Banyantree212
摘要:关于刚体平面平行运动的解题方法可以从多方面去考虑,从而求得所需求的物理量。关键词:无滑滚动、质量、半径、粗糙斜面下面让我们来看一道例题。一质量为m,半径为r的均匀圆柱体,沿倾角为α的粗糙斜面自静止无滑滚(如图),求质心,加速度ac法一:用平面平行运动动力学方程考虑斜面方向的运动,用f代表静摩擦力,据质心运动定理,有mgsinα-f=mac对于质心重力的力矩等于0,只有摩擦力的力矩,从而fr=icβ=1/2mr2刚体上的p点同时参与两种运动:随圆柱体以质心速度vc平动,和以线速度rω绕质心转动。无滑动意味着圆柱体与斜面的接触点p的瞬时速度为0,由此得vc=rω上式两边分别为对时间求导得d/dt·vc=rd/dtω所以有ac=rβ③由①②③推出法二:如图,通过该圆柱体对定点a的角动量定理,因为静摩擦力f对定点a的力矩为零,所以有la=3/2mvcr=3/2r2ω只有重力沿斜面的分力的力矩,设为τaτa=msinα*r据角动量定理有dla/dt=τa即(3/2)mr2β=(3/2)mrac=mgsinα*r所以有ac=(2/3)gsinα法三:用动能定理解题设圆柱体沿斜面滚过的距离为s时的速度为vc由于是无滑滚动,既是纯滚动vc=rω所以有ω=vc/r圆柱体的滚动后获得的总动能为t则t=tc+trc=(1/2)mvc2+(1/2)icω2=(1/2)mvc2+(1/4)m(rω)2=(3/4)mvc又由于初动能为0据动能定理有t-0=mgsinα*s(3/4)mvc2=mgs*sinα上式两边分别为时间t求导,得3mvc2/4dt=mgsinα*ds/dt所以有(3/2)ac=gsinα所以ac=(2/3)gsinα通过对上题的解答,我们运用到了力学中的刚体力学,角动量定理,动能定理等。所以要想学好力学就得善于发散思维!参考文献:①赵凯华、罗茵新概念物理教程高等教育出版社②卢新平简明普通物理学
TT作天作地
一、参照物和质点 为了研究物体的运动而假定为不动的那个物体,叫做参照物。 在研究物体的运动时,不考虑物体的大小和形状,而把物体看作一个有质量的点,这个用来代替物体的有质量的点就叫做质点。 1、选择参照物的必要性一个物体相对于别的物体的位置的改变,叫做机械运动,简称运动。机械运动是最普遍的自然现象,宇宙中的一切物体,都在不停的运动着。因此,我们在研究物体的运动时,就必须假定某个物体是不动的,参照这个物体来确定其它物体的运动。 2、怎样选择参照物同一个运动,由于选择的参照物不同,观察的结果常常是不同的。例如,坐在运动着的火车里的乘客,若选车厢做参照物,则乘客相对于车厢是静止的;若选铁路旁边的树为参照物,则乘客是和火车一起运动的。参照物的选取往往是为了研究问题的方便。在研究的地面上的物体运动时,常取地球为参照物;在研究太阳系中行星的运动时,太阳就是最恰当的参照物,即假定太阳是静止不动的。 3、质点是一种科学的抽象物理学对实际问题的简化,叫做科学抽象。科学抽象不是随心所欲的,必须从实际问题出发。例如我们研究地球公转时,由于地球的直径(约×10^4千米)比地球和太阳之间的距离(×10^8千米)要小的多,这时我们可以把地球的大小和形状忽略不计,即把地球当做质点。可是在研究地球的自转时,地球的大小和形状不能忽略,不能把地球当作质点。 一般来讲,在研究地球上的物体运动时,除非设计到物体的转动,都可以把物体看作质点。 【例题】在下列运动中,可以当作质点的有()。 A、做花样溜冰的运动员 B、远洋航行中的巨轮 C、转动着的砂轮 D、从斜面上滑下来的木块 【解答】质点是力学中的一个科学抽象概念,是一个理想化的模型。在研究某些问题时,如果物体的大小和形状在所研究的现象中起的作用很小,可以忽略不计,就可以把物体当作质点。 做花样溜冰的运动员,有着不可忽略的旋转等动作,身体各部分的运动情况不全相同,故不能当作质点。砂轮在转动过程中,大小和形状对运动起主要作用,更不可忽略,故不能当作质点。远洋航行中的巨轮和有关距离相比极小,从斜面上滑下的木块各点的运动情况相同,故都可以当作质点。 故选B、D
《生活中的数学》可以讲一下如何用数学知识解决问题
小学生期刊杂志排名如下: 一、故事类。 《儿童故事画报》。 简介:《儿童故事画报》是江苏少年儿童出版社的品牌刊物,已经有38年的办刊历史(2008),在国内具有
气压的奥妙- “今日11时36分的天气实况为:1.气温23℃ 2.风向323° 3.湿度92% 4.气压1001.2mbar 5.风速2m/s。”
杂志千千万万种,选杂志需要专业积累和睿智眼光,爸爸妈妈没时间,不妨让小志来帮你,在杂志堆里摸爬滚打十年的小志,分分钟帮你找到好杂志。今天咱们就来一份阅读书单——
这种方式有很多啊望采纳