• 回答数

    3

  • 浏览数

    241

食品监督所
首页 > 学术期刊 > 数学统计小论文范文

3个回答 默认排序
  • 默认排序
  • 按时间排序

广州文仔

已采纳

统计分析是运用统计 方法 与分析对象有关的知识,从定量与定性的结合上进行的研究活动。下文是我为大家整理的关于统计分析论文的 范文 ,欢迎大家阅读参考!

浅谈统计分析与决策

[摘要] 统计分析与决策二者有联系又有区别。统计要参与决策,必须搞好统计分析。搞好统计分析,需要解决选题、分析、撰写 报告 三个问题。

[关键词] 统计分析 分析方法 决策

统计工作的全过程分为四个阶段,即统计设计,统计调查,统计整理,统计分析。其中,统计分析是统计工作的最后一个阶段,是出统计成果的阶段。现在倡导统计要参与决策,这是不是说统计工作还要增加一个决策阶段呢?如果不是,那么,统计分析与决策是什么关系呢?

狭义的说,统计分析与决策是有区别的。统计分析是以统计数字为基础,以统计方法为手段,对社会经济情况进行科学的分析和综合研究,以认识其本质和规律的过程。而决策则是为了达到某一预定目标,运用逻辑方法和统计方法,对两种或两种以上可能采取的方案进行比较、分析、研究,以做出合理的、科学的抉择的行为过程。假若把统计分析与决策比作医生看病,统计分析就是对病情的诊断,决策就是开处方,“诊断”和“处方”是有区别的。

广义的讲,统计分析与决策是密不可分的。一方面,统计分析贯穿于决策过程之中。一个决策过程大体上可分为下列三个大步骤:第一,诊断问题所在,确定决策目标;第二,探索和拟定各种可能的备选方案;第三,从各种备选方案中选出最合适的方案。从这三大步骤看,尽管要用到多种方法和手段,但哪一步也离不开统计分析,第一步就是通过统计分析,诊断问题所在,并在分析的基础上确定决策目标;第二步拟定备选方案,要经过“轮廊设想”和“细部设计”这个阶段对轮廊设想的方案要做初步筛选,对每一方案要充实具体内容,“筛选”和“充实”都要经过统计分析;第三步选择最佳方案,首先要对各个备选方案进行评价、论证,这又需要统计分析。因此可以说,没有统计分析,也就没有科学决策。另一方面,从某种意义上讲,决策是统计分析的结果。一般来说,统计分析报告是提出问题、分析问题、指出解决问题的办法,其实,决策方案也就是解决问题实现决策目标的办法,只不过比“今后意见”“几条 措施 ”之类的办法更全面、更详细、更科学罢了。医生诊断是为了正确处方,治病救人,不能只诊断不处方。统计分析是为了发现问题,解决问题,推动社会经济的顺利发展;也不能只提出问题,而不寻找解决问题的办法。从这个意义上讲,统计分析也就包括预测和决策。我们不能为统计而统计,也不能为分析而分析。统计应该参与决策,为了决策科学化,必须搞好统计分析。

搞好统计分析,需要解决选题、分析、撰写报告三个问题。

一、统计分析选题

所谓选题,就是在复杂的社会经济现象中,确定统计分析的内容和范围。进行统计分析,选题很重要。成功的选题是成功的分析的前提。

怎样选好题呢?选好题标准有两条:―是分析对象有意义,二是适合决策层和群众需要。关键是抓住党和国家的方针政策和企业的经济效益。

统计分析课题是很广泛的。工业统计分析课题如:计划执行情况分析、工业净产值统计分析、工业产品销售统计分析、工业原材料供应和消耗统计分析、工业能源消耗统计分析、工业生产设备统计分析、工业劳动与工资统计分析、成本利润统计分析、综合经济效益统计分析等。商品流通企业统计分析课题如:市场供求状况分析、市场占有率分析、主要商品经济寿命周期分析、市场商品价格分析、计划执行情况分析、购销合同执行情况分析、商品购进质量分析、商品销售动态分析、商品销售构成分析、商品库存分析、企业经济效益分析等。对于以上内容,可根据不同的时间、地点、条件,按两条选题标准适当选择。

统计分析有专题分析与综合分析之分。在一定的总体范围内,研究总体的各个方面及其相互关系,或研究总体的主要方面的统计分析,属于综合分析;只研究其中某一方面,或某一部分的统计分析,属于专题分析。两者各有不同的特点,都是必要的,但专题分析宜多,综合分析宜少。

二、统计分析方法

统计分析的关键是分析,怎样进行统计分析呢?统计分析有两个特点:一是以统计数字为基础,二是以统计方法为手段。因此,统计分析在选题之后,就要根据分析的需要,搜集整理有关数字资料及具体情况,在充分占有材料的基础上,灵活运用统计方法进行分析。

统计分析方法很多。统计学原理中除了有关统计调查、统计整理的内容外,综合指标、统计指数、时间数列、抽样推断等内容全部是统计分析方法。从方法角度上讲,统计分析就是统计学原理的运用。

统计方法与人们的认识过程是相适应的。人们的认识分感性认识和理性认识两个阶段。感性认识阶段所认识的是事物的现象,可采用统计调查和统计整理。理性认识阶段所认识的是事物的本质和规律,这个阶段要经过形成概念、进行判断和推理等思维活动。与此相适应,要分别采用不同的统计分析方法。

形成概念一般用描述性的综合指标法,即总量指标、相对指标和平均指标,以说明现象的规模大小、水平高低、速度快慢、内部结构以及比例关系等。判断推理就是要判断事物的性质,分析事物变化的原因,找出事物发展的规律。这一般要用分组分析法、动态分析法、因素分析法、相关回归分析法、平衡分析法等。

对统计学原理中的各种统计分析方法要熟练地掌握,灵活地运用。怎样灵活运用呢?这里有个技巧问题。技巧就是定性分析与定量分析巧妙结合。

所谓定性分析是指对事物的性质和影响事物发展变化的因素进行分析。定量分析就是分析事物的规模、水平、速度、结构、比例,以及各个因素对事物总体变化的影响方向和影响程度。定性分析与定量分析巧妙结合有两层含义,一是二者不可偏废,二是二者密不可分,

没有定性分析,定量分析就没有方向。没有定量分析,定性分析就不准确。结合的目的是在质与量的辩证统一中探寻事物的内在联系。

从根本上讲,统计分析就是完成从感性认识到理性认识,从现象到本质的飞跃。完成了这―飞跃,才是高质量的统计分析。有些统计分析质量不高,往往就是没有完成这一飞跃,仍然停留在表面现象上。

三、统计分析报告的撰写

统计分析报告是统计的最终产品。如果说统计数字的准确性是统计的生命,那么,统计分析报告的质量则关系到统计作用的发挥。对高质量的统计分析报告的要求,可以概括为五个字,就是“准、快、新、深、活”。

准:就是实事求是地反映客观实际。做到数字准确,情况准确,论点准确。

快:就是在决策层决策之前,不失时机地及时提供分析报告。

新:就是不断创新。要求不断开拓新领域,钻研新课题,反映新情况和新问题。

深:就是要在充分占有材料的基础上,提高分析的深度,使认识不只停留在反映现象上,而要揭示事物的本质和规律,并且用观点统帅材料,用材料说明观点,做到材料和观点的统一。

活:就是文字生动活泼,形式灵活多样。资料要多样化和生动具体,要有群众语言,要通俗易懂,文字要精精炼。

统计分析报告是在统计分析的基础上撰写出来的。没有好的分析,不可能写出好的报告。经过分析阶段,弄清了事实,判明了性质,探索出规律,得出了结论,在此基础上就可以撰写统计分析报告。但分析得好,并不等于报告写得好,这里还有个撰写的技巧问题,那就是准确地表述事实,透彻地阐明本质,深刻地揭示规律,恰当地提出建议。

1.准确地表述事实

每一篇统计分析报告,都需要表述所分析的现象,即说明“是什么”。准确地表述事实,才能给读者一个明确的概念。为此,须注意如下几点:(1)数字要真实;(2)运用数字要适当,不要堆砌数字,搞数字文字化;(3)语言要素准确。

2.透彻地阐明本质

现象只说明事物的各个片面,本质才说明事物的整体。撰写统计分析报告,必须深刻地揭示事物的本质,它是统计认识事物的正确程度和深度的反映。如果不能深刻地阐明事物的本质,那只能是现象罗列,没有多大价值。

阐明事物的本质,也就是阐明事物的基本性质。事物的性质是由事物内部矛盾的主要方面决定的。例如,某企业利润增加,是靠涨价,还是靠降低成本?经过分析,认识到利润增加主要是靠降低成本,这是矛盾的主要方面,这就反映出事物的性质。因此,在报告中就应阐明降低成本在提高经济效益中的重要作用。再如某企业,本质问题是钢材浪费严重,在报告中就应揭示浪费的若干方面和严重程度。

3.深刻地揭示规律

规律是事物内部固有的、本质的、必然联系。成本高低与产量多少有联系,经过推理,这种联系是事物内部固有的、本质的必然联系,反映了事物发展变化的规律性,而且存在一定的回归关系。而回归方程反映这种关系,所以在统计分析报告中,要利用回归方程揭示这种必然联系及其回归关系。

4.恰当地提出建议

认识世界的目的是为了改造世界。经过统计分析,透过现象认识到事物的本质和规律,还必须提出解决问题的建议,如“今后意见”、“几点建议”、“决策方案”等等。怎样才算恰当地建议呢?恰当的建议要符合三个条件:(1)符合分析目的;(2)合乎客观规律;(3)切实可行。

以上四点,一般可以作为分析报告的结构和顺序,但不能千篇一律。

统计分析报告是统计分析结果的反映。既要注意提高写作水平,更要努力锻炼分析问题和解决问题的能力。

试谈统计分析方法应用

【摘要】统计分析方法应用于各个领域,解决了很多工业、农业、经济、医学等领域的实际问题,本文分析多元统计分析方法的主要应用和构建多元统计方法检验体系的必要性,针对性的提出了需要引起注意的共性问题,具有很强的现实意义。

【关键词】统计分析方法;应用;检验体系;共性问题;现实意义前言

随着信息技术的普及和广泛应用,它推动了社会、经济和科学技术的发展,多元统计分析方法的难题得到了攻破,各个领域广泛采用,推动了各行各业经济的快速发展。

二、多元统计分析方法的主要应用

统计方法是科学研究的一种重要工具,其应用颇为广泛。在工业,农业,经济,生物和医学等领域的实际问题中,常常需要处理多个变量的观测数据,因此对多个变量进行综合处理的多元统计分析方法显得尤为重要。随着电子计算机技术的普及,以及社会,经济和科学技术的发展,过去被认为具有数学难度的多元统计分析方法,已越来越广泛地应用于实际。

聚类分析

它是研究分类问题的一种多元统计方法,聚类分析的基本思想是首先将每个样本当作一类,然后根据样本之间的相似程度并类计算新类与 其它 类之间距离,再选择近似者并类每合并一次减少一类,继续这一过程直到所有样本都合并成为一类为止。所以聚类分析依赖于对观测间的接近程度或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。企业制定 市场营销 战略时要弄清在同一市场中哪些企业是直接竞争者,哪些是间接竞争者是非常关键的一个环节。要解决这个问题,企业首先可以通过 市场调查 ,获取自己和所有主要竟争者,从而寻找企业在市场中的机会。

判别分析

判别分析是已知研究对象分成若干类型,并取得各种类型的一批已知样品的观测数据、在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析,企业在市场预测中往往根据以往所调查的种种指标,用判别分析方法判断下季度产品是畅销平销或滞销。一般情况下判别分析经常与聚类分析联合起来使用。

主成分分析

主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标,来代替原来指标,同时根据实际需要从中可取几个较少的综台指标,尽可能多反映原来指标的信息,在市场研究中常常利用主成分析方法分析顾客的偏好和当前市场的产品与顾客之间的差别,从而提供给生产企业新产品开发方向的信息。

因子分析

因子分析是主成分分析的推广和应用。它是将错综复杂的随机变量综合为数量较少的随机变量去描述,多个变量之间的相关关系以再现原始指标与因子之间的相互关系。也可以认为因子分析是将指标按原始数据的内在结构分类。例如:对Y个调查区的商业网点数、人口数、金融机构服务数、收入情况等N个指标进行因子分析,如果按照一般的分析方法,我们就需要处理N个指标,并给它们以不同的权重。这样不仅工作量变大而且由干指标之间存在比较高的相关性,会给分析结果带来偏差另外给具有较高相关性的众多指标,从而计算出各个调查区平均综合实力得分以便决定在某个调查区拟建何种类型的销售点。

三、构建多元统计分析方法检验体系的必要性

(一)构建多元统计分析方法检验体系,提高多元统计分析应用质量

多元统计分析方法已经越来越为人们广泛应用,但应用中盲目套用分析方法的情况很多,只关心模型方法的应用。许多教科书也只侧重介绍多元统计分析方法的思想、原理和分析步骤,对多元统计分析方法应用结果的统计检验叙述不多。这就直接影响了多元统计分析方法的应用效果和可信性。因此,本文拟对多元统计分析方法的统计检验问题进行探讨。构建多元统计分析方法检验体系的目的在于进一步丰富和完善多元统计分析方法的内容体系;实践上,使多元统计分析方法的应用更加合理、规范。推动多元统计分析方法应用质量的提高,推动多元统计分析方法获得更广泛的应用。

(二)多元统计分析统计检验体系的基础理论

多元正态分布总体的样本分布,即维希特分布,霍特林分布,威尔克斯分布,多元正态总体均值向量假设检验,包括一个正态总体均值向量假设检验,两个正态总体均值向量假设检验,多个正态总体均值向量假设检验;多元正态总体协方差阵假设检验,包括一个正态总体协方差阵假设检验,多个协差阵相等假设检验。

(三)关于统计检验体系

将上述统计检验体系有机结合在一起,就构成了多元统计分析方法检验体系的基本框架。多元统计分析方法检验体系的构建,用多元统计分析方法,充分发挥多元统计分析方法的应用价值,提高应用质量,我们建议,在应用时,应该按照上述框架进行相应的统计检验。当然。上述统计检验体系还是一个初步的框架,随着多元统计分析方法理论的逐步完善,上述检验体系也需要不断完善,也需要更多的同行关注此类问题并不断加以研究。另一方面,在实际应用中,即便是某种方法根据上述内容都进行了统计检验,由于各种方法自身存在的缺陷或局限性,也还会存在许多应用中考虑不周之处。应该引起注意。但是,因子分析结果还是具有较大主观性。特别是对公共主因子在专业方面实际意义的解释上,仍然保留着一种艺术气息,并没有统一做法,因此很多情况下也是不能令人满意的。总之,我们在应用时,对因子分析的适用性、公因子的估计方法、公因子选取的数目。公因子的实际意义的解释等一系列问题都要引起足够注意。检验体系有如下几个分类:

a.主成分分析统计检验体系

b.因子分析统计检验体裂引

c.系统聚类分析统计检验体系

d.判别分析统计检验体裂

e.对应分析统计检验体系

f.典型相关分析统计检验体系

四、多元统计分析方法应用中需要注意的几个共性问题

1.关于原始数据变量的总体分布问题。

对原始变量的总体分布各种方法各有不同的要求。有的方法对原始数据变量总体分布没有特殊的要求,如主成分分析、聚类分析、对应分析。有的方法在不同情况下,对原始变量分布有不同的要求,如因子分析中,公共因子的估计方法不同,对原始变量分布要求不同,采用极大似然估计方法估计主因子时,是假定原始变量是服从多元正态分布的,因此,应用时要引起重视,如典型相关分析要求原始变量服从正态分布,但在严格意义上,如果变量的分布形式比如高度偏态不会降低其他变量的相关关系,典型相关分析是可以包含这种非正态变量的。

样本容量问题。

进行多元统计分析时,样本容量n达到多少为宜,目前尚没有统一的结论。有的认为样本容量应是变量个数的10~20倍,有的认为样本容量要在100以上比较合适,有的认为进行巴特莱特检验时的样本容量应该大于150方可,也有的认为不必苛求太多的样本容量,如在进行主成分分析和因子分析时当原始变量之间的相关性很小时,即使再扩大样本容量,也难以得到满意效果。

原始变量之间的相关性以及非线性关系问题。

多元统计分析方法中,有的是的要求原始变量中要具有相关性。有的则不要求原始变量具有相关性。如聚类分析中,进行Q型系统聚类分析时对原始数据变量之间的相关性也是有要求的,如选择欧式距离、明氏距离、兰氏距离时,则要求原始变量之间是不相关的。只有对原始数据的相关性进行了处理后,才可以选择使用上述距离。若原始变量存在相关性,则选择马氏距离比较合适。另外原始变量之间的非线性关系也是需要注意的问题。如主成分分析、因子分析以及典型相关分析当基于相关矩阵来进行计算时,这里的相关矩阵实际上是Pearson的积差相关。但是,如果变量之间的关系不是线性的,而是非性相关关系,于是,所进行的分析以及结论也就失去应有的意义了。

数据处理问题。

多元统计分析中涉及多个变量,不同变量往往具有不同的量纲及不同的数量级别。在分析时,具有不同量纲的变量进行线性组合是没有意义的,不同的数量级别的变量之间进行分析时。会导致“以大吃小”,即数量级的变量的影响会被忽略,从而影响了分析结果的合理性。因此。为了消除量纲和数量级别的影响,进行多元统计分析时,必须对原始数据进行处里,最常用的是先作标准化变换处理,然后再作相应的分析。

五、结束语

在统计分析方法的应用中,会涉及到多个变量,因此,必须根据原来有的数量进行处理,然后才能得出相应的分析结论。本文结合多元统计分析方法的理论基础,对相关检验体系和分析体系进行了分析,具有现实的理论指导意义。

【参考文献】

[1]于秀林.多元统计分析[M].北京,中国统计出版社,1999:223—224.

[2]高惠璇.应用多元统计分析[M].北京,北京大学出版社 ,2005:343—366.

[3]郭志刚.社会科学分析方法一SPSS软件应用[M].,中国人民大学出版社,1999.

[4]傅德印.主成分分析中的统计检验问题 [J].统计 教育 ,2007(9):4—7.

145 评论

橘子哈哈111

在统计学中,统计模型是指当有些过程无法用理论分析 方法 导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系。下文是我为大家整理的关于统计模型论文的 范文 ,欢迎大家阅读参考!

统计套利模型的理论综述与应用分析

【摘要】统计套利模型是基于数量经济学和统计学建立起来的,在对历史数据分析的基础之上,估计相关变量的概率分布,并结合基本面数据对未来收益进行预测,发现套利机会进行交易。统计套利这种分析时间序列的统计学特性,使其具有很大的理论意义和实践意义。在实践方面广泛应用于个对冲基金获取收益,理论方面主要表现在资本有效性检验以及开放式基金评级,本文就统计套利的基本原理、交易策略、应用方向进行介绍。

【关键词】统计套利 成对交易 应用分析

一、统计套利模型的原理简介

统计套利模型是基于两个或两个以上具有较高相关性的股票或者其他证券,通过一定的方法验证股价波动在一段时间内保持这种良好的相关性,那么一旦两者之间出现了背离的走势,而且这种价格的背离在未来预计会得到纠正,从而可以产生套利机会。在统计套利实践中,当两者之间出现背离,那么可以买进表现价格被低估的、卖出价格高估的股票,在未来两者之间的价格背离得到纠正时,进行相反的平仓操作。统计套利原理得以实现的前提是均值回复,即存在均值区间(在实践中一般表现为资产价格的时间序列是平稳的,且其序列图波动在一定的范围之内),价格的背离是短期的,随着实践的推移,资产价格将会回复到它的均值区间。如果时间序列是平稳的,则可以构造统计套利交易的信号发现机制,该信号机制将会显示是否资产价格已经偏离了长期均值从而存在套利的机会 在某种意义上存在着共同点的两个证券(比如同行业的股票), 其市场价格之间存在着良好的相关性,价格往往表现为同向变化,从而价格的差值或价格的比值往往围绕着某一固定值进行波动。

二、统计套利模型交易策略与数据的处理

统计套利具 体操 作策略有很多,一般来说主要有成对/一篮子交易,多因素模型等,目前应用比较广泛的策略主要是成对交易策略。成对策略,通常也叫利差交易,即通过对同一行业的或者股价具有长期稳定均衡关系的股票的一个多头头寸和一个空头头寸进行匹配,使交易者维持对市场的中性头寸。这种策略比较适合主动管理的基金。

成对交易策略的实施主要有两个步骤:一是对股票对的选取。海通证券分析师周健在绝对收益策略研究―统计套利一文中指出,应当结合基本面与行业进行选股,这样才能保证策略收益,有效降低风险。比如银行,房地产,煤电行业等。理论上可以通过统计学中的聚类分析方法进行分类,然后在进行协整检验,这样的成功的几率会大一些。第二是对股票价格序列自身及相互之间的相关性进行检验。目前常用的就是协整理论以及随机游走模型。

运用协整理论判定股票价格序列存在的相关性,需要首先对股票价格序列进行平稳性检验,常用的检验方法是图示法和单位根检验法,图示法即对所选各个时间序列变量及一阶差分作时序图,从图中观察变量的时序图出现一定的趋势册可能是非平稳性序列,而经过一阶差分后的时序图表现出随机性,则序列可能是平稳的。但是图示法判断序列是否存在具有很大的主观性。理论上检验序列平稳性及阶输通过单位根检验来确定,单位根检验的方法很多,一般有DF,ADF检验和Phillips的非参数检验(PP检验)一般用的较多的方法是ADF检验。

检验后如果序列本身或者一阶差分后是平稳的,我们就可以对不同的股票序列进行协整检验,协整检验的方法主要有EG两步法,即首先对需要检验的变量进行普通的线性回归,得到一阶残差,再对残差序列进行单位根检验,如果存在单位根,那么变量是不具有协整关系的,如果不存在单位根,则序列是平稳的。EG检验比较适合两个序列之间的协整检验。除EG检验法之外,还有Johansen检验,Gregory hansan法,自回归滞后模型法等。其中johansen检验比较适合三个以上序列之间协整关系的检验。通过协整检验,可以判定股票价格序列之间的相关性,从而进行成对交易。

Christian L. Dunis和Gianluigi Giorgioni(2010)用高频数据代替日交易数据进行套利,并同时比较了具有协整关系的股票对和没有协整关系股票对进行套利的立即收益率,结果显示,股票间价格协整关系越高,进行统计套利的机会越多,潜在收益率也越高。

根据随机游走模型我们可以检验股票价格波动是否具有“记忆性”,也就是说是否存在可预测的成分。一般可以分为两种情况:短期可预测性分析及长期可预测性分析。在短期可预测性分析中,检验标准主要针对的是随机游走过程的第三种情况,即不相关增量的研究,可以采用的检验工具是自相关检验和方差比检验。在序列自相关检验中,常用到的统计量是自相关系数和鲍克斯-皮尔斯 Q统计量,当这两个统计量在一定的置信度下,显著大于其临界水平时,说明该序列自相关,也就是存在一定的可预测性。方差比检验遵循的事实是:随机游走的股价对数收益的方差随着时期线性增长,这些期间内增量是可以度量的。这样,在k期内计算的收益方差应该近似等于k倍的单期收益的方差,如果股价的波动是随机游走的,则方差比接近于1;当存在正的自相关时,方差比大于1;当存在负的自相关是,方差比小于1。进行长期可预测性分析,由于时间跨度较大的时候,采用方差比进行检验的作用不是很明显,所以可以采用R/S分析,用Hurst指数度量其长期可预测性,Hurst指数是通过下列方程的回归系数估计得到的:

Ln[(R/S)N]=C+H*LnN

R/S 是重标极差,N为观察次数,H为Hurst指数,C为常数。当H>时说,说明这些股票可能具有长期记忆性,但是还不能判定这个序列是随机游走或者是具有持续性的分形时间序列,还需要对其进行显著性检验。

无论是采用协整检验还是通过随机游走判断,其目的都是要找到一种短期或者长期内的一种均衡关系,这样我们的统计套利策略才能够得到有效的实施。

进行统计套利的数据一般是采用交易日收盘价数据,但是最近研究发现,采用高频数据(如5分钟,10分钟,15分钟,20分钟收盘价交易数据)市场中存在更多的统计套利机会。日交易数据我们选择前复权收盘价,而且如果两只股票价格价差比较大,需要先进性对数化处理。Christian L. Dunis和Gianluigi Giorgioni(2010)分别使用15分钟收盘价,20分钟收盘价,30分以及一个小时收盘价为样本进行统计套利分析,结果显示,使用高频数据进行统计套利所取得收益更高。而且海通证券金融分析师在绝对收益策略系列研究中,用沪深300指数为样本作为统计套利 配对 交易的标的股票池,使用高频数据计算累计收益率比使用日交易数据高将近5个百分点。

三、统计套利模型的应用的拓展―检验资本市场的有效性

Fama(1969)提出的有效市场假说,其经济含义是:市场能够对信息作出迅速合理的反应,使得市场价格能够充分反映所有可以获得的信息,从而使资产的价格不可用当前的信息进行预测,以至于任何人都无法持续地获得超额利润.通过检验统计套利机会存在与否就可以验证资本市场是有效的的,弱有效的,或者是无效的市场。徐玉莲(2005)通过运用统计套利对中国资本市场效率进行实证研究,首先得出结论:统计套利机会的存在与资本市场效率是不相容的。以此为理论依据,对中国股票市场中的价格惯性、价格反转及价值反转投资策略是否存在统计套利机会进行检验,结果发现我国股票市场尚未达到弱有效性。吴振翔,陈敏(2007)曾经利用这种方法对我国A股市场的弱有效性加以检验,采用惯性和反转两种投资策略发现我国A股若有效性不成立。另外我国学者吴振翔,魏先华等通过对Hogan的统计套利模型进行修正,提出了基于统计套利模型对开放式基金评级的方法。

四、结论

统计套利模型的应用目前主要表现在两个方面:1.作为一种有效的交易策略,进行套利。2.通过检测统计套利机会的存在,验证资本市场或者某个市场的有效性。由于统计套利策略的实施有赖于做空机制的建立,随着我股指期货和融资融券业务的推出和完善,相信在我国会有比较广泛的应用与发展。

参考文献

[1] . Burgess:A computational Methodolology for Modelling the Dynamics of statistical arbitrage, London business school,PhD Thesis,1999.

[2]方昊.统计套利的理论模式及应用分析―基于中国封闭式基金市场的检验.统计与决策,2005,6月(下).

[3]马理,卢烨婷.沪深 300 股指期货期现套利的可行性研究―基于统计套利模型的实证.财贸研究,2011,1.

[4]吴桥林.基于沪深 300 股指期货的套利策略研究[D].中国优秀硕士学位论文.2009.

[5]吴振翔,陈敏.中国股票市场弱有效性的统计套利检验[J].系统工程理论与实践.2007,2月.

关于半参统计模型的估计研究

【摘要】随着数据模型技术的迅速发展,现有的数据模型已经无法满足实践中遇到的一些测量问题,严重的限制了现代科学技术在数据模型上应用和发展,所以基于这种背景之下,学者们针对数据模型测量实验提出了新的理论和方法,并研制出了半参数模型数据应用。半参数模型数据是基于参数模型和非参数模型之上的一种新的测量数据模型,因此它具备参数模型和非参数模型很多共同点。本文将结合数据模型技术,对半参统计模型进行详细的探究与讨论。

【关键词】半参数模型 完善误差 测量值 纵向数据

本文以半参数模型为例,对参数、非参数分量的估计值和观测值等内容进行讨论,并运用三次样条函数插值法得出非参数分量的推估表达式。另外,为了解决纵向数据下半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。另外,本文初步讨论了平衡参数的选取问题,并充分说明了泛最小二乘估计方法以及相关结论,同时对半参数模型的迭代法进行了相关讨论和研究。

一、概论

在日常生活当中,人们所采用的参数数据模型构造相对简单,所以操作起来比较容易;但在测量数据的实际使用过程中存在着相关大的误差,例如在测量相对微小的物体,或者是对动态物体进行测量时。而建立半参数数据模型可以很好的解决和缓解这一问题:它不但能够消除或是降低测量中出现的误差,同时也不会将无法实现参数化的系统误差进行勾和。系统误差非常影响观测值的各种信息,如果能改善,就能使其实现更快、更及时、更准确的误差识别和提取过程;这样不仅可以提高参数估计的精确度,也对相关科学研究进行了有效补充。

举例来说,在模拟算例及坐标变换GPS定位重力测量等实际应用方面,体现了这种模型具有一定成功性及实用性;这主要是因为半参数数据模型同当前所使用的数据模型存在着一致性,可以很好的满足现在的实际需要。而新建立的半参数模型以及它的参数部分和非参数部分的估计,也可以解决一些污染数据的估计问题。这种半参数模型,不仅研究了纵向数据下其自身的t型估计,同时对一些含光滑项的半参数数据模型进行了详细的阐述。另外,基于对称和不对称这两种情况,可以在一个线性约束条件下对参数估计以及假设进行检验,这主要是因为对观测值产生影响的因素除了包含这个线性关系以外,还受到某种特定因素的干扰,所以不能将其归入误差行列。另外,基于自变量测量存在一定误差,经常会导致在计算过程汇总,丢失很多重要信息。

二、半参数回归模型及其估计方法

这种模型是由西方著名学者Stone在上世纪70年代所提出的,在80年代逐渐发展并成熟起来。目前,这种参数模型已经在医学以及生物学还有经济学等诸多领域中广泛使用开来。

半参数回归模型介于非参数回归模型和参数回归模型之间,其内容不仅囊括了线性部分,同时包含一些非参数部分,应该说这种模型成功的将两者的优点结合在一起。这种模型所涉及到的参数部分,主要是函数关系,也就是我们常说的对变量所呈现出来的大势走向进行有效把握和解释;而非参数部分则主要是值函数关系中不明确的那一部分,换句话就是对变量进行局部调整。因此,该模型能够很好的利用数据中所呈现出来的信息,这一点是参数回归模型还有非参数归回模型所无法比拟的优势,所以说半参数模型往往拥有更强、更准确的解释能力。

从其用途上来说,这种回归模型是当前经常使用的一种统计模型。其形式为:

三、纵向数据、线性函数和光滑性函数的作用

纵向数据其优点就是可以提供许多条件,从而引起人们的高度重视。当前纵向数据例子也非常多。但从其本质上讲,纵向数据其实是指对同一个个体,在不同时间以及不同地点之上,在重复观察之下所得到一种序列数据。但由于个体间都存在着一定的差别,从而导致在对纵向数据进行求方差时会出现一定偏差。在对纵向数据进行观察时,其观察值是相对独立的,因此其特点就是可以能够将截然不同两种数据和时间序列有效的结合在一起。即可以分析出来在个体上随着时间变化而发生的趋势,同时又能看出总体的变化形势。在当前很多纵向数据的研究中,不仅保留了其优点,并在此基础之上进行发展,实现了纵向数据中的局部线性拟合。这主要是人们希望可以建立输出变量和协变量以及时间效应的关系。可由于时间效应相对比较复杂,所以很难进行参数化的建模。

另外,虽然线性模型的估计已经取得大量的成果,但半参数模型估计至今为止还是空白页。线性模型的估计不仅仅是为了解决秩亏或病态的问题,还能在百病态的矩阵时,提供了处理线性、非线性及半参数模型等方法。首先,对观测条件较为接近的两个观测数据作为对照,可以削弱非参数的影响。从而将半参数模型变成线性模型,然后,按线性模型处理,得到参数的估计。而多数的情况下其线性系数将随着另一个变量而变化,但是这种线性系数随着时间的变化而变化,根本求不出在同一个模型中,所有时间段上的样本,亦很难使用一个或几个实函数来进行相关描述。在对测量数据处理时,如果将它看作为随机变量,往往只能达到估计的作用,要想在经典的线性模型中引入另一个变量的非线性函数,即模型中含有本质的非线性部分,就必须使用半参数线性模型。

另外就是指由各个部分组成的形态,研究对象是非线性系统中产生的不光滑和不可微的几何形体,对应的定量参数是维数,分形上统计模型的研究是当前国际非线性研究的重大前沿课题之一。因此,第一种途径是将非参数分量参数化的估计方法,也称之为参数化估计法,是关于半参数模型的早期工作,就是对函数空间附施加一定的限制,主要指光滑性。一些研究者认为半参数模型中的非参数分量也是非线性的,而且在大多数情形下所表现出来的往往是不光滑和不可微的。所以同样的数据,同样的检验方法,也可以使用立方光滑样条函数来研究半参数模型。

四、线性模型的泛最小二乘法与最小二乘法的抗差

(一)最小二乘法出现于18世纪末期

在当时科学研究中常常提出这样的问题:怎样从多个未知参数观测值集合中求出参数的最佳估值。尽管当时对于整体误差的范数,泛最小二乘法不如最小二乘法,但是当时使用最多的还是最小二乘法,其目的也就是为了估计参数。最小二乘法,在经过一段时间的研究和应用之后,逐步发展成为一整套比较完善的理论体系。现阶段不仅可以清楚地知道数据所服从的模型,同时在纵向数据半参数建模中,辅助以迭代加权法。这对补偿最小二乘法对非参数分量估计是非常有效,而且只要观测值很精确,那么该法对非参数分量估计更为可靠。例如在物理大地测量时,很早就使用用最小二乘配置法,并得到重力异常最佳估计值。不过在使用补偿最小二乘法来研究重力异常时,我们还应在兼顾着整体误差比较小的同时,考虑参数估计量的真实性。并在比较了迭代加权偏样条的基础上,研究最小二乘法在当前使用过程中存在的一些不足。应该说,该方法只强调了整体误差要实现最小,而忽略了对参数分量估计时出现的误差。所以在实际操作过程中,需要特别注意。

(二)半参模型在GPS定位中的应用和差分

半参模型在GPS相位观测中,其系统误差是影响高精度定位的主要因素,由于在解算之前模型存在一定误差,所以需及时观测误差中的粗差。GPS使用中,通过广播卫星来计算目标点在实际地理坐标系中具体坐标。这样就可以在操作过程中,发现并恢复整周未知数,由于观测值在卫星和观测站之间,是通过求双差来削弱或者是减少对卫星和接收机等系统误差的影响,因此难于用参数表达。但是在平差计算中,差分法虽然可以将观测方程的数目明显减少,但由于种种原因,依然无法取得令人满意的结果。但是如果选择使用半参数模型中的参数来表达系统误差,则能得到较好的效果。这主要是因为半参数模型是一种广义的线性回归模型,对于有着光滑项的半参数模型,在既定附加的条件之下,能够提供一个线性函数的估计方法,从而将测值中的粗差消除掉。

另外这种方法除了在GPS测量中使用之外,还可应用于光波测距仪以及变形监测等一些参数模型当中。在重力测量中的应用在很多情形下,尤其是数学界的理论研究,我们总是假定S是随机变量实际上,这种假设是合理的,近几年,我们对这种线性模型的研究取得了一些不错的成果,而且因其形式相对简洁,又有较高适用性,所以这种模型在诸多领域中发挥着重要作用。

通过模拟的算例及坐标变换GPS定位重力测量等实际应用,说明了该法的成功性及实用性,从理论上说明了流行的自然样条估计方法,其实质是补偿最小二乘方法的特例,在今后将会有广阔的发展空间。另外 文章 中提到的分形理论的研究对象应是非线性系统中产生的不光滑和不可微的几何形体,而且分形已经在断裂力学、地震学等中有着广泛的应用,因此应被推广使用到研究半参数模型中来,不仅能够更及时,更加准确的进行误差的识别和提取,同时可以提高参数估计的精确度,是对当前半参数模型研究的有力补充。

五、 总结

文章所讲的半参数模型包括了参数、非参数分量的估计值和观测值等内容,并且用了三次样条函数插值法得到了非参数分量的推估表达式。另外,为了解决纵向数据前提下,半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。同时介绍了最小二乘估计法。另外初步讨论了平衡参数的选取问题,还充分说明了泛最小二乘估计方法以及有关结论。在对半参数模型的迭代法进行了相关讨论和研究的基础之上,为迭代法提供了详细的理论说明,为实际应用提供了理论依据。

参考文献

[1]胡宏昌.误差为AR(1)情形的半参数回归模型拟极大似然估计的存在性[J].湖北师范学院学报(自然科学版),2009(03).

[2]钱伟民,李静茹.纵向污染数据半参数回归模型中的强相合估计[J].同济大学学报(自然科学版),2009(08).

[3]樊明智,王芬玲,郭辉.纵向数据半参数回归模型的最小二乘局部线性估计[J].数理统计与管理,2009(02).

[4]崔恒建,王强.变系数结构关系EV模型的参数估计[J].北京师范大学学报(自然科学版).2005(06).

[5]钱伟民,柴根象.纵向数据混合效应模型的统计分析[J].数学年刊A辑(中文版).2009(04)

[6]孙孝前,尤进红.纵向数据半参数建模中的迭代加权偏样条最小二乘估计[J].中国科学(A辑:数学),2009(05).

[7]张三国,陈希孺.EV多项式模型的估计[J].中国科学(A辑),2009(10).

[8]任哲,陈明华.污染数据回归分析中参数的最小一乘估计[J].应用概率统计,2009(03).

[9]张三国,陈希孺.有重复观测时EV模型修正极大似然估计的相合性[J].中国科学(A辑).2009(06).

[10]崔恒建,李勇,秦怀振.非线性半参数EV四归模型的估计理论[J].科学通报,2009(23).

[11]罗中明.响应变量随机缺失下变系数模型的统计推断[D].中南大学,2011.

[12]刘超男.两参数指数威布尔分布的参数Bayes估计及可靠性分析[D].中南大学,2008.

[13]郭艳.湖南省税收收入预测模型及其实证检验与经济分析[D].中南大学,2009.

[14]桑红芳.几类分布的参数估计的损失函数和风险函数的Bayes推断[D].中南大学,2009.

[15]朱琳.服从几类可靠性分布的无失效数据的bayes分析[D].中南大学,2009.

[16]黄芙蓉.指数族非线性模型和具有AR(1)误差线性模型的统计分析[D].南京理工大学,2009.

猜你喜欢:

1. 统计学分析论文

2. 统计方面论文优秀范文参考

3. 统计优秀论文范文

4. 统计学的论文参考范例

95 评论

丸子丸子小樱桃

在社会的各个领域,大家都经常接触到论文吧,论文可以推广经验,交流认识。相信写论文是一个让许多人都头痛的问题,下面是我整理的数学小论文作文,仅供参考,大家一起来看看吧。

我和妈妈去金鸡湖玩。途中看到很多交通指示牌。有的写着离前方1000米,有的500米,也有3公里等等。我就好奇的问妈妈:”妈妈,10公里有多少米啊?“妈妈笑着对我说就是10000米啊!”啊?我以为10米呢!“我对妈妈说。

”哦,儿子你知道一公里等于多少米么?“妈妈问

”100米?“我试着回答

”错了,一公里等于1000米!“妈妈说

”那为什么人们不说一公里是1000米,而以公里计算呢?“我问道

”那样太麻烦啦,如果是几百几千甚至几万公里,以米计算的话那得写多少个0啊,人们为了便于记录,就以公里代替,1000米,10000米,100000米等等,只要把后面的3个0去掉,就是公里数啦!“妈妈说。

”我懂了,妈妈,1000米去了3个0就是1公里,10000米去了3个0就是10公里,100000米去了3个0就是100公里!“我兴奋地告诉妈妈

”儿子,你真棒!“妈妈赞许的说道。

哈哈,原来计算公里数是有窍门的呀!

这学期我学习了分数,知道了分数就是把单位1评均分成若干份,并且知道分数在实际生活中有很多运用,下面的便是我生活中的分数。

星期六,我和爸爸妈妈一起去麦当劳。妈妈点了份全家桶,因为是星期六的原因人特别多,我们好不容易才找到一个大桌子。刚坐下没多久,妈妈便问我,”这有12个鸡腿,我们一共3个人,每个人应该评均吃几个?”这时候,我突然想起我学过了除法,那不就是平均分么,于是,我用12除以3,很快得出每个人应该吃4个,妈妈又问我,"那我们每个人吃了几分之几啊"?这时候,妈妈话音刚落下,我便回答了,"三分之一啊"。妈妈笑着拍怕我的头说,“恩,儿子真棒”。

这时候爸爸来了一句,说:“如果还有一个人和我们一起吃,那我们每个人能吃到几分之几啊?”我脱口而出,”1除以4等于四分之一呗“。爸爸笑着说:“儿子反应真快,真棒。”

我开心的笑了笑说:“这没什么,我还会好多,老师教了我们好多呢。“爸爸开心的拍了拍我的头。

从那次开始,我越来越喜欢数学了,觉得数学好有意思,以后一定更要好好学数学。

暑假里爸爸妈妈带我去了兰州,到了兰州当然要吃兰州拉面啦!于是,我们点了三碗牛肉拉面,吃了起来。

我是个好奇心十足的孩子,无论什么问题都会打破沙锅问到底,这次也不例外。我想看看兰州拉面是怎么做出来的,就向“取餐处”走去。

我看见师傅把一团揉好的面拉长,“咣”的一声摔在案板上,重复多次。我好奇地问:“师傅,这是在干嘛呀?为什么要这样呀?”“这主要是提高面的韧性。”

然后,师傅把长长的面反复地折叠、拉长、折叠、拉长,一个面团变魔术似地变成了一碗热气腾腾的牛肉拉面了。

我反复琢磨,发现秘密就在于“乘2”。面团先拽成一根面,经对折后就变成了两根面,再拉长后对折就成了4根面,于是有了1×2、2×2、4×2、8×2、16×2、32×2、64×2、128×2、256×2、512×2、1025×2……

原来数学无处不在,只是要你有一双善于发现的眼睛。

生活里,书序无处不在,哪怕是在极细微的地方,只要你认真观察和思考,都能发现数学的真谛和奥秘。

就拿抛硬笔来说吧。小时候,我曾独自坐在家中,一时兴起就开始研究抛硬币。连续数十次后,我忽然发现,背面出现的次数远大于正面。这是为什么呢?我皱起眉头,将一枚硬币拿在手上反复观察,却还是没有得到任何结果。“啪嗒”硬币落在了桌上,我顿时发现一个被窝忽略的地方。钱币的重量。我立刻捧起书,试图验证我的想法。果然,就像曾经,在旋转硬币游戏中,背面朝上的情况约占80%,原因正是硬币正面比背面重一点,导致硬币重心稍偏向正面。旋转的硬币容易向更重的一侧倒下。因此,硬币落下后背朝上的情况更多。也就是说,抛硬币正面或者背面朝上的概率并非都是50%

在生活中,我们也要学会思考,善于发现问题,不懂就问,绝不能轻易放弃。生活处处皆数学!只有喜爱数学的人,才能感受数学,领略数学之美。

今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。

”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。

数字,就是表示数目的.文字;数学,就是研究现实世界的空间形式和数量的关系的科学,包括算术、代数、三角、等。0、1、2、3、4、5、6、7、8、9这些数字在一场叫做世界博览会&的长期各国科学的交流会上出现频率是无法计算的,但数字只有这十个,在此不加讨论。

而世博会中的数学,更是无处不在。预计超过7000万人的参观数量,超过240个国家和国际组织的报名数量。但是,怎么得出这个数据的?也许在邀请成功的时候就已经得到统计结果,但超过&提示了我们——这个数据是估算&出来的。这是一种数学&的思想。

世博会的场馆大多宏伟壮观,才华横溢的建筑设计师们让他们诞生在设计板上。干这件事没有数学&是大忌。需要精确计算建筑的高度,宽度,长度。这样的庞然大物能否站稳?这要用到角度等。这也是一种数学&。

世博中的数字与数学,或许现在还不能理解,但它们带着人走向光明。

说到数学,我可是有很多话想说,这是我最差的一科,我认为学习数学需要很好的思维,和沉稳的心态,学习数学我还有一件有趣的事呢。

在上学时的某一天,我遇到了一个大难题,题目是这样的,一个大圆柱上面放了两个依次变小的圆柱,求它们的表面积,正当我还在一个一个算它们的表面积再减相关联的部分时,我的同学已经算完了,我惊呆了,为什么他能算那么快,下课后我去找那个同学:“为什么上课那道题你能算那么快。”“因为你没用对方法,我来教你吧,你可以只算最大图形的表面积,再算小图形的侧面积,相加就可以了,很方便吧。”她笑着说,我又惊呆了,尽然还有这种妙计。

所以说学习数学,还有一点很重要,遇到不会的题一定要及时问,问到会为止,这样才能提高成绩,也会让我们学习数学更简单。

我再给大家推荐一种方法吧,那就是上课认真听,别看这只是学生一定要完成的,真正能完成很完美的人少之又少。

大家一起加油吧。

怎样才算是聪明的人的呢?嘻嘻,聪明的人是懂得在生活中运用数学知识去解决问题的人。古人云:“此话怎讲?”那好吧,我就大发慈悲地告诉你们事情的一五一十吧!

记得有一天,我们家要熬粥吃,因此,妈妈就让我去专门卖粉的店铺买东西。我一走进门口,就看到许许多多的粉,我问老板:“阿姨,你们这里有米粉卖吗”“有有有,要多少有多少,小朋友,你要多少啊?”阿姨说道。“恩…… 阿姨,我想要1斤。”我说道。“好嘞!”阿姨笑着说道。“阿姨,多少钱啊?”“恩……2块钱”

阿姨说道。啊哟,我没有零钱,只有5块钱,我把钱给了阿姨后,等待着阿姨找回我钱,可能是顾客多的原因,阿姨就找给了我4块钱,我心想5——2=3呀!我马上把钱还给了阿姨。阿姨还夸我是个好孩子呢!

看吧,数学真的很有用呐!

星期六,我和爸爸妈妈一起去杭州旅行。旅行怎么能少了水呢?于是,我和爸爸一起去买水。

到了商店,我亮着嗓门对服务员阿姨说:”阿姨,我要买三瓶水。“爸爸指了指挂在墙上的牌子。我顺着爸爸手指的方向看过去,只见牌子上写着:”装修清仓,每样物品买2送1“几个大字。我想:买2送1,2+1=3瓶,那我不是只要买2瓶就够了!我又对阿姨说:”阿姨,我只要买2瓶。“阿姨笑眯眯地给了我3瓶水,而每瓶水的价格是1元5角,我买两瓶水那就是:1。5元+1。5元=3元,我花3元钱可以买到3瓶水,比平时便宜了1。5元,平均下来每瓶水的价格是1元。我给了阿姨一张5元的纸币,阿姨找我了两个一元硬币,我和爸爸高高兴兴地走了。

数学就在我们身边,让我们去寻找生活中的数学吧!

今天数学课上,黄老师让我们做了一道思维题,我一看到题目,就马上开始埋头写了起来,我心想:这次一定要做对,如果做对了,我就有机会去学校的籀园杯参赛了。我是多么的渴望去参加的,只要我努力……

我想啊想啊,分割性不行?我试了试,不行。添加辅助线行不行?可我在怎么添加,就是行不通。就当我万念俱灰的时候,心中又燃起了一线希望,可试试,还是不行。

“时间到!”黄老师说了一声,黄老师请了徐可笛上来讲解,她在那个图形上画了一个三角形,后来,听了她的讲解,我终于明白了,原来,中点在于那个画上去的三角形!我原先的想法全错了。我在心里对自己说:“怎么这么简单的都没想到?”可是后来,我又很快的说服了自己。

从这次做题中,我虽然没有做出来,但我对自己说:“相信自己,没错的!这次做错了,还有下次,总有一次能行的!”

老师在教你做除法计算时,肯定强调过:0不能做除数,这个算式是没有结果的,这是为什么呢?当被除数不是0而除数是0时,比如:1÷0,2÷0,3÷0等,根据被除数=除数×商,那么1=0×(),2=0×( ),3=0×( ),而任何数与0相乘都不可能是一个非零的数,此时商不存在,故0作除数无意义。

当被除数是0而除数也是0时,根据被除数=除数×商,那么0=0×(),而任何数与0相乘都是0,此时商不是唯一的,故0作除数无意义。

再比如“2/0”假如让0作除数,设2/0=A,那么根据乘、除法互为逆运算,可以看出2=0×A,任何数与0相乘都的0,不可能得2的,此数是不存在的,也就是这样的A是不存在的,对0/0怎么办呢?同样可以设0/0=A,根据同样的道理,0=B×0,在这个式子里B可以等于1,2,3,4,5……当中的任何一个数,因此0/0等于多少还是不能确定,所以,0不能当作除数。

哦!现在我明白0为什么不能做除数了。

数学在我们的生活中无处不在,且奇妙有趣,它的有趣之处就在需要我们自己去钻研奥秘。

大家都知道一生硕果累累的著名数学家华罗庚。华罗庚小时侯很爱动脑筋,下课了,小伙伴们都出去玩了,他还在教师里想老师讲的问题,有时候思考问题过于专心,同学们叫他都听不见。久而久之,同学送他一个外号,叫他“罗呆子”。当老师打开华罗庚的数学作业,发现许多地方都有涂改,一点也不整洁。老师开始很不满意,后来,发现华罗庚是在不断改进和简化自己的解决方法。他的数学才能被老师发现后,就尽心培育他。初中毕业后,华罗庚考进上海中华职业学校,学到最后一个学期,家里实在拿不出50元食宿费,只好退学,所以他的一生只有初中毕业文凭。他失学回家后一边自学数学,一边帮助父亲照顾小店,华罗庚一钻进数学题就好象如了无人之境,不是忘记接待客人,就是把客人气走了;就是算错了帐,多找了钱。父亲气极了,有一次,他把华罗庚的数学书烧了,华罗庚心疼得晕到在地。

华罗庚在那么艰苦的情况下对数学仍保持原来的痴迷,刻苦钻研,我们也该向他学习。只要对数学努力研究,就一定能够有丰富的收获。

今天晚上,我瞅着桌上的20块糖,馋的直流口水,妈妈看出了我的心思,对我说:“想吃糖啦?”“嗯。”“那我们先来玩个游戏,你赢了你就吃吧。”我想都不想,直接答应了。

妈妈把糖放到我的面前,说:“这里有20块糖,每次最少拿一颗。最多拿三颗,看谁能拿到最后一颗谁就赢。”“好啊好啊!”我好不容易把目光从糖上移开,“一言为定,我先拿!”我们两人你拿一次,我拿一次,每次都是妈妈拿到最后一块糖。

“怎么每次都是你拿到最后一块?”我特不服气的说。

这时在旁边观战的爸爸忍不住发话了:“你妈妈每次都拿到第16块糖,所以肯定能拿到第20块糖啦!你没有注意到是有规律的吗?”

我仔细一想,还真是,每次我拿一颗,妈妈就拿3颗;我拿两颗,妈妈就拿两颗,我拿三颗妈妈反而拿一颗,我和他每次一共拿4颗,照这样算,妈妈稳稳地拿到了第四,第八,第十二,第十六,第二十!我不输才怪!

经过老爸的提醒,我终于想通了。“不公平!这样每次都是后拿的人赢!”

“这次你先拿!”我想吃糖的心依然不改。“愿赌服输,再说睡前不吃糖,时间不早了,明天还要上学,上床睡觉吧!”我恋恋不舍的看了糖最后一眼,睡觉了。

有一次,猎人在森林中绑架了白雪公主,刚刚醒来的白雪公主看到陌生的周围,不禁东张西望。

猎人见白雪公主不肯吃下毒苹果,便生气地说:“白雪公主,我来出一题,如果你答对了,我就放你走,如果你答错了,哼,你就得吃下这苹果,怎么样?”白雪公主点了点头。

猎人说道:“有一个人用竖式计算5。1加上一个两位小数时,把加好看成了减号,得26,你能算出正确结果吗?”

白雪公主在手上写了写,突然大声说道:“,对吗?”

猎人惊呆了,便问:“你是怎么算的?”白雪公主回答道:“错误的算式是”——(),那么我们先算括号里的数,用5。1—等于,那么用+等于,所以答案是。“

猎人恍如突然知道了其中的窍门,似懂非懂地点了点头,高兴地回答道:”我遵守我的承诺,你可以走了。“

白雪公主高兴地回家了。

今天晚上外甥来让我帮忙辅导作业,原来是写数学小论文。下午就在我们学校群里听说了这个名词“数学小论文”,就没当回事,我以为是哪位老师要交论文,问问谁有么,同行借借。

晚上一听嫂子将才知道,原来是让小学生参照报纸,自己写一个数学小论文。我就看了数学小报,然后上网搜搜关于数学小论文,原来就是让学生记录一件事,体现数学在生活中处处存在、与生活息息相关。

小外甥写的一篇《妈妈带我去书店》星期天,妈妈带我去新华书店,妈妈让我自己选,我要了一本最喜欢的《赛尔号》,还要了一本《爆笑宠物》。我们在那还看了很多其他的书,最后我们去结账了,《赛尔号》30元一本,《爆笑宠物26元一本,30+26=56(元)星期天妈妈帮我买书一共花了56元钱,谢谢我的妈妈。

186 评论

相关问答

  • 统计学小论文范文参考文献

    在统计学中,统计模型是指当有些过程无法用理论分析 方法 导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系。下文是我为

    啦啦啦啦7 2人参与回答 2023-12-05
  • 统计学实验小论文范文

    统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。下文是我为大家整理的关于统计相关论文的范文,欢迎大家阅读参考! 浅谈概率在统计学中的应用

    送哦夏季 3人参与回答 2023-12-06
  • 小学生数学教学设计论文范文

    小学低年级数学教学论文范文 论文摘要: 计算是数学学习中最基础的部分,走好这一步,对今后的数学学习至关重要。低年级的计算又是整个数学学习的入门,因此低年级的计算

    健康&平安 3人参与回答 2023-12-06
  • 小学数学统计的论文范文

    数学是研究数量、结构、变化以及空间模型等概念的一门学科.透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生.数学家们拓展这些概念,为了

    爱吃牛蛙的鱼 2人参与回答 2023-12-11
  • 统计数学建模论文范文

    初中数学建模论文很简单的中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模

    一个美好的食袋 5人参与回答 2023-12-08