loversea2005
大数据时代学术期刊的机遇与挑战_数据分析师考试
在数字化再造并融合传统出版的大背景下,就学术期刊而言,其传播方式已经发生巨大变化,数字化、新媒体融合已成期刊传播新常态。在近日中国社会科学院图书馆(调查与数据信息中心)、国家期刊库(NSSD)举办的“大数据时代的学术期刊数字出版??机遇与挑战”研讨会上,学术期刊如何应对大数据时代的机遇和挑战,成为关注的主题。
主动适应“大数据”时代
据社科院图书馆数据网络部主任杨齐介绍,为适应“大数据时代”的需求,中国社会科学院国家期刊库项目组对643种学术期刊的网站建设进行了详细的调研分析,包含社科基金资助期刊195种,非社科基金资助期刊448种,并公布了调研结果。从调研数据中发现,目前大部分学术期刊在大数据时代的数字出版及开放获取意识有待提升,对于数字化和新媒体融合发展前景及方向还在探索之中。
专家认为,从表面上看,“大数据”的概念及其价值更多的是为IT业和企业营销领域所关注,但从深层次看,传媒业将是受到大数据时代冲击较大的行业。在大数据时代,与学术期刊处于同一环境体系的学术创新模式、学术研究范式、知识形态、知识获取、知识交流及处理机制的改变,将直接影响着学术期刊的生存和发展。
“大数据”深刻地改变着学术期刊的边界,使学术期刊面临新的挑战和机遇, “大数据”将造就新意义上的中国学术期刊。因此,各个学刊必须积极主动探索以学术期刊为纽带的大数据全产业链和新业态发展路径,应用大数据技术,跳出传统学术期刊的编辑出版流程局限,实现以学术期刊为纽带的学术研究全流程传播。
数字化时代的诸多挑战
当前,来自数字化潮流的挑战使得学术期刊正经历着一场革命。这场肇始于传播,继而扩展至整个编辑出版流程的革命,使学术期刊抛掉了纸本载体而实现了更为迅捷的网上编辑和传播,在传播流程中,数字化传播已成为学术期刊的主流渠道。学术期刊以综合性为主的结构和分散的布局导致以原期刊为单位的数字化传播意义不大,而经过汇集和重新编排后更能适应读者的需求,大型期刊数据库网站做的正是这样的工作。
另外,当以综合性、分散性和内向性为特征的学术期刊遭遇来自学术国际化、评价数量化和传播数字化的挑战时,处境更是日益艰难,而自然科学期刊尤甚,每年以10万篇计的优秀稿源的流失,使得国内一些顶尖学术期刊也面临着前所未有的稿源荒,更遑论一般期刊了。优稿的外流必然带来学术前沿的失守和读者的流失,使得学术期刊在数字化时代面临着诸多挑战,急需创新观念,走出一条数字化发展的新路径。
对此,中国社会科学院调查与数据信息中心副主任赵胄豪表示,通过高层次的文化碰撞,刷新旧有理念,加速学术期刊数字化、网络化的建设步伐;变革学术期刊投稿、编审、出版、传播及阅读的方式与途径;积极探索哲学社会科学领域学术期刊数字化转型、新媒体应用、开放获取及网络化建设等方面的问题,这是今后学术期刊适应数字化之路的重要途径。
加快数字化转型步伐
在如何探索学术期刊数字化转型上,中国科学院文献情报中心编辑出版中心主任初景利从数字出版环境与技术、学术期刊建设要素、期刊质量与影响力、传播能力的关系、数字出版平台建设、语义出版、开放获取出版等多方面详细介绍了科技期刊的经验,并提出六方面建议:一是期刊质量是期刊的生命;二是学术期刊编辑须承担社会责任与使命;三是采取综合措施提升期刊的传播力与影响力;四是重视数字出版与数字化刊群建设; 五是善于知识分析工具的开发与利用; 六是加强技术的研发和投入。
以上是小编为大家分享的关于大数据时代学术期刊的机遇与挑战的相关内容,更多信息可以关注环球青藤分享更多干货
Leven小万
当前,越来越多的企业以科技公司自称,而不是金融公司、电商公司、社交网络公司或者物流公司。可见,在不久的将来,无论在制造业还是服务业,企业都将转变为以数据和算法为支撑,以用户为中心的技术型组织。 但数字化转型并不单纯是用前沿科技打造数字化产品的问题,而是涉及到以科技为支撑的智能管理、智能决策,乃至于组织结构和文化建设等一系列更加宏观和本质的范畴。 数字化转型也不是拍脑袋决定的用户数据收集、以大量积累用户信息为指标的为了数据而数据,因为『死』数据没有意义和价值。以当前有些中小型银行为例,虽然积累了大量的运营数据,却几乎鲜有应用。而开发和项目人员却疲于应付日常的客服反馈、产品设计、运营活动和风险控制。实际上,依托于数据和算法的智能决策可以完成大部分管理和日常决策工作。 数字化转型的特点 未来将是数字化的世界,所有工作都需要数据支持,都需要“智能决策”。这种智能决策,是指利用各种技术手段,在动态和多维信息收集的基础上,对复杂问题自主识别、判断、推理,并做出前瞻性和实时性决策的过程,同时具备自优化和自适应的能力。 在人工智能时代,数据和算法具有无法比拟的效率优势。以亚马逊为例,其日常管理和战术决策,以及日常运营都可以有数据统计和算法来完成,从而释放出大量的宏观决策精力和战略能力,让管理者的目光聚焦于长远的战略意义和更加重要的方向性思考。 数字化转型使企业能在问题识别、方案生成、信息收集、结果预测和行动反馈等决策步骤中得到全方位的帮助,提升企业决策的能力。智能决策是数据化转型的必然趋势。 如何开展基于数字化的智能决策、智能管理和智能运营 要进行数字化转型,实现智能决策,首要条件就是相信数据是有价值的,数据可以帮助我们感知世界、认识世界、理解世界乃至做出合理决策。 一、 具有数字思维和理念 数据不是冷冰冰的记录,不是可有可无的业务附件。从本质上来讲,数据是人类感受和认识世界的一种手段。业务场景中的一切,包括用户、产品、交易、运营等等都可以用数据来描述。企业可以通过这些数据来理解和分析业务,做出决策而后再应用到现实中。例如,在亚马逊,人人都知道的一句话就是:『凡事要有数据支撑』。 二、 与数字化思维相匹配的组织架构 数字化组织中必须有专门的人员为数据事务负责,包括数据资源的构建、核心数据的整合、数据模型的建设,以及数据的使用。组织结构设计上可以参考AirBnb的数据基础架构部和数据科学团队。 在组织中数据资产一定要充分流动,数据技术要充分开放。同时需要确保数据团队和业务团队不能分离割裂。组织中要形成统一的数据“大中台”,它是成本中心,负责管理数据资产;同时要在业务部门形成一系列的数据应用“小前台”,它们是利润中心,业务部门要快速基于数据开展业务,寻求价值。 三、 数字化软硬件基础设施 在数据处理技术中,涉及到数据的产生、采集、存储、加工、计算、挖掘、分析、展现、应用和管控全流程的技术。而其中的数据加工、计算、挖掘和分析部分,常常会涉及到人工智能(AI)方面的技术。再通过数据可视化应用,让人可以理解数据、使用数据。 其中,尤其以人工智能算法更为重要。以底层的智能芯片和计算框架为基础,人工智能算法在智能语音、视觉图像、自然语言以及智能决策等领域都有了较好的成果和广泛的应用。在这些智能算法之上,可以在应用层构建众多场景的产品和服务。 四、 对外的产品服务 在一个数字化的『 指数型组织 』中,友好而智能的用户界面是其中的重要属性,可以理解为企业对外提供的产品和服务。而以数据和算法为基础的数字化技术,可以更好的为构建高品质产品和服务提供有力的支撑。 在贝佐斯2010年致股东的信中有这样的句子: “随机森林(random forests)算法、贝叶斯估计方法(Bayesianestimation)、RESTful服务(RESTful services)、Gossip协议(Gossip protocols)、最终一致性(eventual consistency)、数据分片(data sharding)、反熵(anti-entropy)、拜占庭容错机制(byzantine quorum)、抹除码(erasure coding)、向量时钟(vectorclock)算法……走进亚马逊的某个会议室,你可能一瞬间会以为闯进了一个计算机科学讲座。翻一翻目前有关软件架构的教科书,你会发现几乎没有什么架构模式未被亚马逊所用。我们使用高性能交易系统、复杂渲染与对象缓存、工作流与队列系统、商业智能与数据分析、机器学习与模式识别、神经网络和概率决策,以及其他各种技术。虽然我们的很多系统来自最新的计算机科学研究成果,但常常还不能完全满足需要,因此我们的架构师和工程师不得不深入学术研究尚未触及的领域展开研究。正是因为我们面对的很多问题,在教科书上还无法找到现成的解决方法,所以我们只好自己动手,发明新的解决办法。” 这是亚马逊在十年前做的事情,当前的国内很多人工智能独角兽公司,对智能算法也有着深厚的积累和广泛的应用。可见,在企业数字化转型中,需要充分利用深度神经网络、深度强化学习等智能算法,利用无处不在的网络连通性和随处可达的客户界面,通过产品服务的自主计算和各项衡量指标,对自身的产品和服务以及用户反馈进行实时追踪,核实求证,从而推动进一步的智能化的极致体验的产品建设。 例如,通过多维度数据,在保护用户数据隐私的情况下,为每个用户个性化地从海量的商品中筛选和定制产品和服务;通过语音识别和自然语言处理等智能算法构建友好而便捷的客服系统;使用深度学习结合强化学习算法为用户提供最优的决策选择建议等等。 此外,在提供极致体验的产品和服务的同时,还需要利用数据流通和智能算法,打通对外的产品服务和对内的信息传递以及内部智能决策的通道。 五 内部的快速信息流转和信息共享 在很多企业,内部信息流动是不畅的,往往是条块割据、层级不通,除了具体负责此事的人知道,其他人能否了解,主要得看关系、看利益。一个很简单的信息流转,往往需要通过多个节点中转才能得以处理,其效率之低就可想而知了。 正是因为存在这样的问题,传统企业在启动数字化转型时,需要把数据打通、信息透明作为重点工作之一。在数字化时代,数据已成为企业新的核心资产。从这个意义上说,应当把数据视为企业整体的重要资源,而绝非任何人或任何部门的私人财产。因此,需要大力投入,建设企业内部信息共享和流转系统,实现数据打通、信息透明、以及全面的数据支撑,确保组织高效运转。 通过整理内部和外部的数据以及信息共享、优化信息处理的流程实现从数据的获取、处理和展示以及决策的全系列自动化配置,可以在实际的运营中,实现基于算法的自动决策。 六 智能决策,智能运营 充分利用机器学习、神经网络等智能算法,开发更多功能强大的智能管理工具,在常规性的日常经营问题上,可以实现自动分析、自动决策、智能推荐、智能定价,以释放组织精力,推动产品能力的持续提升。 例如在亚马逊,数据的收集和分析是实时的。如果有需要,团队成员可以看到每天、每小时、每分、每秒的数据。如果出现异动,系统会自动提示相关人员。这样就可以做到第一时间发现问题,第一时间解决问题。 可见,要从根本上实现传统企业的数字化转型,最重要的是需要利用网络和数字化技术,持续地创造价值。在内部要建立高效的协同和沟通机制,实现内部信息的高度共享。并且建立起以长期价值理念为基础的企业文化和价值观,弱化任何的短期利益、KPI。因为在整个数字化转型的实施过程过,需要投入巨大的资源去整合、梳理和建设服务系统,前期却不会有立竿见影的收效,只有目光长远,才能看到其后期所产生的巨大收益和几乎可以忽略不记的边际成本。 目前,人工智能技术已经发挥着巨大的效率和准确性优势,以至于到了让人思考人与算法之间的对立和互补等问题的程度。在企业的数字化过程中,也需要正确认识和对待数字化及智能算法的优势和特点,不应盲目的全部去依靠人工智能,也不需要对即将到来的数字化智能时代心怀恐慌。
且吃且增重
企业致力于收集和存储大量数据,但通常只分析其中的一小部分。他们发现数据是新的货币,因为数据中隐藏着很多价值。他们正在利用数据科学和大数据分析工具从其“数据宝库”中提取价值。这有助于他们进行数字化转型。一些组织在这方面取得了巨大的成功,并不断创新、获得市场份额、增加价值(例如Amazon、谷歌、Facebook等公司),而其他公司也在努力效仿。麦肯锡全球研究院于2011年5月发表了一篇开创性论文,名为“大数据:创新,竞争和生产力的下一个前沿”,使得大数据和分析开始引起人们的关注。根据谷歌公司的趋势分析(它提高了人们对关键词的搜索兴趣),大数据和分析热潮在2016年6月达到了顶峰。而云计算一直持续受到人们的高度关注,因为越来越多的企业继续实施云计算技术,以提高业务灵活性、运营弹性、改进性能,以及更高的效率。数字化转型需要在组织层面上发挥作用,并将成为一种永久的运营方式。人们可能会想知道,在大数据和分析达到发展顶峰之后将会变成什么样子。只要所公布的客户调查、供应商利益、分析师报告、收入来源等资料具有价值,那么企业都将采用大数据和分析来获取。调研机构Gartner公司2016年进行的一项调查报告表明,在过去五年中,企业对大数据和分析的投资一直在不断增长,但对其未来投资的兴趣似乎有所下降。这可能是由于这些投资获得实际收益的一种停顿。而Gartner公司的另一份调查报告显示,只有大约12%的大数据项目取得了可衡量的成果。然而,社交媒体、物联网(IoT)、智能手机、移动设备、游戏装备、可穿戴设备、传感器、无人机、远程监控器、精密医疗、精准农业、智能城市、智能建筑、自动驾驶汽车、远程控制车辆等技术将产生大量需要收集、汇总和分析的数据,以做出有用且有价值的决策。而使用传统方法和系统来人工分析数据是不可能的。来自大数据和分析的潜在价值每年达到数十亿美元。这被认为是一个保守的估计。因为麦肯锡公司2011年进行的调查报告仅仅占据了大数据潜在价值的一小部分。只有基于位置的数据的采用率和价值捕获率高达50%-60%,其次是美国零售业,达到30%-40%,制造业占20%-30%,美国医疗保健行业为10%-20%,欧盟公共部门为10%-20%。因此,大数据和分析的兴趣和投资在几乎所有行业都会增加,以捕捉大数据中隐藏的价值。预计在未来几年中企业对云计算的大数据会持续产生兴趣。数据安全随着越来越多的数据被收集、汇总、分析,并用于做出影响人们生活的决策,数据安全性成为人们最为关切的问题。数据治理需要处理从不同来源收集的数据高峰以及管理这些数据元素所涉及的风险的中心阶段。美国联邦、州、市和地方政府机构以及其他非营利性公共服务组织需要符合严格的保密性、完整性和可用性(CIA)规则,并且还要提供良好的治理、满足合规要求和管理风险(GCR)。人们一个常见的误解是,组织需要从不同来源收集的大量结构化和非结构化数据,包括外部来源(需要验证和风险评估)来开始分析。企业不需要大量数据来启动分析项目。可以从已有的“黄金标准数据”开始,并考虑单独使用这些数据或将其与其他内部数据集结合使用,以解决业务问题作为向决策者购买的概念证明的可能性。企业可以尝试和分析以前没有查看的不同变量,以确定相关性、因果关系和预测因素,谨慎发现,并避免重合。这是行业领域知识和专业知识发挥作用的地方。利用可用且经济实惠的计算能力、存储和网络容量,企业可以轻松地分析更多数据,以查看隐藏在数据中的模式和概率。基于业务需求,分析可用于描述性、诊断性、预测性、规定性的目的。物联网、传感器、操作技术、设备维护、精密医疗、电网、航运、物流、执法和精准农业正在越来越多地利用上述不同类型的分析来处理一个或多个业务问题,或根据需要来提供解决方案。大数据的需求大数据对不同的人意味着不同的事物。不同的IT分析师、商业领袖、顾问、学术研究人员、标准组织已经根据他们的观点定义了大数据,其中包括数量、速度、品种、准确性、复杂性等因素。虽然在大数据方面没有明确的共识,他们现有的能力在人员、过程和技术方面的处理能力太大了。就大数据和分析而言,人员是最难的部分。存在组织惯性、缺乏决策者的支持,以及难以找到正确理解分析的数据和业务领域的数据科学家等问题。同样,大数据分析师也很缺乏。世界各地的许多高校或认证机构都在提供数据科学和分析方面的新课程,以满足日益增长的需求。由于大数据领域是新兴行业,很难找到适合的专家,因此所谓的“大数据专家或数据科学家”被金融交易、银行、信用评级机构,以及信用卡公司等大型金融组织所吸引。此外,谷歌、Facebook、LinkedIn、雅虎、微软、亚马逊等行业巨头也求贤若渴,因为他们为这些人才提供了丰厚的薪酬、股票期权,以及更好的发展前景。在争夺同样的人才方面,美国的联邦、州、市和地方政府以及非营利组织都处于劣势。但是,一些具有深谋远虑的政府组织已经成功招募了一些优秀的大数据科学家。克服人才短缺的挑战为了克服数据科学家短缺的挑战,许多企业正在建立一个数据科学团队,其中包括具有大数据分析方面知识和专业知识的人员,以及行业专家,例如IT和业务领域。他们可以一起补充彼此的专业知识,互相协作并提出业务问题的解决方案。一个成功的大数据分析团队的一个重要特征是能够用商业术语讲述故事,并实现数据可视化,而这些数据可视化只需要很少的解释。这是一项非常特殊的技能,需要销售技能来完成交易。这些能力有助于建立数据科学团队或大数据和分析团队的可信度,以获得高级管理人员的支持,并将分析从一个业务领域扩展到另一个业务领域,并最终扩展到整个组织或企业。这些人员则是“翻译者”,他们可以从数据分析中获得结果,并将其置于商业术语中,以便企业能够理解和适应。数字化转型需要在组织层面上发挥作用,并成为一种永久的运营方式。大数据和分析是私营或公共企业数字化转型的一个组成部分。因此,许多组织开始了数字化转型之旅,通过分析释放隐藏在大数据中的价值。今后将会有更多的组织效仿跟随。
全球数字业务转型中心表示,“组织变革是数字业务转型的基础”。那是因为改变组织的性质意味着改变人们的工作方式,挑战他们的思维方式以及他们所依赖的日常工作流程和策略
数字化转型是近几年的又一个热点,热到任何企业不提数字化转型,就好像已经被这个世界抛弃一样。最近有些时候在和客户沟通的时候,发现客户经常提到的需求就是要“数字化转
作者 陈文辉「全国社保基金理事会副理事长」 文章 《中国金融》2020年第22期 从数字产业化到产业数字化,数字经济将重塑传统产业 历次 科技 革命,新技术都要
谈到数字化转型,我们首先要清楚的认识数字化转型能为企业或业务条线带来什么?并且能够上下一心达成共识。如有必要,甚至从文化上也要同步调整。 业界比较认可的看法
1、市场竞争加剧 2020年10月,著名的科学杂志《自然》刊登了一篇研究论文,论文中指出人类生产制造出的物质已经超过了地球上所有生物质量的总和,并且这种增长速度