• 回答数

    4

  • 浏览数

    162

球球阿月
首页 > 学术期刊 > 机器视觉论文研究方向

4个回答 默认排序
  • 默认排序
  • 按时间排序

海诺地暖

已采纳

记得是写论文,我觉得还是比较好写,你也可以查找相关的资料

274 评论

哼哼郭Eva

如何从图像中解析出可供计算机理解的信息,是机器视觉的中心问题。深度学习模型由于其强大的表示能力,加之数据量的积累和计算力的进步,成为机器视觉的热点研究方向。 那么,如何理解一张图片?根据后续任务的需要,有三个主要的层次。 一是分类(Classification),即是将图像结构化为某一类别的信息,用事先确定好的类别(string)或实例ID来描述图片。这一任务是最简单、最基础的图像理解任务,也是深度学习模型最先取得突破和实现大规模应用的任务。其中,ImageNet是最权威的评测集,每年的ILSVRC催生了大量的优秀深度网络结构,为其他任务提供了基础。在应用领域,人脸、场景的识别等都可以归为分类任务。 二是检测(Detection)。分类任务关心整体,给出的是整张图片的内容描述,而检测则关注特定的物体目标,要求同时获得这一目标的类别信息和位置信息。相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因而,检测模型的输出是一个列表,列表的每一项使用一个数据组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。 三是分割(Segmentation)。分割包括语义分割(semantic segmentation)和实例分割(instance segmentation),前者是对前背景分离的拓展,要求分离开具有不同语义的图像部分,而后者是检测任务的拓展,要求描述出目标的轮廓(相比检测框更为精细)。分割是对图像的像素级描述,它赋予每个像素类别(实例)意义,适用于理解要求较高的场景,如无人驾驶中对道路和非道路的分割。 两阶段模型因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法,我们选取R-CNN系列工作作为这一类型的代表。 本文的两大贡献:1)CNN可用于基于区域的定位和分割物体;2)监督训练样本数紧缺时,在额外的数据上预训练的模型经过fine-tuning可以取得很好的效果。第一个贡献影响了之后几乎所有2-stage方法,而第二个贡献中用分类任务(Imagenet)中训练好的模型作为基网络,在检测问题上fine-tuning的做法也在之后的工作中一直沿用。 传统的计算机视觉方法常用精心设计的手工特征(如SIFT, HOG)描述图像,而深度学习的方法则倡导习得特征,从图像分类任务的经验来看,CNN网络自动习得的特征取得的效果已经超出了手工设计的特征。本篇在局部区域应用卷积网络,以发挥卷积网络学习高质量特征的能力。 R-CNN将检测抽象为两个过程,一是基于图片提出若干可能包含物体的区域(即图片的局部裁剪,被称为Region Proposal),文中使用的是Selective Search算法;二是在提出的这些区域上运行当时表现最好的分类网络(AlexNet),得到每个区域内物体的类别。 另外,文章中的两个做法值得注意。 一是数据的准备。输入CNN前,我们需要根据Ground Truth对提出的Region Proposal进行标记,这里使用的指标是IoU(Intersection over Union,交并比)。IoU计算了两个区域之交的面积跟它们之并的比,描述了两个区域的重合程度。 文章中特别提到,IoU阈值的选择对结果影响显著,这里要谈两个threshold,一个用来识别正样本(如跟ground truth的IoU大于),另一个用来标记负样本(即背景类,如IoU小于),而介于两者之间的则为难例(Hard Negatives),若标为正类,则包含了过多的背景信息,反之又包含了要检测物体的特征,因而这些Proposal便被忽略掉。 另一点是位置坐标的回归(Bounding-Box Regression),这一过程是Region Proposal向Ground Truth调整,实现时加入了log/exp变换来使损失保持在合理的量级上,可以看做一种标准化(Normalization)操作。 R-CNN的想法直接明了,即将检测任务转化为区域上的分类任务,是深度学习方法在检测任务上的试水。模型本身存在的问题也很多,如需要训练三个不同的模型(proposal, classification, regression)、重复计算过多导致的性能问题等。尽管如此,这篇论文的很多做法仍然广泛地影响着检测任务上的深度模型革命,后续的很多工作也都是针对改进这一工作而展开,此篇可以称得上"The First Paper"。 文章指出R-CNN耗时的原因是CNN是在每一个Proposal上单独进行的,没有共享计算,便提出将基础网络在图片整体上运行完毕后,再传入R-CNN子网络,共享了大部分计算,故有Fast之名。 上图是Fast R-CNN的架构。图片经过feature extractor得到feature map, 同时在原图上运行Selective Search算法并将RoI(Region of Interset,实为坐标组,可与Region Proposal混用)映射到到feature map上,再对每个RoI进行RoI Pooling操作便得到等长的feature vector,将这些得到的feature vector进行正负样本的整理(保持一定的正负样本比例),分batch传入并行的R-CNN子网络,同时进行分类和回归,并将两者的损失统一起来。 文章最后的讨论也有一定的借鉴意义: Fast R-CNN的这一结构正是检测任务主流2-stage方法所采用的元结构的雏形。文章将Proposal, Feature Extractor, Object Classification&Localization统一在一个整体的结构中,并通过共享卷积计算提高特征利用效率,是最有贡献的地方。 Faster R-CNN是2-stage方法的奠基性工作,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。粗略的讲,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷积计算的特性使得RPN引入的计算量很小,使得Faster R-CNN可以在单个GPU上以5fps的速度运行,而在精度方面达到SOTA(State of the Art,当前最佳)。 本文的主要贡献是提出Regional Proposal Networks,替代之前的SS算法。RPN网络将Proposal这一任务建模为二分类(是否为物体)的问题。 第一步是在一个滑动窗口上生成不同大小和长宽比例的anchor box(如上图右边部分),取定IoU的阈值,按Ground Truth标定这些anchor box的正负。于是,传入RPN网络的样本数据被整理为anchor box(坐标)和每个anchor box是否有物体(二分类标签)。RPN网络将每个样本映射为一个概率值和四个坐标值,概率值反应这个anchor box有物体的概率,四个坐标值用于回归定义物体的位置。最后将二分类和坐标回归的损失统一起来,作为RPN网络的目标训练。 由RPN得到Region Proposal在根据概率值筛选后经过类似的标记过程,被传入R-CNN子网络,进行多分类和坐标回归,同样用多任务损失将二者的损失联合。 Faster R-CNN的成功之处在于用RPN网络完成了检测任务的"深度化"。使用滑动窗口生成anchor box的思想也在后来的工作中越来越多地被采用(YOLO v2等)。这项工作奠定了"RPN+RCNN"的两阶段方法元结构,影响了大部分后续工作。 单阶段模型没有中间的区域检出过程,直接从图片获得预测结果,也被成为Region-free方法。 YOLO是单阶段方法的开山之作。它将检测任务表述成一个统一的、端到端的回归问题,并且以只处理一次图片同时得到位置和分类而得名。 YOLO的主要优点: 1.准备数据:将图片缩放,划分为等分的网格,每个网格按跟Ground Truth的IoU分配到所要预测的样本。 2.卷积网络:由GoogLeNet更改而来,每个网格对每个类别预测一个条件概率值,并在网格基础上生成B个box,每个box预测五个回归值,四个表征位置,第五个表征这个box含有物体(注意不是某一类物体)的概率和位置的准确程度(由IoU表示)。测试时,分数如下计算: 等式左边第一项由网格预测,后两项由每个box预测,以条件概率的方式得到每个box含有不同类别物体的分数。 因而,卷积网络共输出的预测值个数为S×S×(B×5+C),其中S为网格数,B为每个网格生成box个数,C为类别数。 3.后处理:使用NMS(Non-Maximum Suppression,非极大抑制)过滤得到最后的预测框 损失函数被分为三部分:坐标误差、物体误差、类别误差。为了平衡类别不均衡和大小物体等带来的影响,损失函数中添加了权重并将长宽取根号。 YOLO提出了单阶段的新思路,相比两阶段方法,其速度优势明显,实时的特性令人印象深刻。但YOLO本身也存在一些问题,如划分网格较为粗糙,每个网格生成的box个数等限制了对小尺度物体和相近物体的检测。 SSD相比YOLO有以下突出的特点: SSD是单阶段模型早期的集大成者,达到跟接近两阶段模型精度的同时,拥有比两阶段模型快一个数量级的速度。后续的单阶段模型工作大多基于SSD改进展开。 最后,我们对检测模型的基本特征做一个简单的归纳。 检测模型整体上由基础网络(Backbone Network)和检测头部(Detection Head)构成。前者作为特征提取器,给出图像不同大小、不同抽象层次的表示;后者则依据这些表示和监督信息学习类别和位置关联。检测头部负责的类别预测和位置回归两个任务常常是并行进行的,构成多任务的损失进行联合训练。 另一方面,单阶段模型只有一次类别预测和位置回归,卷积运算的共享程度更高,拥有更快的速度和更小的内存占用。读者将会在接下来的文章中看到,两种类型的模型也在互相吸收彼此的优点,这也使得两者的界限更为模糊。

323 评论

戆戆的囡囡

找你导师沟通,让他帮你推荐几篇跟课题相关的论文和几本专业书籍。这种只给学生一个题目而不做任何指导的导师,在中国高校有一大堆。不能指导学生怎么能被称作导师呢?这群滥竽充数者实际上是应该剔除出导师队伍的。误人子弟!当前你这种迷茫不是你的问题。问题是你先要知道想做什么,也就是先找到你要着手解决的问题。然后针对这个问题看看别人是怎么做的,别人在做的过程中出现了什么问题。研究别人怎么做的过程中,你可以照猫画虎把别人的方法实现一遍,练练手。在动手的过程中,你会逐渐发现不少细节性问题。有些地方是你可以改进或者创新的。把能改进的做了改进,能创新的做了创新。有了文章发表,你的研究生生涯基本也就结束了。如果没有根据要解决的课题作为导向,胡子眉毛一把抓。凡是计算机视觉和机器视觉的相关的资料都去看,到头来也没有找出要解决的问题。这样下去,在研究方向上很难有进展。至少是你做起来会很慢。该看不该看的都看了,该学不该学的都学了,具体能不能用来解决你要面对的问题,答案却还是不知道。总之,一句话以你要解决的问题为导向来入手。用啥学啥就好!能解决问题就行!研究生阶段不过是导师带你科研入门的一种训练而已。如果连入门都带不了,这样的导师是没有最起码的科研素质的。也就是说你导师没有受过科研训练,他不知道该怎么搞科研。建议尽快换导师为好!越快越好,省得浪费你的青春岁月。

199 评论

小雨012345

这样的主题论文还是比较好写的,首先必须要抓住论文的中心,确立文章的思想内涵,然后分几个不同的角度进行有效的论证。

104 评论

相关问答

  • 计算机学报论文机器视觉

    蔡自兴教授已在国内外发表论文和科技报告等860多篇。2010年:1.Cai Zixing. Research on navigation control and

    mm糖糖豆 3人参与回答 2023-12-07
  • 机器视觉论文期刊

    是不是专业性比较高,可以上悠悠期刊看看编辑是不是有相关的介绍。

    独爱陌可可 3人参与回答 2023-12-06
  • 视觉传达研究生论文选题方向

    首先你需要对视觉传达专业有一个全面的了解,其次再寻找参照物,把你的想法灌输进去。至于新颖,主要把观点写好就行了

    霍爾因斯基 6人参与回答 2023-12-10
  • 机器视觉系统毕业论文

    ui设计毕业设计论文题目 ui设计毕业生即将毕业了,大家要在毕业前完成论文的写作哦!下面我为大家介绍ui设计毕业设计论文题目,希望能帮到大家! 1) 基于技术接

    岁月若如世 3人参与回答 2023-12-11
  • 机器视觉检测论文

    机器人是由计算机控制的通过编程具有可以变更的多功能的自动机械,下面是我整理的机器人技术论文,希望你能从中得到感悟! 刍议智能机器人及其关键技术 【摘 要】文章介

    爱步loveayu 3人参与回答 2023-12-08