• 回答数

    3

  • 浏览数

    285

沐沐渔的天堂
首页 > 学术期刊 > 物理学毕业论文研究方向

3个回答 默认排序
  • 默认排序
  • 按时间排序

以哩哇啦

已采纳

物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。

《 物理学在科技创新中的效用 》

摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.

关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理

1引言

物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照 教育 部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程 报告 论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.

2物理学是科技创新的源泉

且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.

1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现 笔记本 电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.

20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.

1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.

2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].

2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.

3结语

论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.

参考文献:

〔1〕祝之光.物理学[M].北京:高等教育出版社,.

〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.

〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.

〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)

〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.

〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.

〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.

〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.

《 应用物理学专业光伏技术培养方案研究 》

一、开设半导体材料及光伏技术方向的必要性

由于我校已经有材料与化学工程学院,开设了高分子、化工类材料、金属材料等专业,应用物理、物理学专业的方向就只有往半导体材料及光伏技术方向靠,而半导体材料及光伏技术与物理联系十分紧密。因此,我们物理系开设半导体材料及光伏技术有得天独厚的优势。首先,半导体材料的形成原理、制备、检测手段都与物理有关;其次,光伏技术中的光伏现象本身就是一种物理现象,所以只有懂物理的人,才能将物理知识与这些材料的产生、运行机制完美地联系起来,进而有利于新材料以及新的太阳能电池的研发。从半导体材料与光伏产业的产业链条来看,硅原料的生产、硅棒和硅片生产、太阳能电池制造、组件封装、光伏发电系统的运行等,这些过程都包含物理现象和知识。如果从事这个职业的人懂得这些现象,就能够清晰地把握这些知识,将对行业的发展起到很大的推动作用。综上所述,不仅可以在我校的应用物理学专业开设半导体材料及光伏技术方向,而且应该把它发展为我校应用物理专业的特色方向。

二、专业培养方案的改革与实施

(一)应用物理学专业培养方案改革过程

我校从2004年开始招收应用物理学专业学生,当时只是粗略地分为光电子方向和传感器方向,而课程的设置大都和一般高校应用物理学专业的设置一样,只是增设了一些光电子、传感器以及控制方面的课程,完全没有自己的特色。随着对学科的深入研究,周边高校的互访调研以及自贡和乐山相继成为国家级新材料基地,我们逐步意识到半导体材料及光伏技术应该是一个应用物理学专业的可持续发展的方向。结合我校的实际情况,我们从2008年开始修订专业培养方案,用半导体材料及光伏技术方向取代传感器方向,成为应用物理学专业方向之一。在此基础上不断修改,逐步形成了我校现有的应用物理专业的培养方案。我们的培养目标:学生具有较扎实的物理学基础和相关应用领域的专业知识;并得到相关领域应用研究和技术开发的初步训练;具备较强的知识更新能力和较广泛的科学技术适应能力,使其成为具有能在应用物理学科、交叉学科以及相关科学技术领域从事应用研究、教学、新技术开发及管理工作的能力,具有时代精神及实践能力、创新意识和适应能力的高素质复合型应用人才。为了实现这一培养目标,我们在通识教育平台、学科基础教育平台、专业教育平台都分别设有这方面的课程,另外还在实践教育平台也逐步安排这方面的课程。

(二)专业培养方案的实施

为了实施新的培养方案,我们从几个方面来入手。首先,在师资队伍建设上。一方面,我们引入学过材料或凝聚态物理的博士,他们在半导体材料及光伏技术方面都有自己独到的见解;另一方面,从已有的教师队伍中选出部分教师去高校或相关的工厂、公司进行短期的进修培训,使大家对半导体材料及光伏技术有较深的认识,为这方面的教学打下基础。其次,在教学改革方面。一方面,在课程设置上,我们准备把物理类的课程进行重新整合,将关系紧密的课程合成一门。另一方面,我们将应用物理学专业的两个方向有机地结合起来,在光电子技术方向的专业课程设置中,我们有意识地开设了一些课程,让半导体材料及光伏技术方向的学生能够去选修这些课程,让他们能够对光伏产业的生产、检测、装备有更全面的认识。最后,在实践方面。依据学校资源共享的原则,在材料与化学工程学院开设材料科学实验和材料专业实验课程,使学生对材料的生产、检测手段有比较全面的认识,并开设材料科学课程设计,让学生能够把理论知识与实践联系起来,为以后在工作岗位上更好地工作打下坚实的基础。

三、 总结

半导体材料及光伏行业是我国大力发展的新兴行业,受到国家和各省市的大力扶持,符合国家节能环保的主旋律,发展前景十分看好。由于我们国家缺乏这方面的高端人才和行业指挥人,在这个行业还没有话语权。我们的产品大都是初级产品或者是行业的上游产品,没有进行深加工。目前行业正处在发展的困难时期,但也正好为行业的后续发展提供调整。只要我们能够提高技术水平和产品质量,并积极拓展国内市场,这个行业一定会有美好的前景。要提高技术水平和产品质量,就需要有这方面的技术人才,而高校作为人才培养的主要基地,有责任肩负起这个重任。由于相关人才培养还没有形成系统模式,这就更需要高校和企业紧密联系,共同努力,为半导体材料及光伏产业的人才培养探索出一条可持续发展的光明大道,也为我国的新能源产业发展做出自己的贡献。

有关物理学博士论文推荐:

1. 有关物理学论文

2. 物理学论文范文

3. 物理学论文

4. 物理学教学专业毕业论文

5. 物理学实验本科毕业论文

6. 物理学本科毕业论文

148 评论

寒风夜雨119

见教席发火,众弟子立刻乖乖的闭嘴了。

184 评论

百变粉豹子

材料物理专业 概述: 本专业培养较系统地掌握材料科学的基本理论与技术,具备材料物理相关的基本知识和基本技能,能在材料科学与工程及其相关的领域的机械、电子冶金、能源、电力、通讯、石油化工等行业部门从事新材料和功能材料的研究、设计、开发与制造、材料的性能测试及生产管理等工作,也可在高等院校和研究所从事教学与科研工作。 一、专业基本情况 1、培养目标 本专业培养较系统地掌握材料科学的基本理论与技术,具备材料物理相关的基本知识和基本技能,能在材料科学与工程及与其相关的领域从事研究、教学、科技开发及相关管理工作的材料物理高级专门人才。 2、培养要求 本专业学生主要学习材料科学方面的基本理论、基本知识和基本技能,受到科学思维与科学实验方面的基本训练,具有运用物理学和材料物理的基础理论、基本知识和实验技能进行材料研究和技术开发的基本能力。毕业生应获得以下几方面的知识和能力: ◆ 掌握数学、物理、化学等方面的基本理论和基本知识; ◆ 掌握材料制备(或合成)、材料加工、材料结构与性能测定及材料应用等方面的基础知识、基本原理和基本实验技能; ◆ 了解相近专业的一般原理和知识; ◆ 熟悉国家关于材料科学与工程研究、科技开发及相关产业的政策,国内外知识产权等方面的法律法规; ◆ 了解材料物理的理论前沿、应用前景和最新发展动态,以及材料科学与工程产业的发展状况; ◆ 掌握中外文资料查询、文献检索以及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 3、主干学科 材料科学、物理学。 4、主要课程 基础物理、近代物理、固体物理、材料物理学等。 5、实践教学 包括生产实习、毕业论文等,一般安排10—20周。 6、修业时间 4年。 7、学位情况 理学或工学学士。 8、相关专业 材料化学、物理学。 9、原专业名 材料物理、矿物岩石材料。 二、专业综合介绍 材料物理(Material Physics)专业,一般属于材料科学与工程系学院下辖的专业之一。所涉及到的方面主要是材料的宏观及微观结构,尤其是微观结构,材料的物理性能基本参数以及这些参数的物理本质。 材料物理专业是材料科学与工程里面不可或缺的重要组成部分。犹如支撑万丈高楼的基石,材料支撑着人类文明。很多人觉得新世纪是“信息技术”的世界,不过任何技术赖以实现的物质基础还是材料,这一重要地位在人类社会发展到任何阶段都无法改变,而且必将越来越重要。随着科学技术的发展,材料正朝着微型化、功能化、智能化的方向发展。现在颇为流行的纳米材料、环境材料、电子材料、信息材料,大部分都是材料的物理性能在各特殊领域的应用。比如纳米材料,可以说就是纳米尺度下的材料物理学。材料物理专业所研究的磁学及光学性质在信息材料领域有着巨大的应用空间,是现代半导体、微电子、光电子产业发展的理论及应用基础。因此,随着材料产业以及信息产业在新世纪的飞速发展,材料物理专业也必将迎来自己的辉煌。 本专业由名称就可以清楚地看出内容以材料学、物理学两方面为重点。物理学中的力、热、光、声均在此专业有广泛应用,当然侧重点还与将来个人的研究方向有关。比如说:对于研究信息材料磁存储技术的,铁磁学是中心课程,但是力学、电学、热学多少也要有所涉及。原子物理、固体物理、晶体学、X光技术、电子显微分析等课程也是比较重要的课程。所以这门专业主要偏重高中课程对应的物理,比较适合那些对微观结构和理论物理感兴趣的同学。在测量微观结构的时候,X光技术、电子显微技术(高倍电子显微镜)可能会涉及到一些辐射问题,当然,并不是很普遍而且剂量非常低。随着技术的进步,辐射问题应该降低直至完全消除。 总体来说,材料物理专业并不是一个很热门的专业,不过其中的一些方向,如纳米材料、高倍电子显微技术、电子材料还是相当热。国内院校中清华大学、山东大学、哈尔滨工业大学在这些方面较为出色。 对于材料物理专业的毕业生来说,面临的几种选择中,出国相对来说比较容易,难度比那些热门专业小得多。考研的话,除了上述较好的学校之外,还有中国科学院的一些相关研究所可以考虑。就业方面,几个热门方向还是比较好的,但还是以研究工作居多。作为其他产业的基础,本专业是不可缺少的,但是想一下子就赚大钱暴富成比尔·盖茨,恐怕也不可能。随着技术的成熟和产业化,本专业的就业形势必将大幅度改善。因此,选择本专业其实是在选择自己的未来。 材料物理专业代码:071301。 三、专业教育发展状况 材料物理专业是国家重点学科,是理工科结合的专业。培养掌握材料科学基础理论和现代材料科学研究方法,掌握材料性能与各层次微观结构之间关系的基本规律,能从事各种材料的设计、研究、生产、使用,材料性能改进,开发新材料、新技术的研究人才。 材料物理的前身是金属物理,国家很重视材料学科,建国后建立了材料物理专业。在五十年代轰轰烈烈的工业发展时期,很多院校都建立了材料学科,有些地区还专门成立了冶金学院、机械工程学院等。 目前,材料物理学科在各理工类院校都有相关的系,比较著名的学校有清华大学、北京航空航天大学、哈尔滨工业大学、西安交通大学、北京理工大学等学校。材料涉及的领域极为广泛,其品种繁多,形式各异。根据材料组成和结构的特点,可分为金属材料、无机非金属材料、有机高分子材料和复合材料。材料又是基础科学和工程科学融合的产物,随着科学技术的发展,原来各类相对独立的材料,已经相互渗透,相互结合,多学科的交叉是材料科学技术的重要特征。如建筑材料中混凝土外加剂的应用,聚合物混凝土、薄膜材料在玻璃深加工上的应用,有机高分子材料用于水泥砂浆的改性和对陶瓷工艺的改进等等。 浙江大学材料科学与工程学系创建于1978年,是我国高校中成立最早,学科门类、培养层次最齐全的材料系之一。目前设有金属材料及热处理、无机非金属材料、材料工程及自动化、材料科学等4个本科专业方向,金属材料及热处理、无机非金属材料、半导体材料等3个博士点(其中半导体材料是国家重点学科)和5个硕士点,以及材料科学与工程博士后流动站。很多学校的材料物理专业经历了一系列的变迁。清华大学材料科学与工程系成立于1988年,由原金属工程物理系的材料科学专业、机械工程系的金属材料专业及化学工程系的无机非金属材料专业组建而成。本科设材料科学与工程一个专业,含材料物理、金属物理、无机非金属材料、复合材料和电子材料等五个学科培养方向。 但是,由于各个学校的基础不同,因此建立的材料物理专业或者材料科学与工程专业偏重点也不同。例如天津城市建设学院,长期以来,材料科学与工程系设置的是无机非金属材料和高分子材料与工程两个专业,根据学院特点,按照国家教委引导性专业目录,自1997年起更名为材料科学与工程专业。因为这个学院是隶属建委系统的,所以主要培养为城乡建设服务的人才,材料的专业教育就以建筑材料为主,没有简单地套搬清华大学、天津大学、武汉工业大学(2000年已合并成为武汉理工大学),或化工类、冶金类院校材料专业的做法,而办出自己材料专业的特色。 这就说明了同样是材料物理专业,由于学校之间基础的差异及其背景的不同,研究的方向和侧重点也有所不同,这是要加以注意的。 1991年,国家教委批准在清华大学建设“先进材料研究开放实验室”,作为推动材料物理研究的一笔投入,带动材料物理研究。目前,材料科学与工程系已纳入很多高校“211工程”的重点学科群规划。以培养全面掌握材料科学和工程综合能力的复合型人才。 近年来材料物理专业研究的范围进一步拓宽,不断地开发出具有优异物理性能的先进材料,其中复合材料是一个主要方向。这些都反映了培养仅掌握单一材料、窄口径专业的人才是不能适应当前特别是未来形势发展的要求,因此拓宽专业口径是培养材料类专业人才的必然趋势。 四、专业就业数据分析 五、专业就业状况及趋势 材料物理专业的毕业生一般具有很强的物理、化学、数学理论水平,以及较高的独立实验能力和操作复杂仪器设备的能力,素质比较全面,所以,能够在机械、冶金、电子、化工军工、航空航天、仪表等部门从事材料的生产、研究和开发,或在科研单位和高等院校从事科研和教学工作,以及进一步培养成为高级材料科学研究人才。 从事材料专业的工程技术人员按工作性质可分为材料的研究、开发、生产和应用。这随着材料事业的发展有所不同。在七八十年代,有些学校,例如天津城市建设学院,主要培养从事硅酸盐材料生产的工程技术人员,充实到了有关工厂,对加强生产单位的技术力量,提高技术人员素质起到一定的作用。但是,随着天津市和与外省市交换培养的学生所在地材料生产厂技术力量趋于饱和,这方面人才需求量有了变化,现在在建筑行业从事材料应用、检测及材料管理工作的只占一半左右。 现代工业对材料的要求越来越高,相应地产生了更多的需求,例如钢铁大型企业、飞机制造业、汽车制造业等等,都需要精密的材料技术。本专业毕业生一般都能有1∶1.2以上的比例,根据各院校的情况具体而定。材料物理专业涉及的内容比较广泛,所以适应性比较强,有就业“万金油”的美誉。 材料物理专业乃至整个材料科学专业,毕业生可能面临的问题是,由于很多高校建立材料专业的背景不同,兼之材料科学作为专业名称提出来,又不是很长时间的事情,造成很多就业单位不了解这个专业的人才究竟是做什么的。所以毕业生在应聘的过程中应该首先澄清自己更细致的研究方向,比如,研究电子材料的材料物理专业学生,则可以考虑到与之相关的电子元器件行业,研究高分子材料的学生,则可以考虑到与有机分子化工有关的领域求职。 目前,随着国外企业在中国投资的日益提高,各个三资企业对材料物理专业的需求也开始增多。例如,杜邦、Motorola、宝洁等公司,每年都需要材料物理相关方向的人才到其研究发展中心进行新产品新工艺的开发。 随着材料物理领域的研究成果逐渐得到应用,材料产业的逐渐形成,材料物理专业的毕业学生的就业范围正在逐渐拓宽。21世纪,随着环境污染的加剧,能源的枯竭,世界各国都正在致力于新材料,新能源的开发与利用。各种环境替代性材料正在被研制出来。新的替代材料,以其低廉的成本,良好的性能,正逐渐应用于各个行业,获得了非常客观的效益。 虽然材料行业在当前形势下还处于低谷,但是结合以往的就业趋势,该专业就业前景美好,具有很大的发展潜力。选择材料物理专业的学生,一定不要被暂时的局面所震慑。就像很多专家预测的那样,材料产业将成为本世纪我国的支柱产业之一。这个行业前途无限。 六、专业院校分布(部分) 西南科技大学 西北大学 山西大学 上海大学 青岛科技大学 湘潭大学 中国科学技术大学 北京科技大学 北京师范大学 东北大学 吉林大学 复旦大学 南京大学 武汉大学 武汉理工大学 中南大学 中山大学 四川大学 兰州大学 哈尔滨理工大学 云南大学 华东理工大学 合肥工业大学 太原理工大学 燕山大学 内蒙古工业大学 大连理工大学 哈尔滨工业大学 武汉科技大学 重庆大学 西安建筑科技大学

176 评论

相关问答

  • 物理学毕业论文研究方向

    物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。 《 物理

    沐沐渔的天堂 3人参与回答 2023-12-10
  • 物流管理专业学位论文研究方向

    物流管理专业论文如何定题目?首先看是什么专业的题目其次根据专业和教授的口味来定题目尽可能不要大众化(一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求

    小可爱mmd22 4人参与回答 2023-12-08
  • 毕业论文方向与研究方向

    填写论文研究方向的原则: 一、应与兴趣相合一个人在日常生活里,没有兴趣的事,不会去做,如勉强去做,也会做不好。写论文的情形跟做事一样,能符合自己的兴趣才有可能写

    江秀梅+刘洋 3人参与回答 2023-12-12
  • 中学物理论文研究方向

    物理学是研究物质运动最一般的规律、物质基本结构及其相互作用的科学,我整理了初中物理科学论文,有兴趣的亲可以来阅读一下! 物理教学:坚持科学本质 摘要:阐述在物理

    lijieqin不想长大 3人参与回答 2023-12-11
  • 物理方向毕业论文题目

    我大学毕业论文写的是,如果只是一般性论文,建议写,,之类的较广泛的题目,这样比较容易,相关资料也比较好找.

    小怪兽的小胖兽 3人参与回答 2023-12-11