艰难之旅
陶瓷的釉料种类繁多,下面根据类型分别阐述如下:1、铅釉与无铅釉在建筑陶瓷与卫生陶瓷产品使用的铅釉配方中,铅的来源出自偏硅酸铅或硼硅酸铅熔块。在实际生产中典型的偏硅酸铅配方组成为:塞格尔式氧化铅,三氧化二铝,二氧化硅,重量比:氧化铅64%,氧化铝3%,二氧化硅33%)。可使釉产生最低溶解度。如果增加碱性氧化物和氧化硼的含量,可导致熔块中铅溶解度的增加。在荷兰等国并无铅溶解度的限制规定,他们使用低熔融或高溶解的硅酸铅及硼酸铅熔块釉。铅釉与无铅釉的差别牵涉到产品的质量问题。不过在高于1150℃时,铅均明显挥发,而高于此温度界限时,则通常不再使用铅釉。无铅釉指氧化铅含量少于1%的重量的种类。随着环境保护要求越来越严格,各国建陶工业已经逐步转向统统使用无铅釉料无铅熔剂与无铅色料。锶釉在取代铅釉方面表现出不俗的效果。除了烧成范围宽,烧成温度低和可形成光泽釉表面外,还具有良好的耐磨性能。因此锶釉成为一种很好的无铅釉,当它与釉下色剂一起使用时,几乎看不到对色料的不利影响,但在与铬锡红共用时,釉内必须添加一定的氧化钙,以稳定色调质量。2、生料釉与熔块釉由于陶瓷生料釉组成内不使用熔块,所以它们仅限于最高烧成温度大于1150℃时使用。通常可用做生产硬质瓷器、玻化卫生瓷、炻器、电瓷及各种低膨胀坯体的施釉。生料釉内含有矿物溶剂,如长石或霞石正长岩,外加粘土、石英、碳酸钙、白云石、氧化锌和硅酸锆作为常用原料。低膨胀生料釉还使用透锂长石作为熔剂。生料釉不会有任何形式的玻璃相,在烧成时必须经过足够时间将气体从原料组分内排出,釉熔融后可获得光滑而无气泡的釉面,因此,生料釉烧成时间要比熔块釉长。在烧成温度低于1150℃时,则宜采用熔块釉料。另外在采用低温快烧工艺时,需要釉内熔块含量相应增加。3、一次烧成釉与二次烧成釉对于陶瓷企业来讲,施釉产品一次烧成比二次烧成节能好且更经济,大幅度降低了产品成本,并有利于环境保护。一次烧成非常有利于高附加值的产品,如大件卫生洁具,或大型绝缘子。但二次烧成的主要优点是可以拣选并剔除某些有缺陷的半成品,也能生产出高质量与低成本的产品。在一次烧成工艺中,釉与坯体同时成熟,坯与釉的中间层的形成常常能够增加产品的强度,坯体的完全玻化亦很明显。在一次烧成工艺时,釉料内常含有粘结剂,既可控制水分自釉浆蒸发的速度,又控制了水分进入多孔坯的运动。釉料粘结剂起到增加干燥釉面硬度的作用。4、颜色釉与无色釉建筑卫生陶瓷产品一般采用颜色釉进行装饰,从而使其在满足使用时也带有可欣赏的美感,提高了产品的附加值。而无色釉的应用仅限于很小的产品范围(如特殊用途瓷砖产品)。欧洲的建陶卫生陶瓷产品,其颜色釉均采用金属氧化物颜料制备,过渡金属的无机化合物如钒、铬、锰、铁、钴、镍、和铜都是常用颜料。颜色釉的效果取决于基釉的化学组成、色料添加量、施釉厚度与均匀性、烧成时窑炉气氛。如氧化铁引入的形态通常是红色三价氧化铁,由坯体融入釉内可产生微妙的装饰效果。铁在氧化焰气氛时在陶瓷釉中能产生淡黄色、蜂蜜色与棕色。在还原焰气氛时可以形成淡蓝灰色、绿色、蓝色或黑色;黑色氧化钴是釉料中最强烈的着色剂,当含量低于1%时,能形成鲜艳的蓝色。钴在玻璃釉基质中容易熔融并加入瓷釉结构中;氧化铬能使某些釉呈现绿色,而在其他成分的釉中可以形成红色、黄色、粉红色或棕色;氧化镍在釉中有很宽的成色范围,可以形成棕色、绿色、深蓝色釉,当釉中含有碳酸钡时,它会形成粉红色、紫红色;二氧化锰在颜色釉中能形成黑色,但也能形成红色、粉红色与棕色;含锰的高碱釉经过高温烧成后会产生淡蓝色;氧化铜配制的色釉,在氧化焰时呈现绿色,但在还原焰时则呈现红色;五氧化二钒可产生棕色或黄色,但在釉中即使用量增加也只是呈现中强度黄色。钒与锆可以制成钒锆黄、钒锆蓝等成色稳定的色釉;此外,硫化镉与硒色料可制成黄、橙黄与红釉。5、透明釉与乳浊釉建筑卫生陶瓷普遍使用乳浊釉料,由于透明釉缺乏遮盖力,难以掩盖不洁的砖面,而环保工作又要求尽量采用低质原料制坯,因此透明釉使用范围变得更加窄了。陶瓷企业使用过的釉料乳浊剂经历了氧化锡、氧化锌、二氧化钛、磷酸盐、直到硅酸锆等过程。但氧化锡作为乳浊剂,由于成本过高,使用量越来越少。20世纪20年代,开始引用锆英石作为釉料乳浊剂,后来又开始使用锆英石取代氧化锡,降低了瓷砖装饰用釉料产品成本。不过如在常规釉料内加入5%的氧化锡,可产生白里泛青的釉调;氧化锌广泛应用于锆英石釉内,可以提高白度与乳浊度。在高温卫生洁具产品釉中氧化锌具有强溶剂作用,能显著降低釉的粘度,因此仍有部分使用,以后也难以完全排除;将氧化钛加入釉中时,可以制成高档的白乳浊釉,已被证实是可行的配方方式。磷化合物在釉中的作用有:一,用做乳浊剂使釉不透明;二,增加釉对光的折射率,增加釉料的光泽。磷酸钙、骨灰、磷灰石均可酌情适量配入釉料内,使釉形成良好的乳浊与光亮效果。此外锂灰石,透辉石等锂化物也是很好的乳浊釉原料。6、光泽釉、半无光釉、无光釉与碎纹釉各种釉料对于光线吸收不同而区别为光泽釉、半无光釉、无光釉及碎纹釉品种。上述釉料均呈色丰富,釉色种类很多。瓷砖釉料的发展趋势将逐渐转向半无光、无光釉系列。无光釉用成色元素不多,但釉色很丰富,已经形成高岭质无光釉、碱性无光釉、二氧化硅质无光釉种类。其中又以钡无光釉、锌无光釉、镁无光釉为其主要代表。此外还有结晶型无光釉,锂辉石析晶型无光釉,难溶性无光釉等类型。碎纹釉是釉面生成网状龟裂纹,适宜于瓷砖装饰,最早起源于我国的碎瓷产品,后来西方国家将其用于瓷砖装饰,收到格外美的效果。由于坯釉的膨胀系数不同而发生龟裂现象,碎纹釉的配制方法有五种:如采用两种具有不同收缩率的釉,将有高收缩率的釉料施于普通釉上,烧成后上层釉龟裂可以透见下层釉;增加釉的可溶性使釉的收缩率增加,如增加长石与硼酸的量;增加釉的收缩率,减少坯的收缩率;使产品急冷工艺也可生成碎纹釉;有的釉在经年放置后也能形成碎纹釉。如法国采用在普通釉料中增加二氧化硅、矾土或碱类的方法,制成碎纹釉品种。有的采用多次烧成方法以形成不同的碎纹与颜色效果。7、结晶釉是指釉内出现明显粗大结晶的釉。它是一种装饰性很强的艺术釉,源于我国古代的颜色釉。结晶釉区别于普通釉的根本特征在于釉中含有一定数量的可见结晶体(即我们所能看到的釉面上或釉中的晶花)。结晶釉的晶花可大可小,可多可少,大的肉眼能见,小的需用显微镜分辨。还可通过人为的方法,来合理控制晶花的分布。形状有星形、针状或花叶形等等。作为一种高级陶瓷艺术釉,结晶釉美丽、新颖的自然晶花,及其外观的多种多样、色彩的缤纷,给人以强烈的艺术效果,深受国内外用户的欢迎。此外,建筑卫生陶瓷业加快采用高新技术推动新型釉技术的开发,发展新的釉料釉色品种,取得许多进展。如纳米材料技术在釉料技术中的应用等,每年均推出一大批新产品。总的来说注重釉料技术创新与新产品开发,可以提高产品的档次与附加值。随着建筑卫生陶瓷产品品种的不断增加与丰富,对釉料的改进也提出许多新的要求。因此将来陶瓷釉料的研制开发任务越来越大,其在国际陶瓷业的竞争中将占有越来越重要的位置。我国陶瓷业应该加快吸收先进工艺技术,继续提高产品的档次与科技含量,并逐渐形成自己的釉产品体系与装饰特色。低温:800度左右,中温1100度左右,高温:1280--1400度,裂纹釉是高温{1280--1340度}下烧成的.影青釉高温{1280--1320度}可以并列在同个坯体上一起烧。裂纹釉和影青釉不能混合在一起,注意操作,混合了裂纹釉就也许不出裂纹了。
流虹星607
本发明涉及一种窑变釉的制备方法,尤其是二次分相大红窑变花釉的制备方法。窑变花釉是一类窑变釉,其图案和色彩不是人工绘制,而是通过“窑变”过程自然形成,是一种变化莫测的艺术陶瓷釉,主要用于陶瓷工艺品装饰。我国窑变釉已有悠久历史,早在唐代就发现了窑变现象,在以后的宋、元、明、清和近代中国的各个时期,窑变釉技术和产品层出不穷,深得民众、特别是艺术收藏家的喜爱。有关窑变釉的专利比较多,如CN1962557公开了一种陶瓷大红窑变釉及其应用方法,所述陶瓷大红窑变釉包括大红釉和钛白釉,所述大红釉的化学组成=SiO2为53-58%、Al2O3 为 10-11%、K2O 为 4-4. 5%, Na2O 为 1-1. 2%, MgO 为 0. 1-0. 12%、CaO 为 11. 5-12. 5%, ZnO为5-7%、Fe2O3为0. 5-1%、大红包裹色料为9_11%,所述钛白釉的化学组成Si02为52_56%、 Al2O3 为 10-11%、K20 为 4. 5-5%,Na2O 为 I. 3-1. 5%,CaO 为 9_10%、Ti02 为 ll_13%、Ba0 为 5-6%,P2O5为0. 5-0. 7%、MgO为:0. 4-0. 6%、Fe2O3为0. 23-0. 28%,其应用方法是先将钛白釉施于经过950°C素烧的陶瓷坯体上,然后再施大红釉,最后通过1230°C -1250°C烧成,即可得到颜色深浅不同的大红窑变陶瓷;又如CN200510034903. 2公开了一种红色耀变天目陶瓷制造方法及其所使用的陶瓷釉,以及应用该陶瓷釉烧制红色耀变天目陶瓷的方法,该陶瓷釉主要含有K2O和/或Na20、A1203、SiO2, MgO, Fe2O3> P2O5, CaO和B2O3,应用上述陶瓷釉施于陶瓷生坯或素坯上,釉烧,在氧化气氛下,每小时升温120-180°C,1050-115(TC后每小时升温30-70°C,在1200-1300°C保温10_120min,止火,自然冷却,得到具有红色耀变天目陶瓷制品。该发明制造的陶瓷制品为深棕色的底釉,红色或黄色结晶斑点,周围是金色具有镜面效果和金属光泽的光晕,发光位置随观察角度的变化而移动,耀眼夺目,烧制工艺操作易于掌握,烧制成品率可达70 。产生窑变效果的主要原因是釉料成分、烧成制度和烧成环境,釉料成分是内在因素,烧成制度和烧成环境是外部因素。在合适的内部和外部条件下,熔融的釉料产生分相,再通过析晶、显色等过程形成千变万化的窑变釉,有关分相窑变釉有以下报道《陶瓷》1994年第2期报道了陶瓷釉的主要组成相为玻璃相,它与玻璃体在很大程度上有着类似的性质,因此也可以通过寻找合适的组成系统和烧成制度(热历史)来达到所需的分相(窑变)效果,这是分相机理在陶瓷釉应用的理论基础。分相机理在陶瓷釉的应用,其主要目的是通过特定的内在分相来达到肉眼可以见到的外观窑变效果,因此比在玻璃中的分相更深一层次。釉玻璃在不混溶区中第一次进行液相分离时产生了两个粘度不同的相,这样就使整个系统的浓度不易均一化,系统处于不平衡状态,在某些区域就有可能进行第二层次的相分离,导致更为复杂的内在结构,在宏观上使釉出现更为特殊的艺术观感。《佛山陶瓷》2009年第10期报道了高温熔体的分相机理及其在窑变釉中的应用,探讨了高温熔体液相分离的基本概念,以及分相的机理与范围,并以此为基础,对分相机理在陶瓷窑变釉中的应用作了较为深入的研究,为陶瓷艺术釉提供了一条新的发展途径。《中国陶瓷》2011年第7期报道了仿制钧红分相窑变釉的研究,采用现代制瓷工艺,选用景德镇附近所生产的陶瓷原料在梭式窑中烧成,仿制钧红分相窑变釉,基本达到了其深浅不同的青蓝色流纹与紫红色交相辉映的效果。实验中借助色度计、SEM等手段,探讨了 Si/Al摩尔比、促分相剂P205添加量及着色氧化物CuO和Fe203含量对钧红分相窑变釉呈色的影响。《佛山陶瓷》1999年第2期报道了瓷釉成熟温度与化学组成的相关分析,摘要本文以釉玻璃的结构为指导,结合各种氧化物在高温下对釉的助熔能力,依据八个试样的试验结果和六个生产厂家配方的成熟温度,对釉的成熟温度与化学组成的关系进行了研究。相关分析的结果证明了釉的化学组成与其成熟温度有着较高的相关度,得出了一个根据釉的化学组成计算成熟温度的经验公式,该公式与目前沿用的公式相比有较高的准确度。
紫童vivi
橄榄绿色透明釉配方 熔剂 70%石英 9%长石 9%高岭土 3%白垩 3%氢氧化铁 3%氧化铁 2%氧化铜 1% 注:熔剂配方铜丹 34%石英 24%硼砂 18%长石 12%石灰石 7%高岭土 5%该釉烧成温度1000℃~1050℃
evanzheng2013
橄榄绿色透明釉配方熔剂 70%石英 9%长石 9%高岭土 3%白垩 3%氢氧化铁 3%氧化铁 2%氧化铜 1% 注:熔剂配方铜丹 34%石英 24%硼砂 18%长石 12%石灰石 7%高岭土 5%该釉烧成温度1000℃~1050℃
小红粉菲菲
透明釉的配方都有石灰石、硼砂、铜丹、氢氧化铁、石英、长石、溶剂等等很多化学产品。
釉是覆盖在陶瓷制品表面的无色或有色的玻璃质薄层,是用矿物原料(长石、石英、滑石、高岭土等)和原料按一定比例配合(部分原料可先制成熔块)经过研磨制成釉浆,施于坯体表面,经一定温度煅烧而成。
釉能增加制品的机械强度、热稳定性和电介强度,还有美化器物、便于拭洗、不被尘土腥秽侵蚀等特点。
特点
釉是附着于陶瓷坯体表面的一种连续的玻璃质层,或者是一种玻璃体与晶体的混合层。釉的产生可能是古代垒石烹食时所用含钙石头与炭灰而生成,也可能是受贝壳表面美观质感的启发,有意识地用贝壳粉作为原料制成。
其实,早在三千多年前的商代,我们的祖先就已经学会了用岩石和泥巴制成釉来装饰陶瓷了。后来陶瓷艺人利用窑灰自然降落在坯体上能化合成釉的现象,进而用草木灰作为制釉的一种原料。现代日用陶瓷生产所用的釉分为石灰釉和长石釉。
石灰釉是用釉果(类似瓷石的一种天然矿物原料)和二灰(主要成份氧化钙)配制而成,长石釉主要由石英、长石、大理石、高岭土等组成。在石灰釉和长石釉中加入金属氧化物,或渗进其它化学成份,就会成为各种各样的釉色。
有机化学的发展简史“有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然
水产品加工技术论文篇二 水产品加工业及其在中国的发展 [摘要]水产品加 工业 的 发展 对于渔业的发展起着桥梁纽带的作用,不仅是我国当前
目前设有本科的电缆科目的只有哈尔滨理工大学电气学院,这个专业就叫电缆专业,还有相关的绝缘材料专业,高电压专业都跟电缆也非常相关及接近。要的这么急啊,我给你一篇赶
浓香型酒、例如泸州特曲,五粮液酒属此类之代表,它们的主要特征是:窖香浓郁,绵甜甘冽,香味协调,尾净余长。它以己酸乙酯为主体香。很受消费者喜爱,这种香型酒在市面上
试炼制胚土,不是胎土