• 回答数

    4

  • 浏览数

    346

缘梦~幸福宝贝
首页 > 学术期刊 > 电路交换毕业论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

我是小鱼儿呀

已采纳

光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。随着计算机网络,特别是互联网的发展,数据信息的传送量越来越大,客户信号中基于分组交换的分组信号的比例逐步增加。分组信号与连续码流的特点完全不同,它具有随机性、突发性,因此如何传送这一类信号,就成为光通信技术要解决的重点。 另外,传送数据信号的光收发模块及设备系统与传统的传送连续码流的光收发模块及设备系统是有很大区别的。在接入网中,所实现的系统即为ATM-PON、EPON或GPON等。在核心网,实现IP等数据信号在光层(包括在波分复用系统)的直接承载,就是大家熟知的IP over Optical的技术。 由于SDH系统的良好特性及已有的大量资源,可充分利用原有的SDH系统来传送数据信号。起初只考虑了对ATM的承载,后来,通过SDH网络承载的数据信号的类型越来越多,例如FR、ATM、IP、10M-baseT、FE、GE、10GE、DDN、FDDI、Fiber Channel、FICON、ESCON等。 于是,人们提出了许多将IP等信号送进SDH虚容器VC的方法,起初是先将IP或Ethernet装进ATM,然后再映射进SDH传输,即IP/Ethernet over ATM,再over SDH。后来,又把中间过程省去,直接将IP或Ethernet送到SDH,如PPP、LAPS、SDL、GFP等,即IP over SDH、POS或EOS。 不断增加的信道容量 光通信系统能从PDH发展到SDH,从155Mb/s发展到10Gb/s,近来,40GB/s已实现商品化。同时,还正在探讨更大容量的系统,如160Gb/s(单波道)系统已在实验室研制开发成功,正在考虑为其制定标准。此外,利用波分复用等信道复用技术,还可以将系统容量进一步提高。目前32×10Gb/s(即320Gb/s)的DWDM系统已普遍应用,160×10Gb/s(即)的系统也投入了商用,实验室中超过10Tb/s的系统已在多家公司开发出来。光时分复用OTDM、孤子技术等已有很大进展。毫无疑问,这些对于骨干网的传输是非常有利的。 信号超长距离的传输 从宏观来说,对光纤传输的要求当然是传输距离越远越好,所有研究光纤通信技术的机构,都在这方面下了很大工夫。特别是在光纤放大器出现以后,这方面的记录接连不断。不仅每个跨距的长度不断增加,例如,由当初的20km、40km,最多为80km,增加到120km、160km。而且,总的无再生中继距离也在不断增加,如从600km左右增加到3000km、4000km。 从技术的角度看,光纤放大器其在拉曼光纤放大器的出现,为增大无再生中继距离创造了条件。同时,采用有利于长距离传送的线路编码,如RZ或CS-RZ码;采用FEC、EFEC或SFEC等技术提高接收灵敏度;用色散补偿和PMD补偿技术解决光通道代价和选用合适的光纤及光器件等措施,已经可以实现超过STM-64或基于10Gb/s的DWDM系统,4000km无电再生中继器的超长距离传输。 光传输与交换技术的融合 随着对光通信的需求由骨干网逐步向城域网转移,光传输逐渐靠近业务节点。在应用中人们觉得光通信仅仅作为一种传输手段尚未能完全适应城域网的需要。作为业务节点,比较靠近用户,特别对于数据业务的用户,希望光通信既能提供传输功能,又能提供多种业务的接入功能。这样的光通信技术实际上可以看作是传输与交换的融合。目前已广泛使用的基于SDH的多业务传送平台MSTP,就是一个典型的实例。 基于SDH的MSTP是指在SDH的平台上,同时实现TDM、ATM、以太网等业务的接入处理和传送,提供统一网管的多业务节点设备。实际上,有些MSTP设备除了提供上述业务外,还可以提供FR、FDDI、Fiber Channel、FICON、ESCON等众多类型的业务。 除了基于SDH的MSTP之外,还可以有基于WDM的MSTP。实际上是将WDM的每个波道分别用作各个业务的通道,即可以用透传的方式,也可以支持各种业务的接入处理,如在FE、GE等端口中嵌入以太网2层甚至3层交换功能等,使WDM系统不仅仅具有传送能力,而且具有业务提供能力。 进一步在光层网络中,将传输与交换功能相结合的结果,则导出了自动交换光网络ASON的概念。ASON除了原有的光传送平面和管理平面之外,还增加了控制平面,除了能实现原来光传送网的固定型连接(硬连接)外,在信令的控制下,还可以实现交换的连接(软连接)和混合连接。即除了传送功能外,还有交换功能。 互联网发展需求与下一代全光网络发展趋势 近年来,随着互联网的迅猛发展,IP业务呈现爆炸式增长。预测表明,IP将承载包括语音、图像、数据等在内的多种业务,构成未来信息网络的基础;同时以WDM为核心、以智能化光网络(ION)为目标的光传送网进一步将控制信令引入光层,满足未来网络对多粒度信息交换的需求,提高资源利用率和组网应用的灵活性。因此如何构建能够有效支持IP业务的下一代光网络已成为人们广泛关注的热点之一。 对承载业务的光网络而言,下一步面临的主要问题不仅仅是要求超大容量和宽带接入等明显需求,还需要光层能够提供更高的智能性和在光节点上实现光交换,其目的是通过光层和IP层的适配与融合,建立一个经济高效、灵活扩展和支持业务QoS等的光网络,满足IP业务对信息传输与交换系统的要求。 智能化光网络吸取了IP网的智能化特点,在现有的光传送网上增加了一层控制平面,这层控制平面不仅用来为用户建立连接、提供服务和对底层网络进行控制,而且具有高可靠性、可扩展性和高有效性等突出特点,并支持不同的技术方案和不同的业务需求,代表了下一代光网络建设的发展方向。 研究表明,随着IP业务的爆发性增长,电信业和IT业正处于融合与冲突的“洗牌”阶段,新技术呼之欲出。尤其是随着软件控制(“软光”技术)的使用,使得今天的光网络将逐步演进为智能化的光网络,它允许运营者更加有效地自动配置业务和管理业务量,同时还将提供良好的恢复机制,以支持带有不同QoS需求的业务,从而使运营者可以建设并灵活管理的光网络,并开展一些新的应用,包括带宽租赁、波长业务、光层组网、光虚拟专用网(OVPN)等新业务。 综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术已构成了今天的光纤通信研究热点,在未来的一段时间里,人们将继续研究和建设各种先进的光网络,并在验证有关新概念和新方案的同时,对下一代光传送网的关键技术进行更全面、更深入地研究。 从技术发展趋势角度来看,WDM技术将朝着更多的信道数、更高的信道速率和更密的信道间隔的方向发展。从应用角度看,光网络则朝着面向IP互联网、能融入更多业务、能进行灵活的资源配置和生存性更强的方向发展,尤其是为了与近期需求相适应,光通信技术在基本实现了超高速、长距离、大容量的传送功能的基础上,将朝着智能化的传送功能发展。参考资料:

122 评论

李吉吉jjj

密集光波分复用系统的波长测量技术摘要:本文阐述密集光波分复用系统的概况、系统的测试要求,可调谐光滤器的结构,以及便携式光谱分析仪的应用方式与相关测量仪表的展望。 信息时代信息爆炸导致通信带宽需求或通信网络容量爆增。如近期北美骨干网的业务量约6-9个月翻一番,达到了所谓的“光速经济”的时期,它比微电子芯片性能发展的摩尔法则(约18个月翻一番)快2-3倍,而且迄今这种发展势头不减。面对这种发展趋势,各个通信发达国家都在积极研究设计新的宽带网络,如可持续发展网络CUN、下一代网络NGN、新公众网NPN、一体化网UN等,但其基础传输媒质的物理层都是密集光波分复用(DWDM)的光传送网OTN。不如此就不可能提供巨大的通信带宽,高度可靠的传输性能,足够的业务承载容量以及低廉的使用费用,确保网络的可持续发展,支持当前和未来的任何业务信号的传送要求。 1密集光波分复用(DWDM)系统 DWDM系统主要由光合波器、光分波器和掺铒光纤放大器(EDFA)组成。其中EDFA的作用是由比信号波长低的高能量光泵源将能量辐射进一段掺铒光纤中,当载有净负荷的光波通过此段光纤一起传播时,完成光能量的转移,使在1530-1565m波长范围内各个光波承载的净负荷信号全都得到放大,弥补了光纤线路的能量损失。这样,当用EDFA代替传统的光通信链路中的中继段设备时,就能以最少的费用直接通过增加波长数增大传输容量,使整个光通信系统的结构和设计都大大简化,并便于施工维护。 EDFA在DWDM系统中实际应用时又分为功放或后置放大器(BA),预放或前置放大器(PA)和线路放大器(LA)3种,但有的公司为了简化,尽量减少设备品种,统一为OA,以便于维护。 目前商用的DWDM系统的每个波长的数据速率是,或10Gbps,波长数为4、8、16、32等;40、80甚至132个波长的DWDM系统也已有产品。常用的有两类配置。一类是在光合波器前与在光分波器后设置波长转换器(Wavelength Transponder)OTU。这一类配置是开放式的,采用这种可以使用现有的1310nm和1550nm波长区的任一厂家的光发送与光接收机模块;波长转换器将这些非标准的光波长信号变换到1550nm窗口中规定的标准光波长信号,以便在DWDM系统中传输。美国的Ciena公司、欧洲的pirelli公司采用这类配置,他们是生产光器件的公司,通常,所生产的光分波合波器有较好的光学性能参数。如Ciena公司采用的信道波长间隔为,对应100GHz的带宽,在波长范围内提供16个光波信道或光路。但他们没有SDH传输设备,因此,在系统配置、网络管理方面不能统一考虑。此类配置的优点是应用灵活、通用性强,缺点是增加波长转换器、成本较高。另一类配置是不用波长转换器,将波分复用、解复用部分和传输系统产品集成在一起,这一类配置是一体的或集成的,这样简化了系统结构、降低了成本,而且便于将SDH传输设备和DWDM设备在同一网管平台上进行管理操作。这类配置的生产厂家如Lucent、Siemens、Nortel等,他们是SDH传输系统设备供应商,有条件这样做。他们在做4×系统设计时就考虑与4×10Gbps速率的兼容,考虑增加至8个波长、16个波长、基至40个波长、80个波长,以及和10Gbps的混合应用,确保系统在线不断扩容,平滑过渡,不影响通信网的业务。当然,他们也提供开放式配置,或发送是开放式,接收为一体式的DWDM系统设备。 由于初期商用的EDFA带宽平坦范围在1540-1560nm,故早期使用的DWDM系统的复用光波长多在1550nm附近。后来实际EDFA的增益谱宽为35nm,约,其中增益起伏小于1dB的谱宽在1539-1565nm之间,若以(对应200GHz)的波长间隔,则最少可实现8波长,乃至16波长的同步放大;若以(对应100GHz)的波长间隔,则最少可实现16个波长,乃至32个波长的DWDM系统,再加上EDFA约40dB的高增益,大于100mW的高输出功率,以及4-5dB的低噪声值等优越性能,故极大地促进了DWDM系统的快速发展。 正如电放大器那样,光放大器在放大光信号的同时也要引入噪声。它由光子的自发幅射(Spontaneous Emission)产生。此种噪声和光信号在光放大器中一起放大,并逐级积累形成干扰信号,即熟知的放大自发辐射(Amplified Spontaneous Emission,简写为ASE)干扰信号。这种ASE干扰信号经多经光放积累的功率会大到1-2mW,其频谱分布与波长增益谱对应。 这就是为什么经过若干个OLA放大后必须经过光电变换,分别取出各波长光路的电信号进行定时、整形与再生(3R),完成光数字信号处理的主要原因,它决定了电中继段或复用段的最大距离或最大光中继段数。当然,其他因素例如允许的总的色散值也决定此电中继段的最大距离,这要由系统设计作光功率预算时,哪个因素要求最严格来确定。 2DWDM系统的测试要求 以SDH终端设备为基础的多波长密集光波分复用系统和单波长SDH系统的测试要求差别很大。首先,单波长光通信系统的精确波长测试是不重要的,只需用普通的光功率计测量了光功率值就可判断光系统是否正常了。设置光功率计到一个特定的波长值,例如是1310nm还是1550nm,仅用作不同波长区光系统光源发光功率测试的较准与修正,因为对宽光谱的功率计而言,光源波长差几十nm时测出的光功率值的差别也不大。可是,对DWDM系统就完全不同了,系统有很多波长,很多光路,要分别测出系统中每个光路的波长值与光功率大小,才能共发判断出是哪个波长,哪个光路系统出了问题。由于各个光路的波长间隔通常是(200GHz)、(GHz),甚至(50GHz),故必须有波长选择性的光功率计,即波长计或光谱分析仪才能测出系统的各个光路的波长值和光功率的大小,因此,用一般的光功率计测出系统的总光功率值是不解决问题。其次,为了平滑地增加波长、扩大DWDM系统容量,或为了灵活地调度、调整电路和网络的容量,需要减少某个DWDM系统的波长数,即要求DWDM系统在增加或减少波长数时,总的输出光功率基本稳定。这样,当有某个光路、某个净负荷载体,即光波长或光载频失效时,又用普通光功率计测量总光功率值是无法发现问题的,因为一两个光载频功率大大降低或失效,对总的光功率值影响很小。此时,必须对各个光载频的功率进行选择性测量,不仅测出光功率电平值,而且还准确地测出具体的波长数值后,才能确切知道是哪个波长哪条光路出了问题。这不仅在判断光路故障时非常必要,而且在系统安装、调测和日常维护时也很重要。 此外,为了测量光放大器增益光谱特性,尤其是增益平坦度,需找出各波长或各光路的功率电平差值时,也必须测量出各光路的波长值和光功率值。

95 评论

Lookiamycm

给 肯定是没有的 不过可以代劳的 如果你只是代劳的话 也就几百吧 如果是带写带发 950高定

307 评论

茵茵一夏

毕业设计(论文)OFDM通信系统...创思通信毕业设计论文参考.doc

281 评论

相关问答

  • 程控交换机的毕业论文

    程控交换原理实验系统及控制单元实验一、 实验目的1、熟悉该程控交换原理实验系统的电路组成与主要部件的作用。2、体会程控交换原理实验系统进行电话通信时的工作过程。

    我是五叶神 4人参与回答 2023-12-08
  • 路由交换方向本科毕业论文

    1 摘要 12 Abstract 23 目录 44 引言 64.1 如今的网络社会 64.2 本课题的目的 64.3 关于Cisco 65 用户需求分析 85.

    济南别墅装修 3人参与回答 2023-12-11
  • 大四出国交换毕业论文

    争议的焦点就是现在我们自己的知识也得不到保障,知识也会被别人侵犯。

    美梦似路长! 6人参与回答 2023-12-06
  • 交通空制电路设计毕业论文

    Micrologix1000 PLC在交通灯控制上的应用 PLC技术及其在公路交通系统中的应用 用PLC实现智能交通控制 1 引言 据不完全统计,目前我国

    爱美食的NANA 5人参与回答 2023-12-11
  • 交通灯电路的设计毕业论文

    这里有西门子PLC控制交通灯论文,可点击下载

    loversea2005 5人参与回答 2023-12-06