花花的老妈
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
Wenlll1020
这讲不清楚的呀,不过方法有很多的,你只能看书呀,你把问题发上来吧基本数列是等差数列和等比数列一、等差数列一个等差数列由两个因素确定:首项a1和公差d.得知以下任何一项,就可以确定一个等差数列(即求出数列的通项公式):1、首项a1和公差d2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)3、任意两项a(n)和a(m),n,m为已知数等差数列的性质:1、前N项和为N的二次函数(d不为0时)2、a(m)-a(n)=(m-n)*d3、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)也是等差数列例题1:已知a(5)=8,a(9)=16,求a(25)解: a(9)-a(5)=4*d=16-8=8a(25)-a(5)=20*d=5*4*d=40a(25)=48 例题2:已知a(6)=13,a(9)=19,求a(12)解:a(6)、a(9)、a(12)成等差数列a(12)-a(9)=a(9)-a(6)a(12)=2*a(9)-a(6)=25二、等比数列一个等比数列由两个因素确定:首项a1和公差d.得知以下任何一项,就可以确定一个等比数列(即求出数列的通项公式):1、首项a1和公比r2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)3、任意两项a(n)和a(m),n,m为已知数等比数列的性质:1、a(m)/a(n)=r^(m-n)2、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)是等比数列3、等比数列的连续m项和也是等比数列即b(n)=a(n)+a(n+1)+...+a(n+m-1)构成的数列是等比数列。三、数列的前N项和与逐项差1、如果数列的通项公式是关于N的多项式,最高次数为P,则数列的前N项和是关于N的多项式,最高次数为P+1。(这与积分很相似)2、逐项差就是数列相邻两项的差组成的数列。如果数列的通项公式是关于N的多项式,最高次数为P,则数列的逐项差的通项公式是关于N的多项式,最高次数为P-1。(这与微分很相似)例子:1,16,81,256,625,1296 (a(n)=n^4)15,65,175,369,67150,110,194,30260,84,10824,24从上例看出,四次数列经过四次逐项差后变成常数数列。等比数列的逐项差还是等比数列四、已知数列通项公式A(N),求数列的前N项和S(N)。这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。解法是寻找一个数列B(N),使S(N)+B(N)=S(N-1)+B(N-1)从而S(N)=A(1)+B(1)-B(N)猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。例题1:求S(N)=2+2*2^2+3*2^3+...+N*2^N解:S(N)=S(N-1)+N*2^NN*2^N积分得(N*LN2-1)*2^N/(LN2)^2因此设B(N)=(PN+Q)*2^N则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N(P*N+P+Q)/2*2^N=-N*2^N因为上式是恒等式,所以P=-2,Q=2B(N)=(-2N+2)*2^NA(1)=2,B(1)=0因此:S(N)=A(1)+B(1)-B(N)=(2N-2)*2^N+2例题2:A(N)=N*(N+1)*(N+2),求S(N)解法1:S(N)为N的四次多项式,设:S(N)=A*N^4+B*N^3+C*N^2+D*N+E利用S(N)-S(N-1)=N*(N+1)*(N+2)解出A、B、C、D、E解法2:S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3) =C(N+3,4)S(N)=N*(N+1)*(N+2)*(N+3)/4
感觉还不错的说
调查法,文献研究法,实证研究法。1、调查法,调查法是最基本常用的科学研究方法,包括问卷调查,资料收集,访谈等形式,对得到的大量资料进行比较,分析,总结,归纳,从
数列在生活中的应用在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。
寒假中的一天,我和妈妈一起出去逛街。我们边走边商量,先去服装店买衣服,再去超市购物,最后回家。街上产品琳琅满目,到处都热热闹闹,喜气洋洋。忽听一个高音喇叭广告,
在生活中遇到了许多的问题,其实有很大一部分都和数学有关系。 这给我们创造了众多的自主探索的好机会,使我们的聪明才智得到发挥。 平时在家里、在商店里、在中心广场、