天晴0608
论文链接: tensorflow源码链接: SSD是YOLO之后又一个引人注目的目标检测结构,它沿用了YOLO中直接回归 bbox和分类概率的方法,同时又参考了Faster R-CNN,大量使用anchor来提升识别准确度。通过把这两种结构相结合,SSD保持了很高的识别速度,还能把mAP提升到较高的水平。 原作者给了两种SSD结构,SSD 300和SSD 512,用于不同输入尺寸的图像识别。本文中以SSD 300为例,图1上半部分就是SSD 300,下半部分是YOLO,可以对比来看。SSD 300中输入图像的大小是300x300,特征提取部分使用了VGG16的卷积层,并将VGG16的两个全连接层转换成了普通的卷积层(图中conv6和conv7),之后又接了多个卷积(conv8_1,conv8_2,conv9_1,conv9_2,conv10_1,conv10_2),最后用一个Global Average Pool来变成1x1的输出(conv11_2)。a、重新启用了Faster R-CNN中anchor的结构 在SSD中如果有多个ground truth,每个anchor(原文中称作default box,取名不同而已)会选择对应到IOU最大的那个ground truth。一个anchor只会对应一个ground truth,但一个ground truth都可以对应到大量anchor,这样无论两个ground truth靠的有多近,都不会出现YOLO中bbox冲突的情况。 b、同时使用多个层级上的anchor来进行回归 作者认为仅仅靠同一层上的多个anchor来回归,还远远不够。因为有很大可能这层上所有anchor的IOU都比较小,就是说所有anchor离ground truth都比较远,用这种anchor来训练误差会很大。例如图2中,左边较低的层级因为feature map尺寸比较大,anchor覆盖的范围就比较小,远小于ground truth的尺寸,所以这层上所有anchor对应的IOU都比较小;右边较高的层级因为feature map尺寸比较小,anchor覆盖的范围就比较大,远超过ground truth的尺寸,所以IOU也同样比较小;只有图2中间的anchor才有较大的IOU。通过同时对多个层级上的anchor计算IOU,就能找到与ground truth的尺寸、位置最接近(即IOU最大)的一批anchor,在训练时也就能达到最好的准确度。SSD的优点在前面章节已经说了:通过在不同层级选用不同尺寸、不同比例的anchor,能够找到与ground truth匹配最好的anchor来进行训练,从而使整个结构的精确度更高。 SSD的缺点是对小尺寸的目标识别仍比较差,还达不到Faster R-CNN的水准。这主要是因为小尺寸的目标多用较低层级的anchor来训练(因为小尺寸目标在较低层级IOU较大),较低层级的特征非线性程度不够,无法训练到足够的精确度。 下图是各种目标识别结构在mAP和训练速度上的比较,可以看到SSD在其中的位置:
篮球手仙道彰
论文: Pelee: A Real-Time Object Detection System on Mobile Devices
基于DenseNet的稠密连接思想,论文通过一系列的结构优化,提出了用于移动设备上的网络结构PeleeNet,并且融合SSD提出目标检测网络Pelee。从实验来看,PeleeNet和Pelee在速度和精度上都是不错的选择。
PeleeNet基于DenseNet思想,加入了几个关键的改进。
受GoogLeNet的启发,论文将原来的dense layer改为2-way dense layer,如图1b所示,新的路径叠加两个 卷积来学习获取不同的感受域特征,特别是大物体特征。
DenseNet使用stride=2的 卷积对输入进行初步处理,受Inception-v4和DSOD启发,论文设计了一个高效的stem block,结构如图2所示,两条路径能提取不同的特征。这样可以在不带来过多计算耗时的前提下,提高网络的特征表达能力。
在DenseNet中,使用bottleneck layer进行输入特征的压缩,但是bottleneck layer的输出固定为dense layer输出的4倍。在网络的早些层中,会存在bottleneck layer的输出比输入更多的情况,导致效率下降。为此,论文将bottleneck layer的输出大小跟输入挂钩,保证不大于输入大小,从图4可以看出,修改后计算效率提升了一倍。
DenseNet在dense layer间使用transition layer进行特征维度压缩,压缩比为。论文通过实验发现这个操作会减弱网络特征的表达能力,所以将transition layer的输出维度固定为输入的大小,不再压缩。
DenseNet使用Conv-Relu-BN的预激活方式,论文将其修改为Conv-BN-Relu的后激活方式,这样卷积层和BN层在inference时能够进行合并运算,提高计算速度。另外,论文在最后的dense layer添加了 卷积,用以获得更强的特征表达能力。
PeleeNet的结构如表1所示,包含一个stem block、4个特征提取阶段以及最后的stride为2的平均池化层。论文纠结使用3个特征提取阶段还是4个特征提取阶段,3个阶段需要stem block更多地缩减特征图大小,考虑到开头过快地减小特征图会大小会减弱网络的表达能力,最终仍采用4个阶段。
基于SSD,将PeleeNet作为主干网络并做了几个优化,提出目标检测网络Pelee,主要的优化点如下:
对PeleeNet的key feature进行验证。
与其它轻量级网络对比。
PeleeNet在各种设备上的实际推理速度对比。
Pelee与其它网络的设置对比。
各改进措施的性能对比。
与其它网络的在VOC上的性能对比。
各设备上的推理速度对比。
与其它网络的在COCO上的性能对比。
PeleeNet是DenseNet的一个变体,没有使用流行的深度可分离卷积,PeleeNet和Pelee仅通过结构上的优化取得了很不错的性能和速度,读完论文可以学到很多网络设计的小窍门
论文链接: tensorflow源码链接: SSD是YOLO之后又一个引人注目的目标检测结构,它沿用了YOLO中直接回归 bbox和分类概率的方
单桩静荷载试验的加载时间和记录
第一作者:1. 郁琦, 连丽娟. 《血清 CA125测定和放射免疫显象对卵巢上皮癌的监测作用》.2. 郁琦, 黄尚志, 叶丽珍等. 《SRY基因检测在性发育异常
谈公路工程软基处理中PHC桩检测工作 论文关键词:公路工程软基处理PHC桩试验检测 论文摘 要 :PHC桩应用于公路工程软基处理,已有多个年头,从应用到公路工程
室内空气环境内甲醛含量甲醛检测可分为:(1)AHMT 分光光度法,测定的主要方法有乙酰丙酮法、铬变酸法、MBTH法、副品红法、AHMT法等几种。1.1乙酰丙酮法