• 回答数

    2

  • 浏览数

    83

小红红黑黑
首页 > 学术期刊 > 运用定积分研究不等式论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

飞天小懒猫er

已采纳

先介绍定积分的历史背景!然后综合你的参考文献,说下你的文献里的研究现状!然后,你说下你发现这些文献少了些什么(比如,针对性不够,不够系统等等)然后,你就说你要在这些文献的基础上,做出什么样的研究(比如,你要用某某方法证明“定积分不等式”,当然,不一定要你的证明是最好的!但你一定要保证,这种证法是前所未有,同时,你还要举事例说明你的证法的应用方面的优越性)

239 评论

我是小鹿呀

微积分在不等式中的应用[摘要]本文应用微积分讨论了一些不等式的解法和证明,进一步揭示了微积分作为一种实用性很强的数学方法和工具,在求解不等式中的作用。[关键词]微积分高等数学不等式不等式是数学研究的一个基本问题,是属于初等数学的重要内容。不等式的证明方法多种多样,初等数学中常用的方法有恒等变形,使用重要不等式,用数学归纳法等,这些方法往往需要极高的技巧和超强的变形能力。微积分是高等数学的核心,微积分思想方法是高等数学乃至整个数学的典型方法,微积分思想方法的引入为解决不等式证明的难题找到了突破口,用这来解不等式可使解题思路变得简单。下面就通过实例分析微积分在证明不等式中的应用。1、用导数的定义证明不等式例1.设f(x)=a1sinx+a2sin2x+…+ansinnx,已知f(x)≤sinx,求证:a1+2a2+…+nan≤1。证明:方法1:因为f(0)=0,由已知f(x)-f(0)x-0≤sinxx(x≠0)∴limx→0f(x)-f(0)x-0≤1圯f'(0)≤1即a1+2a2+…+nan≤1。导数的定义是微积分的基础,此题还可运用两个重要极限及变形进行证明。方法2:由f(x)≤sinx,得f(x)x≤sinxx(x≠0),即a1sinxx+a2sin2xx+…+ansinnxx≤sinxx两端同时取x→0时的极限得limx→0a1sinxx+a2sin2xx+…+ansinnxx≤limx→0sinxx由重要极限及其变形知:limx→0sinkxx=k∴a1+2a2+…+nan≤1,证毕。2、利用函数的单调增减性定理1:设函数y=f(x)在[a,b]上连续,在(a,b)内可导(1)若在(a,b)内,f'(x)>0,那么函数y=f(x)在[a,b]上单调增加;(2)若在(a,b)内,f'(x)<0,那么函数y=f(x)在[a,b]上单调减少。由定理1我们总结出运用单调性证明不等式的一般方法与步骤:(1)移项,使不等式一端为“0”,另一端即为所作的辅助函数f(x);(2)求出f'(x),并判断f(x)在指定区间的增减性;(3)求出区间端点的函数值,作出比较即得所证。例2.设b>a>0,证明:lnba>2(b-a)a+b。分析:当b>a>0时,lnba>2(b-a)a+b圳(lnb-lna)(a+b)>2(b-a)证明:令f(x)=(lnx-lna)(a+x)-2(x-a)(x≥a)∵f'(x)=1x(a+x)+(lnx-lna)-2f''(x)=-ax2+1x=x-ax2≥0(x≥a)所以f'(x)单调增加,又f'(a)=0,于是f'(x)≥0(x≥a)因而f(x)单调增加,又f(a)=0,故当b>a>0时,有f(b)>f(a)=0即(lnb-lna)(a+b)-2(b-a)>0,亦即lnba>2(b-a)a+b。3、用微分中值定理证明不等式定理2(罗尔定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)f(a)=f(b);则在(a,b)内至少存在一个点ξ,使得f'(ξ)=0。定理3(拉格朗日中值定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;则在(a,b)内至少存在一个点ξ,使得f'(ξ)=f(b)-f(a)b-a。

102 评论

相关问答

  • 运用定性研究法的论文

    要想完成一篇出色的毕业论文难度还是比较高的,尤其在写Methodology的时候,难度还是比较大的,接下来我就为大家详细介绍一下留学生毕业论文Methodolo

    笑逍遥客 2人参与回答 2023-12-05
  • 积分不等式证明毕业论文

    这么点分,谁给你翻译啊。还都这么专业。找你自己的英语老师help u

    不合理存在 4人参与回答 2023-12-08
  • 外国对定积分的研究论文

    牛顿-莱布尼茨公式,通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。 1670年,英国数学家伊萨克·巴罗在他的著作《几何学讲义

    略过剧情 2人参与回答 2023-12-05
  • 不定积分解题研究论文

    微积分的基本思想及其在经济学中的应用 摘要: 微积分局部求近似、极限求精确的基本思想贯穿于整个微积分学体系中,而微积分在各个领域中又有广泛的应用,随着市场经济的

    雨樱花ran 5人参与回答 2023-12-09
  • 不定积分解法研究论文

    微积分的基本思想及其在经济学中的应用 摘要: 微积分局部求近似、极限求精确的基本思想贯穿于整个微积分学体系中,而微积分在各个领域中又有广泛的应用,随着市场经济的

    小蝎子七七 3人参与回答 2023-12-09