• 回答数

    3

  • 浏览数

    222

你的秋天
首页 > 学术期刊 > 近世代数论文范文

3个回答 默认排序
  • 默认排序
  • 按时间排序

月兮月兮

已采纳

渗透数学文化 提升数学素养是我为大家带来的论文范文,欢迎阅读。

【摘要】在传统的数学课堂中,人们总是视数学为工具性学科,忽略数学的文化教育价值,使学生的数学素养得不到提高,导致灵性泯灭,创造性退化。

数学课堂教学必须深入到文化的层面,让数学文化渗透课堂,让数学文化彰显学生的人生智慧。

本文阐述分析了在数学课堂教学中如何进行数学文化的渗透,提升学生数学素养。

提出开设“数学文化”课,是提高大学生的数学素养的有效途径,并进一步具体阐述了“数学文化”课的特点、切入点。

【关键词】数学文化;数学素养;“数学文化”课

在传统的数学课堂中,人们总是视数学为工具性学科,忽略数学的文化教育价值,使学生的数学素养得不到提高,导致创造性退化,灵性泯灭。

随着课程改革的深入人心,我也愈来愈清楚地看到这种狭隘、片面、简单的数学观给数学教育带来极大的负面影响。

首先,它遮蔽了数学的本来面目,扭曲了数学的本真形象,导致了数学教师不能全面、客观、深入地理解数学。

其次,狭隘的数学观导致偏激的数学教育观、课程观、教学观和评价观。

更有甚者它将导致学生形成扭曲、变形的数学信念。

经常听到学生在问老师离开学校后哪些数学知识能派上用场?经常感受到这样的情形:有些学生在努力学习数学的同时,却厌倦、厌烦着数学,而且随着数学知识的丰厚,厌倦程度也在加剧;一旦数学解题的任务完成后,数学教育的功能也就消失了。

这样的学习经历也给学生留下了太多的阴影,而且这一阴影将会一直伴随着他们的成长,甚至影响他们的人生态度。

认为数学就是演绎、计算,无法体验数学的历史性,无法领悟数学的人文性、文化性,无法领略数学的思想内涵和精神气质,更无法感受数学内在的美与和谐。

二十一世纪初,数学文化课程进入了课堂,让数学走进生活,让学生走进数学。

数学文化课程具有文理交融特色,是渗入人文教育与科学教育的一门课程,在改革中积累了很多成功的经验。

我们所需要的数学知识,相对来说是不多的,而数学的数学素养即研究精神、思想方法、思维训练,对每个人是绝对必要的。

因此不管他们从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神,数学的思维方法,研究方法,推理方法和着眼点等,却随时地发生作用,终身受益。

提高学生的数学素养,即提高了学生适应社会、参加生产和进一步学习所必须的数学基础知识和基本技能,这是时代的需要,也是学生实现自身价值的需要。

那么我们如何提高大学生的数学素养呢?本文将从“数学文化”这一角度切入进行讨论。

一、数学文化

“数学文化”一词,是20年前出现的。

它的专业说法是主动探寻并善于抓住数学问题的背景和本质的素养;熟练地用准确、简明、规范的数学语言表达自己数学思想的素养:具有良好的科学态度和创新精神,合理地提出新思想、新概念、新方法的素养:对各种问题以“数学方式”的理性思维,从多角度探讨解决问题的方法的素养:善于对现实的现象和过程进行合理的简化和景化,建立数学模型的素养。

数学与人类文明,与人类文化有着密切的关系。

所以,许多人为着某种需要更愿意从文化这一角度来关注数学,更愿意强调数学的文化价值。

事实上,数学是人类社会进步的产物,也是推动社会发展的动力之一。

目前关于“数学文化”一词,有狭义和广义的两种解释。

狭义的解释,是指数学的思想、精神、方法、观点、语言,以及它们的形成和发展;广义的`解释,则是除这些以外,还包含数学史、数学美、数学教育、数学与人文的交叉、数学与各种文化的关系。

数学的内容、思想、方法和语言是现代文明的重要组成部分。

数学在本质上是一种文化,是人类智慧的结晶。

其价值已渗透到人类社会的每一个角落。

数学教育不仅是知识的传授、能力的培养,而且是一种文化的熏陶、素质的提升。

因此,数学应该作为一种文化走进课堂,使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体验数学文化。

数学文化具有其重要特征。

(1)数学文化是传播人类思想的一种重要方式。

数学作为一种文化植根于人类丰富思想的沃土之中,是人类智慧和创造的结晶。

古代数学在不同历史时期内的发展,同民族之间的数学交流都在很大程度上受到了文化传播的影响。

从古到今,数学对哲学、对艺术、对文学等学科的影响深远,中国历代数学家以及他们在数学上做出的丰功伟绩给文化传播带来重大影响。

殷代时,我国就使用十进位制和位值制;儒家经书《周易》中的八卦中包含有二进制的萌芽;天干、地支构成了中国的六十进位制;宋朝时杨辉著有《续古摘奇算法上卷》(1275年)内载有四阶、五阶、六阶、七阶等的当时称纵横图;举世闻名的杨辉三角;《周髀算经》和《九章》记载的勾股定理,比毕达哥拉斯要早500年;祖冲之计算的圆周率(称密率)比西方人要早千年。

刘徽的割圆术,为圆周率的计算打下理论基础;负数的应用以我国最早,东汉时期就已用赤筹表示正数、用黑筹表示负数;元代朱世杰的《算学启蒙》给出了正负数的乘除法则,还解释二次方程;《九章算术》中用“盈不足”的方法解二元一次联立方程;1600年前的《孙子算经》中还介绍了不定方程的求解方法,称之为“大衍求一术”;到了宋朝,周宓的书中称它为“鬼谷算”。

北宋的沈括、元朝的朱世杰、郭守敬以及后来清朝的李善兰等对“堆垛”(即高阶等差数列)都有建树。

中国现代数学家在哥德巴赫猜想的研究中作出了重要贡献。

潘承洞证明了(1+5),王元和潘承洞合作证明了(1+4),尤其是陈景润证明了(1+2),距离猜想的圆满解决仅一步之遥(当然,行百里者半九十,这最后一步必定是最为艰难的);华罗庚为了把数学用于生产实践,研究了优选法、法等大众喜爱的应用数学,他对极值问题也有相当研究。

(2)数学语言的高度统一性。

语言是一个社会中最重要的符号体系,它在明确和传递主观意义上的能力比任何其他符号体系都要强。

数学语言源于人类自然语言,但随着数学抽象性和严密性的发展,逐步演变成相对独立的语言系统,数学语言符号化,精确化程度高,它能区别日常用语中引起的混乱与歧义。

同时数学语言又是简洁的,解析几何的创立者笛卡儿认为,代数使数学机械化了,因而使思考和运算步骤变得简单了。

数学文化中使用的数学语言具有绘画与音乐那种全球性,甚至有人猜测它可能具有超越地球文化的广度,由于数学语言系统在其发展过程中呈现出统一相一致的趋势,数学逐步成为一种世界语言。

这一特性能使数学文化超越某些文化的局限性,达到广泛和直接传播的效果。

(3)数学对象的逻辑建构性。

数学对象是抽象思维的产物,它并非物质世界中的真实存在。

因此,从这个意义上说,数学就是一种文化。

但数学对象相对于认识主体来说,它又具有明显的客观独立性。

这种独立性来自于数学抽象。

在严格的数学研究中,只能依据相应的定义进行演绎,而不能求助于直观。

因此,相对于可能的现实原型而言,数学对象是借助于明确的定义“逻辑有”得到建构的。

(4)数学文化具有相对稳定性和独立性。

数学是一种活动,数学活动是一个多元活动的复合体,它既包括数学知识,也包括数学传统。

作为数学文化,在现代社会中,数学家显然构成了一个特殊的群体,并具有相对稳定的数学传统。

数学在历史发展过程中,存在着数学传统的巨大变革,在对象层次上则表现出了明显的连续性,先前理论常常在新的形式下得到保存。

因此数学传统的不断变革与数学知识的连续性辩证统一。

由于数学文化是一种延续的积极的不断进步的整体。

因而其基本成分在某一特定时期内具有相对不变的意义。

数学有其特殊的价值标准和发展规律,相对于整个文化环境而言,数学文化的发展具有一定的独立性。

(5)数学文化具有高度的渗透性和无限的发展可能性。

数学文化的渗透性其内在方式表现在数学的理性精神对人类思维的深刻渗透力。

数学中每一次重大的发现都给予人类思想丰富的启迪。

如非欧几何改变了长期以来人们关于欧氏几何来

自于人类先验综合判断的固有观念。

其外显方式表现为数学应用范围的日益扩大。

特别是计算机和信息科学给数学的概念和方法注入了新的活力以来,开辟了许多新的研究和应用领域。

数学文化发展的无限性体现在尽管有些数学家不时地宣称他们的课题已经近乎“彻底解决了”,所有的基本结果都已得到,但事实正好相反,数学问题的解决只具有相对的意义。

由于上述特征,可知数学文化是一个开放的系统。

数学最初是作为人类文化的一部分而发展的。

随着数学本身和整个人类文明的进步,数学又表现出了相对独立性,具有自己的特殊发展规律,它的发展在很大程度上是由其内部因素所决定的。

因此,我们可以把数学看成是一个相对独立的文化系统。

二、数学文化在大学数学教育中的重要性

数学在当今社会的影响和作用比任何时期都大,因此数学教育在大学教育中的地位也越来越重要了。

已不再只是理工科学生的专利了,所有的学生也需要学习数学。

虽然不同专业学生需掌握的数学知识不尽相同,但大学数学教育的根本目的都是提高学生的数学素养,以数学知识为载体,展示数学的思想、方法,培养学生的理性思维、理性精神。

数学文化将数学置于人类的文化系统中,使大学生认识到数学的形成和发展不是单纯的数学知识、技巧的堆砌和逻辑的推导,数学的每一个重大的发现,往往伴随科学认识的突破。

同时也使大学生了解到数学对社会发展的作用、对人类进步的影响,了解到数学在科学思想体系中的地位、数学与其它学科的关系。

认识到数学是一个有机关联的、生动鲜活的、具有探索性知识特征的科学与文化形象,而不是一个固定不变的、僵化教条的、彼此分割的知识条块和记忆库。

这有利于学生了解知识的源和流,使他们对数学有一个横向和纵向的穿透,从而认识数学的本质,促进大学数学的学与教。

因此,通过开设数学文化课对提高学生的数学素养有及其重要的实际意义。

数学家对真、善、美的追求与献身精神,不畏艰难、勇于探索的精神,使学生不仅看到严谨丰富的数学,也看到活生生的数学家,数学活动中质疑、批判与创新的精神,求真、务实与合作的精神,都饱含着丰富的人文精神。

数学研究中理性的思维方式、处理问题时全面系统的方法、理论与实践相结合的科学精神,都与人文精神相辅相成。

这种科学精神与人文精神的融合,在对学生人格养成、精神教化上是不可或缺的。

在提高学生数学素养的同时,也提高了学生的文化素养和思想素养。

因此,数学文化是大学数学教育的非常重要组成部分。

三、开设“数学文化”课,有效提高大学生的数学素养

数学课堂教学必须深入到文化的层面,让数学文化渗透课堂,让数学文化彰显学生的人生智慧。

数学课堂应从多侧面多视角展现数学文化的魅力,用数学的精神思想提升学生的文化素养,从科学的数学走向文化的数学。

(一)探索数学问题,感悟数学文化

数学教育不仅是知识的传授、能力的培养,而且是一种文化的熏陶、素质的提升。

是人文教育和科学教育的相互渗透。

我们有责任让数学教育充满文化和生活气息。

因此,数学应该作为一种文化走进课堂,使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体验数学文化,感悟数学文化。

从数学问题的角度切入,比如:1、兔子问题与黄金分割;2、芝诺悖论与无限;3、海岸线的长度与分开和混纯;4、投票选举的合理性与代表的名额分配问题;5、五次方程根式解与近世代数;6、费马大定理与“会下金蛋的母鸡”,7、希尔伯特23个问题;8、新千年克雷问题等等。

在教学中通过问题的探讨,展现数学自身发展规律和和谐之美。

学生注重实质、注重理解,追求“悟”的境界。

(二)搜集数学故事,感受数学家的科学精神

在教学中注重体现数学文化的价值,渗透数学文化历史,让学生体验数学知识的产生、发展,以生动有趣、易于阅读的形式,向学生介绍一些有关数学家的故事、数学发现、数学史的知识等等。

这样既可以发展学生对数学学习的整体认知,又能激发学生的学习兴趣,还可以让学生领会数学与人类生活经验和实际需要的联系,领会数学发展的历史和伟大成就,体验数学文化的底蕴。

从数学典故的角度切入,比如:1、历史上的三次数学危机;2、《周髀算经》与勾股定理;3、蒲丰投针的故事;4、从日心说到地心说,再到开普勒三定律;5、一百多年来的国际数学大会,1900年希尔伯特关于23个问题的演讲,七十多年来的菲尔兹奖;6、韩信点兵的故事与中国剩余定理;7、非欧几何的由来和发展;8、关于“数学基础”的逻辑主义、直觉主义、形式主义三大流派。

比如介绍数学家的名言和故事,让祖冲之、陈景润、华罗庚、高斯、笛卡儿等数学大师成为同学们经常讨论和崇拜的人物,从而让学生们能对数学有更深的领悟。

学生们了解到数学家解决数学问题的艰辛历程后,对他们那种废寝忘食、孜孜不倦的态度;屡遭失败、永不放弃的精神受到极大地鼓舞。

通过这些数学家故事的学习,拉近了学生与成功人士之间的情感距离,给学生树立了学习榜样,确立了奋斗目标。

总之,数学文化离不开数学史,但是不能仅限于数学史。

通过数学的历史,学科结构、趣味问题等来探讨学习数学的意义。

当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。

(三)欣赏数学名题,培养数学思想方法

观看数学电影,比如“黑梦帝国“、盗梦空间”等,欣赏数学名题,培养数学思想方法,运用数学化处理方法解决现实问题能力。

数学方法则是数学思想的具体表现形式,是实现数学思想的手段和重要工具。

从数学方法的角度切入,化归的方法;变换的方法;类比的方法;归纳的方法;合情推理的方法;反证法;数形结合方法;抽样调查;分类方法;观察法等等。

从数学观点的角度切入:近似观点;抽象观点;一一对应观点;对称观点;多样性和统一性观点;“变中有不变”的观点;偶然性与必然性的观点;运算与结构;博弈的观点;关系、等价关系、序关系、相关关系、比例关系、函数关系等等。

从数学思想的角度切入,比如:符号与变元表示的思想;集合思想;对应思想;公理化与结构思想;数形结合思想;化归思想;函数与方程的思想;整体思想;极限思想;抽样统计思想;命题需要证明;证明依靠逻辑;量化思想;数学建模思想;最优化思想;数学机械化;数据处理与数学统计;数学审美思想;分解思想;归纳思想;演绎思想等。

数学中渗透着数学思想,它们是基础知识的灵魂,如果能使它们落实到我们学习和应用数学中去,那么我们得到的是很多的。

(四)联系实际,体现数学价值

数学文化的意义不仅在于知识本身和它的内涵,还在于它的应用价值。

因此,在教学中应该加强数学与实际生活的联系,增强数学的应用性,让学生体验到数学文化的价值就在于生活的各个领域中都要用到数学。

数学对于学生来说,往往是他们生活经验中对数学现象的一种“解读”。

如果在教学中能够密切联系他们的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,学起来必然亲切、实在、有趣、易懂。

在这样的数学课堂中,学生体会到了数学文化是一种生命延续的文化。

一般地说,数学教育提供了一种有力的工具---实用价值;提供了一种思维的方式和方法---形式训练的价值;提供了一种价值观---文化价值;倡导一种精神---集中地表现为数学观念在人的观念以及社会的观念的形成和发展中的作用。

数学发展到今天,我们要让学生认识到数学的博大精深、数学的价值文化、数学的巨大作用以及数学的内在魅力,这样才能使学生真正体会到数学的有趣、促思,认识到数学的广阔、博大和数学的底蕴、价值,去真正的热爱它,让我们的学生对数学产生深深的眷恋之情。

伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。

参考文献:

[1]顾沛.数学文化[M].南开大学出版社,2011.

[2]邓东皋、孙小礼等.数学与文化[M].北京大学出版社,1990.

[3]齐民友.数学与文化[M].大连理工大学出版社,2008.

[4]方延明.数学文化导论[M].南京大学出版社,1999.

[5]张楚廷.数学文化[M].高等教育出版社,2000.

[6]张顺燕.数学的源与流[M].高等教育出版社,2004.

[7]郑毓信.数学文化学[M].四川教育出版社,2000.

[8]黄秦安.数学哲学与数学文化[M].陕西师范大学出版社,1999.

[9]王宪昌.数学与人类文明[M].延边大学出版社,1990.

[10]王元明.数学是什么[M].东南大学出版社,2003.

181 评论

麦兜爱李公主

数学论文格式范文【时间:2010-10-06 10:52 来源:未知】 题目要求:引人注目,一般不超过20个字。字体要求:小2号黑体,居中。空一行写摘要。页面设置要求:页边距上、下、右都为厘米,左边距为3厘米。装订线位置为左。中学数学与高等数学的和谐接轨(小二黑体,不加粗)摘要(小三黑体,不加粗):从中学数学到高等数学,实际上是由具体的、粗浅的数学结构上升到了严谨的公理化体系的论述,由形象思维上升到抽象思维,由特殊到一般,由简单到复杂,由低级到高级。领悟到这一点,再结合中学数学的相关知识去学高等数学,就不会觉得艰涩难懂。站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。所以如何实现中学数学和高等数学的和谐接轨,如何在两者之间架一座桥梁是至关重要的。本文从特例分析、数学内容(代数、几何)、数学思想方法等三个方面就接轨问题进行了简要论述。(小四楷体,200字以上)关键词(小三黑体,不加粗):中学数学 高等数学 数学思想 接轨(小四楷体,不多于5个)一般说来,数学史家把数学的发展分成四个阶段:萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期或五个时期(再加上“当代高等数学时期)。(正文,小四宋体,字数不少于3000字)参考文献:(小三黑体,不加粗)( 收集整理原创论文)[1] 唐国庆.湘教版初中数学教案(七年级上册)[M].湖南教育出版社.2008年.[2] 张禾瑞.近世代数基础(修订本)[M].高等教育出版社.1978年.(小四宋体,参考文献不少于4个)论文内容必须是有关数学方面的,专业或教学方面的。西藏大学(初号隶书加黑居中)本科生毕业论文(设计)(小初楷体加黑居中)题目:(字号二号,宋体,加黑,居中,下划线)----副标题:(字号三号,宋体,加黑,居中,下划线)院(部) 专业年级 姓 名 学 号 指导教师 职 称

292 评论

成都安美

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

321 评论

相关问答

  • 近世代数基础论文题目

    大学里面,每门课程获得高绩点的途径有哪些? 嘿嘿,作为大一上年级第一,大一下绩点前三的双非一本学姐前来回答一波。大学每科的最终成绩是由:期末考试+平时成绩构成。

    蓝Luckyclover 5人参与回答 2023-12-08
  • 近世代数论文参考文献

    1 中国古代数学的发展 在古代世界四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝

    小胖子老头 3人参与回答 2023-12-08
  • 近现代数学史论文题目

    我赞成这样的说法,因为他是很有道理1.没有现代数学就没有现代的文化——《数学与文化》2.谈古代数学文化与现代数学的优美结合3.第3届近现代数学史与数学教育暨浙江

    哇啦哇啦bibibi 5人参与回答 2023-12-08
  • 世界近代史论文

    你自己得选择一个主题啊,,如果你只是应付的话,就选择一个大众化的题目,世界近代史的话,大众的可以是世界的发现与世界市场还可以是其他的,。如果想另类点,可以走科技

    SevenLikeSmile 3人参与回答 2023-12-05
  • 近代史纲要论文范文

    我刚刚交过一篇,是我到处搜集拼凑了一些东西弄的,主要关于近代人民如何探索道路的因为我们是1500字,所以你可以自己拓展拓展……3000字略变态啊……近代中国人民

    芳宝女郎 2人参与回答 2023-12-11