器

化学传感器广泛应用于食品安全、水产养殖和饮用水中的污染物、有危险气体排放的工业周围的空气质量以及葡萄糖、乳酸和多巴胺等代谢物的检测。化学物质检测的工作机理通常依赖于由刺激物引起的电阻、电容和电荷转移电阻等电信号的变化。这种化学物质的检测可分为两大类,一类是基于化学物质与LIG表面的特异结合,另一类是基于非特异性结合。

特异性结合的化学传感器

特异性结合型化学传感器是通常是对LIG的表面进行修饰,如抗体、酶和适配体等。由于识别元件和目标化学物质之间的精确结合,此类传感器往往表现出非凡的传感选择性。当识别元件与目标化学物质结合后,电极表面的电容、界面传输电阻等信号将产生变化,与目标化学物质的浓度相关。通过检测相关电信号的变化,可以推导出对应化学物质的浓度。

图3. 基于LIG的特异结合型化学传感器的制作工艺及传感性能。利用化学物质与被修饰的LIG之间特异性结合机制,从小分子到生物分子甚至病原体,许多物质已经被成功地检测。

图4. 各种特异性结合的LIG化学传感器。(a)凝血酶传感器、(b)双酚a传感器和(c)酶类葡萄糖传感器示意图。(d)用于检测大肠杆菌O157:H7的基于AuNPs-LIG的传感器示意图。(e)大肠杆菌传感器的奈奎斯特图。(f)阻抗响应随浓度的校准曲线。

非特异性结合的化学传感器

非特异性结合化学传感器在化学传感器中也起着重要作用,相比特异性结合型传感器,非特异性结合传感器的成本通常较低。化学氧化还原反应和物理性质都是非特异结合型化学传感器的信息来源。

化学氧化还原反应

化学氧化还原反应通常用于检测溶质或者气体。检测可以是定性的,也可以是定量的。例如,不同分析物往往有不同的氧化还原电位,因而通过氧化还原电位的鉴定,有助于区分不同的分析物。同时,与氧化还原反应相关的电流密度与分析物的浓度正相关,通过标定特定电位下的电流密度,可以提供有关分析物浓度的信息。

图5. 基于化学氧化还原反应的葡萄糖传感器。(a)连续添加不同葡萄糖浓度的电流响应。(b)葡萄糖传感器的校准曲线。

物理特性

利用LIG与被测物相互作用时的电阻、被测物的热导、被测物溶液的电导率或阻抗等物理性质来探测相应的响应。例如,但溶液离子浓度增加,界面传输电阻将下降。通过构建离子浓度与界面传输电阻的关系,可以用以检测未知溶液的离子浓度。然而,由于其他离子亦能产生类似的效果,这一检测手段不适于对多组分溶液的浓度检测。

图6. 基于内在和外在物理特性的非特异性结合传感器。(a)基于电阻变化的氢气传感器。氢气作用于LIG(顶部)和氢气在LIG/Pd(底部)上催化反应的能带分析。(b)不同弯曲状态下的电阻响应与H₂浓度的关系。(c)基于热导的气体传感器对各种气体的响应。(d)弯曲曲率半径为7 mm的气体传感器对空气的响应幅度。插图显示了0和1000次弯曲循环后气体传感器对空气的响应。(e)硝酸盐传感器对硝酸盐浓度的响应。插图是传感器浸入溶液中的等效电路。(f)实际温度和测量温度的比较。

III LIG机械传感器

机械传感器广泛应用于人体精细运动检测、手语翻译和机器人抓手等领域。基于LIG的机械传感器通常是建立在压阻效应的基础上的,它可以检测由激励引起的形状变形引起的电阻变化。当LIG处于拉伸、弯曲、震动状态时,其电阻将产生变化。通过监测LIG的电阻,结合机器学习,可以判定器件所处的物理状态。同时,记录LIG电阻因心跳、脉搏、声带振动等引起的时间分辨变化,则可以用以检测心率、辨别声音。

图7. (a)3D打印PEEK齿轮转换成LIG的过程的示意图。(b)PEEK LIG 智能组件的双向弯曲和拉伸的工作机制。(c)传感器电阻随施加应变的变化。(d)弯曲响应时间和恢复时间。(e)齿轮磨损程度与电路电阻的关系。插图显示了智能齿轮的三种不同磨损程度:(I)未磨损(II)部分磨损(III)严重磨损。

通过按时间顺序记录压阻效应,基于LIG的机械传感器可用于实时检测各种信号,如心跳、动作和声音。

图8. 脑电图、心电图和肌电图测量。

IV 展望

自2014年LIG的发现以来,LIG合成技术的进步显著改善了石墨烯的性能,增加了应用的通用性。例如,激光的波长从红外延伸到可见光甚至紫外线,这使LIG结构的空间分辨率提高到 12 µm。LIG复合材料的制备策略,如原位改性和非原位改性,可以提高LIG的机械强度、导电性等物理性能,也可以通过加入功能材料来提高LIG的化学性能。LIG技术的低成本和合成的简单性促进了一系列LIG传感器的发展,使其成为工业生产的潜在候选技术之一。

随着传感机制的合理设计,从各种化学物质到声音、运动和温度,各种各样的刺激被成功检测。由于LIG的高比表面积和化学稳定性,这些传感器往往表现出高灵敏度和高稳定性。此外,LIG的高导电性使其成为将刺激信号转换为电信号的理想传感器。由聚合物制成的原始LIG通常是柔性的,其转移到其他基材(如弹性体或水泥)可以赋予其弹性或刚性,这使得LIG可用于不同的场景,如可穿戴电子设备和智能建筑等。LIG传感器的发展已经从单一的检测元件发展成为集成系统。通过将无线传输和微控制器模块与物联网集成起来,实现了对被测物的实时和连续检测。

作为一种可图形化和可打印的制造技术,基于LIG的传感器为开发集成化小型化器件开辟了一条新的途径。然而,LIG技术在实际应用中仍有一定的改进空间。例如,在某些情况下,LIG层与前驱体的结合强度不够。尽管可通过一些方式进行规避,如用粘性聚合物功能化或将LIG转移到弹性体上,但是化学品的消耗和额外的制造步骤对生产来说并不理想。有些LIG传感器没有进行体内或现场检测,这可能无法反映传感器在实际情况下的可行性、稳定性和耐用性。然而,这对于实际应用来说却是很重要的,因为来自环境的干扰和实验室条件的变化可能会影响传感器的灵敏度和可靠性。尽管如此,在全球范围内研究人员的共同努力下,LIG转变为各种传感器的多样性一直是令人满意的。随着未来的发展,LIG传感器将在广泛的应用中找到一片新天地。

作者简介

叶汝全

本文通讯作者

香港城市大学 助理教授

主要研究领域

激光诱导石墨烯技术在催化、水处理、能源转换、传感器等方向的应用;二氧化碳还原,水分解等催化反应的界面、催化剂的合理设计,提高能源利用效率。

主要研究成果

在Nat. Commun., Adv. Mater., ACS Nano, Acc. Chem. Res., Angew. Chem. Int. Ed.等高影响力学术期刊以第一作者或通讯作者发表论文20余篇,获授权国际专利、美国授权专利6项,曾获国家优秀自费留学生奖,香港工程师学会青年工程师/研究人员杰出论文奖。

撰稿:原文作者

长三角激光联盟陈长军 转载

254 评论

相关问答

  • 毕业论文液晶的光电效应

    当液晶分子有序排列时表现出光学各向异性,光通过液晶时,会产生偏振面旋转,双折射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导

    hehefatter 3人参与回答 2023-12-05
  • 激光焊的应用毕业论文

    开题报告主要包括以下几个方面:(一)课题名称(二)课题研究的目的、意义(三)国内外研究现状、水平和发展趋势(四)课题研究的理论依据(五)课题主要研究内容、方法(

    暗旦无光 7人参与回答 2023-12-08
  • 企业发展效应毕业论文

    工商企业管理毕业论文中小企业发展战略目标与发展方向选择摘要:针对中小企业在各国经济发展中的作用和我国中小企业的现状,指出对我国中小企业发展战略和发展方向进行研究

    吃货称霸999 4人参与回答 2023-12-10
  • 光电效应研究历程论文

    看看下帖11楼的论文如何——

    blue-taste 4人参与回答 2023-12-09
  • 企业协同效应毕业论文

    只能给你个大概思路,当做借鉴吧,行不行你自己决定。既然对比就要有实例,所以这类论文的基本思路就是例证和数据。中资企业的人力资源管理现状,最好举例有代表性的,然后

    曦若若往 5人参与回答 2023-12-11