丸子的小雕
把它的历史背景抄上,在写点自己的感想,不就成了吗。
给你点材料吧!
1.1 早期函数概念——几何观念下的函数
十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。
1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。
1.2 十八世纪函数概念——代数观念下的函数
1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。
18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。
欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。
他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。
1.3 十九世纪函数概念——对应关系下的函数
1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次。
1823年柯西(Cauchy,法,1789-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷。
1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。
”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受。
至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义。
等到康托尔(Cantor,德,1845-1918)创立的 *** 论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“ *** ”和“对应”的概念给出了近代函数定义,通过 *** 概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等)。
1.4 现代函数概念—— *** 论下的函数
1914年豪斯道夫(F.Hausdorff)在《 *** 论纲要》中用“序偶”来定义函数。
其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”。
库拉托夫斯基(Kuratowski)于1921年用 *** 概念来定义“序偶”,即序偶(a,b)为 *** {{a},{b}},这样,就使豪斯道夫的定义很严谨了。
1930年新的现代函数定义为,若对 *** M的任意元素x,总有 *** N确定的元素y与之对应,则称在 *** M上定义一个函数,记为y=f(x)。
元素x称为自变元,元素y称为因变元。
函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、测度及以上所述的Dirac-δ函数等概念统一了起来。
因此,随着以数学为基础的其他学科的发展,函数的概念还会继续扩展。
我就知道这些,你再问问别人吧!!!!!
壮儿象象
抽象函数问题及解法 如果一个关于函数f(x)的题目,已知f(x)的性质及f(x)满足的关系式,求证f(x)的其他性质, 题目做完了,我们还不知道f(x)的具体的解析式,这就是抽象函数问题.一般地,抽象函数是指没有(直接或间接)给出具体的解析式,只给出一些函数符号及其满足某些条件的函数.解决抽象函数问题,我们可以用函数性质、特殊化、模型函数、联想类比转化、数形结合等多种方法.(1)函数性质法.函数的特征是通过其性质(如单调性、奇偶性、周期性、特殊点等)反映出来的,抽象函数也如此. 我们可以综合利用上述性质,包括借助特殊点布列方程等来解决抽象函数问题.(2)特殊化法.特殊化法又叫特取法. 为达到我们预期的目的,将已知条件进行适当的变换,包括式子的整体变换与具体数字的代换. 如在研究函数性质时,一般将x换成-x或其他代数式;在求值时,用赋值法,常用特殊值0,1,-1代入.(3)模型函数法.模型函数在解决抽象函数问题中的作用非同小可. 一方面,可以用借助具体的模型函数解答选择题、填空题等客观题. 另一方面,可以用“特例探路”,联想具体的模型函数进行类比、猜想,为解答题等主观题的解决提供思路和方法. 一般地,抽象函数类型有以下几种:①满足关系式f(x+y)=f(x)+f(y) (ⅰ)的函数f(x)是线性型抽象函数. 其模型函数为正比例函数f(x)=kx(k≠0).事实上,f(x+y)=k(x+y)=kx+ky=f(x)+f(y).令x=y=0,得f(0)=0,故f(x)的图象必过原点.令y=-x,得0=f(0)=f(x)+f(-x),即f(-x)=-f(x),所以f(x)为奇函数.命题(ⅰ)可以推广为f(x+y)=f(x)+f(y)+b(b是常数),其模型函数为一次函数f(x)=kx-b(k≠0).②满足关系式f(x+y)=f(x) f(y) (ⅱ)的函数f(x)是指数型抽象函数. 其模型函数为指数函数f(x)=ax(a>0,a≠1).事实上,f(x+y)=ax+y=ax·ay=f(x) f(y).令x=y=0,得f(0)=1,故曲线f(x)必过点(0,1).命题(ⅱ)等价于f(x-y)=.③满足关系式f(xy)=f(x)+f(y) (x,y∈R+) (ⅲ)的函数f(x)是对数型抽象函数. 其模型函数为对数函数f(x)=logax (a>0,a≠1).令x=y=1,得f(1)=0,故曲线f(x)必过点(1,0).命题(ⅲ)等价于f( )=f(x)-f(y) (x,y∈R+) .④满足关系式f(xy)=f(x) f(y) 的函数f(x)是幂型抽象函数. 其模型函数为幂函数f(x)=xn.需更多函数问题及解法,详见《高中函数讲座》或请联系祝您 一切都好,数学更是棒棒哒!
找任意两点(不重合),连线。比较这两点横坐标的中点在函数上的值与上述连线的中点大小即可得出结论
数学作业还这么变态啊
可以给你提供几个要点参考:三者的联系最明显的就是根的判别式,即“△”。二次函数中的“△”可以和二次项系数“a”一起判断图像与X轴的交点个数;在一元二次方程中用于
学业成就 以后该干嘛
问题一:怎样进行论文数据分析 请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么) 研究区域描述:(如果你研究的是区域的话,要写出研究