lucherking18
之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。 还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧 下面是之前文方网王老师发给我的题目,分享给大家: 基于深度学习的无人机地面小目标算法研究 基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究 模拟射击训练弹着点检测定位技术研究 基于深度卷积神经网络的空中目标识别算法的研究 基于可见光图像的飞行器多目标识别及位置估计 无人驾驶车辆手势指令识别研究与实现 车载毫米波雷达目标检测技术研究 基于多传感融合的四足机器人建图方法 中老年人群跌倒风险评估的数据采集系统 基于深度学习的视觉SLAM闭环检测方法研究 真实图片比较视觉搜索任务的年龄效应及对策研究 室内复杂场景下的视觉SLAM系统构建与研究 基于双目内窥镜的软组织图像三维重建 学习资源画面色彩表征影响学习注意的研究 毫米波雷达与机器视觉双模探测关键技术的研究 语义地图及其关键技术研究 多重影响因素下的语音识别系统研究 基于卷积神经网络的自主空中加油识别测量技术研究 基于视觉语义的深度估计、实例分割与重建 重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究 低成本视觉下的三维物体识别与位姿估计 面向非规则目标的3D视觉引导抓取方法及系统研究 基于物体识别地理配准的跨视频行人检测定位技术研究 基于结构光的非刚体目标快速三维重建关键技术研究 基于机器视觉的动物交互行为与认知状态分析系统 关于单目视觉实时定位与建图中的优化算法研究 动态场景下无人机SLAM在智慧城市中的关键技术研究 面向视觉SLAM的联合特征匹配和跟踪算法研究 基于深度学习的显著物体检测 基于平面波的三维超声成像方法与灵长类动物脑成像应用研究 基于物体检测和地理匹配的室内融合定位技术研究 基于多模态信息融合的人体动作识别方法研究 基于视觉惯性里程计的SLAM系统研究 基于语义信息的图像/点云配准与三维重建 基于种子点选取的点云分割算法研究 基于深度学习的场景文字检测与识别方法研究 基于运动上下文信息学习的室内视频烟雾预警算法研究 基于深度学习的垃圾分类系统设计与实现 面向手机部件的目标区域检测算法的设计与实现 电路板自动光照检测系统的设计与实现 基于机器视觉的工件识别与定位系统的设计与实现 基于深度学习的物件识别定位系统的设计与实现 基于视觉四旋翼无人机编队系统设计及实现 基于视觉惯导融合的四旋翼自主导航系统设计与实现 面向城市智能汽车的认知地图车道层生成系统 基于深度学习的智能化无人机视觉系统的设计与仿真 基于知识库的视觉问答技术研究 基于深度学习的火灾视频实时智能检测研究 结构化道路车道线检测方法研究 基于机器视觉的带式输送机动态煤量计量研究 基于深度学习的小目标检测算法研究 基于三维激光与视觉信息融合的地点检索算法研究 动态环境下仿人机器人视觉定位与运动规划方法研究 瓷砖铺贴机器人瓷砖空间定位系统研究 城市街景影像中行人车辆检测实现 基于无线信号的身份识别技术研究 基于移动机器人的目标检测方法研究 基于深度学习的机器人三维环境对象感知 基于特征表示的扩展目标跟踪技术研究 基于深度学习的目标检测方法研究 基于深度学习的复杂背景下目标检测与跟踪 动态扩展目标的高精度特征定位跟踪技术研究 掩模缺陷检测仪的图像处理系统设计 复杂场景下相关滤波跟踪算法研究 基于多层级联网络的多光谱图像显著性检测研究 基于深度结构特征表示学习的视觉跟踪研究 基于深度网络的显著目标检测方法研究 基于深度学习的电气设备检测方法研究 复杂交通场景下的视频目标检测 基于多图学习的多模态图像显著性检测算法研究 基于面部视频的非接触式心率检测研究 单幅图像协同显著性检测方法研究 轻量级人脸关键点检测算法研究 基于决策树和最佳特征选择的神经网络钓鱼网站检测研究 基于深度学习的场景文本检测方法研究 RGB-D图像显著及协同显著区域检测算法研究 多模态融合的RGB-D图像显著目标检测研究 基于协同排序模型的RGBT显著性检测研究 基于最小障碍距离的视觉跟踪研究 基于协同图学习的RGB-T图像显著性检测研究 基于图学习与标签传播优化模型的图像协同显著性目标检测 姿态和遮挡鲁棒的人脸关键点检测算法研究 基于多模态和多任务学习的显著目标检测方法研究 基于深度学习的交通场景视觉显著性区域目标检测 基于生物视觉机制的视频显著目标检测算法研究 基于场景结构的视觉显著性计算方法研究 精神分裂症患者初级视觉网络的磁共振研究 基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工 脑机接口游戏神经可塑性研究 基于YOLOV3算法的FL-YOLO多目标检测系统 基于深度与宽度神经网络显著性检测方法研究 基于深度学习的零件识别系统设计与研究 基于对抗神经网络的图像超分辨算法研究 基于深度学习复杂场景下停车管理视觉算法的研究与实现 镍电解状态视觉检测与分析方法研究 跨界训练对提升舞者静态平衡能力的理论与方法研究 施工现场人员类型识别方法的研究与实现 基于深度学习的自然场景文字检测方法研究 基于嵌入式的交通标志识别器的设计 基于视觉感知特性与图像特征的图像质量评价
诗诗雨天
姓名:王梦妮 学号:20021210873 学院:电子工程学院 【嵌牛导读】本文主要介绍了无人驾驶中所需的行人检测算法 【嵌牛鼻子】无人驾驶 环境感知 计算机视觉 SVM Adaboost算法 【嵌牛提问】无人驾驶中所用到的行人检测算法有哪些 【嵌牛正文】 在同样的交通路况下,无人车通过对自身运动状态及行驶环境信息进行分析,决策出最佳行驶策略和行驶方案代替驾驶员完成一系列驾驶行为,从而降低道路交通事故的发生率。而在无人驾驶中最为重要的技术便是环境感知,而在城市道路上有大量的行人出行,只有准确快速地检测出行人与对其进行跟踪,才能避免车撞人。 计算机视觉是研究赋予机器“人眼”功能的科学,通过多个传感器来获取一定范围内的色彩数据,用算法分析得到的数据从而理解周围环境,这个过程模拟了人眼以及大脑的处理过程,从而赋予机器视觉感知能力。现有的行人检测技术大多都是检测照片中的行人目标,这种照片的拍摄大多是拍摄的静止目标,图像的分辨率和像素点包含的语义信息都及其丰富,对应的算法在这样的图片上往往能取得理想的效果,但是用于无人车的“眼睛”,算法的鲁棒性就表现的非常差。这是因为在实际的道路环境中,摄像头需要搭载的车身上,在行进过程中跟随车以一定的速度移动,并且在实际道路中,行人目标往往是在运动的,由此提取出拍摄视频中的一帧就会出现背景虚化,造成像素点包含的语义信息大量减少,增加了行人检测的难度。 行人检测是计算机视觉领域的一个重要研究课题。在实际生活中,行人大多处于人口密集、背景复杂的城市环境中,并且行人的姿态各不相同,如何将行人从色彩丰富、形状相似的环境中快速准确地提取出来,是行人检测算法的难点。 行人检测算法分为两大类,一类是基于传统图像处理,另一类是基于深度学习的方法。近年来随着计算机计算速度的大幅提升,基于深度学习的方法有着越来越高的检测速度与检测精度,在行人检测领域应用越加广泛。 (一)基于传统图像处理的行人检测算法 使用传统的图像处理方法来做行人检测一般都是由两个步骤组成,第一就是需要手工设计一个合理的特征,第二就是需要设计一个合理的分类器。手工设计特征就是找到一种方法对图像内容进行数学描述,用于后续计算机能够区分该图像区域是什么物体,分类器即是通过提取的特征判断该图像区域属于行人目标还是属于背景。在传统的图像处理领域,手工特征有许多种,比如颜色特征、边缘特征(canny算子和sobel算子)以及基于特征点的描述子(方向梯度直方图)等。 学者们一致认为方向梯度直方图是最适合行人检测的人工特征,其主要原理是对图像的梯度方向直方图进行统计来表征图像。该特征是由Dalal于2005提出的,并与SVM分类器相结合,在行人检测领域取得了前所未有的成功。 传统的行人检测方法首先需要通过提取手工设计特征,再使用提取好的特征来训练分类器,得到一个鲁棒性良好的模型。在行人检测中应用最广泛的分类器就是SVM和Adaboost。SVM分类器就是要找到一个超平面用来分割正负样本,这个超平面的满足条件就是超平面两侧的样本到超平面的距离要最大,即最大化正负样本边界。下图即为线性SVM的示意图。Adaboost分类算法的主要原理不难理解,就是采用不同的方法训练得到一系列的弱分类器,通过级联所有的弱分类器来组成一个具有更高分类精度的强分类器,属于一种迭代算法。原理简单易于理解且有着良好的分类效果,唯一不足就是练多个弱分类器非常耗时。下图为面对一个二分类问题,Adaboost算法实现的细节。 (二)基于深度学习的行人检测算法 近年来,随着硬件计算能力的不断增强,基于卷积神经网络的深度学习飞速发展,在目标检测领域取得了更好的成绩。卷积神经网络不再需要去手动设计特征,只需要将图片输入进网络中,通过多个卷积层的卷积操作,提取出图像的深层语义特征。要想通过深度学习的方法得到一个性能良好的模型,需要大量的样本数据,如果样本过少,就很难学习到泛化能力好的特征,同时在训练时,由于涉及到大量的卷积操作,需要进行大量计算,要求硬件设备具有极高的算力,同时训练起来也很耗时。随着深度学习的飞速发展,越来越多基于深度学习的模型和方法不断被提出,深度学习在目标检测领域会有更加宽广的发展空间。 Ross Girshick团队提出了系列行人检测算法,其中Faster R—CNN 算法通过一个区域提议网络来生成行人候选框,在最后的特征图上滑动来确定候选框。Faster RCNN是首个实现端到端训练的网络,通过一个网络实现了特征提取、候选框生成、边界框回归和分类,这样的框架大大提高了整个网络的检测速度。 He Kaiming等人在2017年提出Mask R—CNN算法,该算法改进了Faster·R—CNN, 在原有的网络结构上增加了一个分支进行语义分割,并用ROI Align替代了ROI Pooling,取得了COCO数据集比赛的冠军。
视频检索简单的可以理解为从视频中搜索有用或者需要的资料。目前,智能视频技术实现对移动目标的实时检测、识别、分类以及多目标跟踪等功能的主要算法分为以下五类:目标检
入侵检测技术论文篇二 浅析入侵检测技术 摘 要 入侵检测系统是一个能够对网络或计算机系统的活动进行实时监测的系统,它能够发现并报告网络或
皮纹是什么机制我不知道,但是我觉得不是伪科学。我儿子就做了一个,我觉得解析的非常对,专家分析的时候我一个劲儿点头,句句在理。和他表现出来的一样,所以我很信服。毕
最多追加100好吧,怎么都喜欢人啊 微型机器人的发展和研究现状 摘要: 微型机器人是微电子机械系统的一个重要分支, 由于它能进入人类和宏观机器人所不及的狭小空间
数字图像处理方面了解的了。