• 回答数

    3

  • 浏览数

    359

乐乐captain
首页 > 学术期刊 > 变压器绝缘检测技术的论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

鵼鵼小舞

已采纳

三比值法气体分析在变压器故障判断中的应用论文

摘要: 变压器故障条件下在绝缘油中产生大量气体,三比值法气体分析能根据各组分的含量、比值、产气速率判断变压器的故障原因及性质,在解决各类变压器故障中发挥了十分重要的作用。本文对三比值法气体分析在变压器故障判断中的应用做了介绍,供广大电力人员作参考。

关键词: 三比值法 气体分析变压器故障判断应用

电力变压器内部故障主要有过热性故障、放电性故障及绝缘受潮等多种类型。据有关资料介绍,对359台故障变压器统计表明:过热性故障占63%;高能量放电故障占%;过热兼高能量放电故障占10%;火花放电故障占7%;受潮或局部放电故障占%。电气测量不能发现以上很多隐性故障,如何找到一种能早期发现这些隐性故障的检测手段和方法以快速判断变压器故障的原因、性质和发展趋势是十分必要的。而三比值法气体分析就是在变压器故障分析中被大量采用的有效的化学测量方法。

一、绝缘油产气原理

1、 产品老化及故障条件下温度上升与放电导致绝缘油分解并产生气体

绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3、CH2和CH化学基团并由C-C键键合在一起。由于电或热故障的结果可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基如:CH3*、CH2*CH*,或C*(其中包括许多更复杂的形式),这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也可能生成碳的固体颗粒及碳氢聚合物(X-蜡)。

故障初期,所形成的气体溶解于油中;当故障能量较大时,也可能聚集成自由气体。碳的固体颗粒及碳氢聚合物可沉积在设备的内部。 低能量故障,如局部放电,通过离子反应促使最弱的键C-H键(338 kJ/mol)断裂,大部分氢离子将重新化合成氢气而积累。对C-C键的断裂需要较高的温度(较多的能量),然后迅速以C-C键(607 kJ/mol)、C=C键(720 kJ/mol)和C 三C(960 kJ/mol)键的.形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。 乙烯是在大约为500℃(高于甲烷和乙烷的生成温度)下生成的。乙炔的生成一般在800℃~1200℃的温度。因此,大量乙炔是在电弧的弧道中产生的(低于800℃也会有少量的乙炔生成)。油起氧化反应时伴随生成少量的CO和CO2。油碳化生成碳粒的温度在500℃~800℃。

2、 固体绝缘材料分解产生气体

纸、层压纸板或木块等固体绝缘材料分子内含有大量的无水右旋糖环和弱的C-O键及葡萄糖甙键,它们的热稳定性比油中的碳氢键要弱,并能在较低的温度下重新化合。聚合物裂解的有效温度高于105℃,完全裂解和碳化高于300℃,在生成水的同时生成大量的CO和CO2以及少量烃类气体和呋喃化合物,同时油被氧化。CO和CO2的形成不仅随温度而且随油中氧的含量和纸的湿度增加而增加。

二、产气与故障关系

故障气体的组成和含量与故障的类型及其严重程度有密切关系。在变压器里,当产气速率大于溶解速率时,会有一部分气体进入气体继电器或储油柜中。当变压器气体继电器内出现气体时,分析其中的气体,同样有助于对设备的状况做出判断。

不同的故障类型产生的主要特征气体和次要特征气体可归纳为表1。

变压器内部是否正常或存在故障,常用气相色谱分析结果的三项主要指标(总烃、已炔、氢)来判断。油中气体含量正常值和注意值见表2。

仅根据表3所列气体含量的绝对值很难对故障的严重程度作出正确判断,还必须考察故障的发展趋势,这与故障的产气速率密切相关。产气速率分为绝对产气速率和相对产气速率两种。规范规定对于密封式(隔膜式)变压器,总烃产气速率的注意值为;总烃的相对产气速率大于10%时应引起注意。

三、判断故障性质的三比值法

三比值法是利用气相色谱分析结果中五种特征气体含量的三个比值(C2H2 /C2H4、CH4/ H2 、C2H4 /C2H6)来判断变压器内部故障性质。实践表明,这一方法判断故障性质的准确率相当高。由于当采用不完全脱气方法脱气时,各组分的脱气速率可能相差很大;但三比值法中,每一对比值之两种气体脱气速率之比都接近于1。所以采用三比值法克服了因脱气速率的差异所带来的不利影响。

三比值法按照比值范围,把三个比值以不同的编码来表示,编码规则如表4。

四、故障判断的步骤

1、气相色谱分析结果的三项指标(总烃、乙炔、氢)与规程的注意值进行比较,并分析CO、CO2的含量。

2、当主要指标达到或超过注意值时,应进行追踪分析、查明原因,结合产气速率估计是否存在故障或故障严重程度及发展趋势。有一项或几项主要指标超过注意值时,说明设备存异常情况,要引起注意。但规程推荐注意值是指导性,它不是划分设备是否异常唯一判据,不应当作强制性标准执行;而应进行跟踪分析,加强监视,注意观察其产生速率变化。有设备特征气体低于注意值,但增长速度很高,也应追踪分析,查明原因;有设备因某种原因使气体含量超过注意值,能立即判定有故障,而应查阅原始资料,若无资料,则应考虑一定时间内进行追踪分析;当增长率低于产气速率注意值,仍可认为是正常。判断设备是否存故障时,不能只一次结果来判定,而应多次分析以后,将分析结果绝对值与导则注意值作比较,将产气速率与产气速率参考值作比较,当两者都超过时,才判定为故障。当确定设备存潜伏性故障时,就要对故障严重性作出正确判断。判断设备故障严重程度,除分析结果绝对值外,必须用产气速率来考虑故障发展趋势,计算故障产气速率可确定设备内部有无故障,又可估计故障严重程度。当有意识用产气速率考察设备故障程度时,必须考察期间变压器不要停运而尽量保持负荷稳定性,考察时间以1~3个月为宜。考察期间,对油进行脱气处理或较短运行期间及油中含气量很低时进行产气速率考察,会带来较大误差。

3、可能发生故障时,用特征气体法或三比值法对故障类型作初步判断,一般用三比值法更准确。但用三比值法应注意有关问题有:

(1)采用三比值法来判断故障性质时必须符合条件:

1)色谱分析气体成分浓度应不少于分析方法灵敏度极根值10倍。

2)应排除非故障原因引入数值干扰。

3)一定时间间隔内(1~3个月)产气速率超过10%/月。

(2)注意三比值表以外比值应用,如122、121、222等组合形式表中找不到相应比值组合,对这类情况要进行对应分析和分解处理。如有认为122组合可以分解为102+020,即说明故障是高能放电兼过热。另外,追踪监视中,要认真分析含气成分变化规律,找出故障类型变化、发展过程,例如三比值组合方式由102—122,则可判断故障是先过热,后发展为电弧放电兼过热。当然,分析比值组合方式时,还要结合设备历史状况、运行检修和电气试验等资料,最后作出正确结论。

(3)注意对低温过热涉及固体绝缘老化正确判断。绝缘纸150˙C以下热裂解时,主要产生CO2外,还会产生一定量CO、乙烯和甲烷,此时,成分三比值会出现001、002、021、022等组合,这样就可能造成误判断。这种情况下,必须首先考虑各气体成分产气速率,CO2始终占主要成分,产气速率一直比其他气体高,则对001--002及021--022等组合,应认为是固体绝缘老化或低温过热。

(4)注意设备结构与运行情况。三比值法引用色谱数据是针对典型故障设备,而不涉及故障设备各种具体情况,如设备保护方式、运行情况等。如开放式变压器,应考虑到气体逸散损失,特别是甲烷和氢气损失率,引用三比值时,应对甲烷、H2比值作些修正。另外,引用三比值是各成分气体超过注意值,特别是产气速率,有理由判断可能存故障时才应用三比值进一步判断其故障性质,用三比值监视设备故障性质应故障不断产气过程中进行。设备停运,故障产气停止,油中各成分能会逐渐散失,成分比值也会发生变化,,不宜应用三比值法。

(5)目前对尚没有列入三比值法某些组合判断正研究之中。例如121或122对应于某些过热与放电同时存情况,202或212装有载调压开关变压器应考虑开关油箱油可能渗漏到本体油中情况。

4、气体继电器内出现气体时,应将其中气体分析结果与油中气体分析结果作比较。比较时应将气、液两相气体进行换算。若故障气体含量均很少,说明设备是正常的。若溶解气体略高于气体继电器,说明设备存在产气较慢的潜伏性故障;若气体继电器明显超过油内气体含量,则说明设备存在产气较快的故障。

5、结合其他检查性试验(直流电阻、空载试验、绝缘试验、局部放电试验和测量微量水分、外部检查等)及设备结构、运行、检修等情况作综合性分析,可相应采取红外检测、超声波检测和其它带电检测等技术手段加以综合诊断判断故障的性质和部位,采取相应措施如缩短试验周期、加强监视、限制负荷、近期安排内部检查或立即停运检查等。综合分析诊断应注意问题:

1)变压器内部故障形式和发展是比较复杂,往往与多种因素有关,这就特别需要进行全面分析。首先要历史情况和设备特点以及环境等因素,确定所分析气体究竟是来自外部还是内部。所谓外部原因,包括冷却系统潜油泵故障、油箱带油补焊、油流继电器接点火花,注入油本身未脱净气等。排除外部可能,分析内部故障时,也要进行综合分析。例如,绝缘预防性试验结果和检修历史档案、设备当时运行情况,包括温升、过负荷、过励磁、过电压等,及设备结构特点,制造厂同类产品有无故障先例、设计和工艺有无缺陷等。

2)油中气体分析结果,对设备进行诊断时,还应从安全和经济两方面考虑。某些过热故障,一般不应盲目建议吊罩、吊心,进行内部检查修理,而应首先考虑这种故障是否可以采取其他措施,如改善冷却条件、限制负荷等来予以缓和或控制其发展,有些过热性故障吊罩、吊心也难以找到故障源。这一类设备,应采用临时对策来限制故障发展,油中溶解气体未达到饱和,不吊罩、吊心修理,仍有可能安全运行一段时间,观察其发展情况,再考虑进一步处理方案。这样处理方法,既能避免热性损坏,又能避免人力、物力浪费。

3)油脱气处理必要性,要分几种情况区别对待:当油中溶解气体接近饱和时,应进行油脱气处理,避免气体继电器动作或油中析出气泡发生局部放电;当油中含气量较高而不便于监视产气速率时,也可考虑脱气处理后,从起始值进行监测。但需要明确是,油脱气并非处理故障必须手段,少量可燃性气体油中并不危及安全运行,监视故障过程中,过分频繁脱气处理是不必要。

4)分析故障同时,应广泛采用新测试技术,例如电气或超声波法局部放电测量和定位、红外成像技术检测、油及固体绝缘材料中微量水分测定,以及油中金属微粒测定等,以利于寻找故障线索,分析故障原因,并进行准确诊断。

五、按国家规定的气体分析检测周期对变压器加强检测,保障变压器的正常稳定运行,减少故障的发生。

1、 出厂设备的检测

220KV变压器在出厂试验全部完成后要做一次色谱分析。制造过程中的色谱分析由用户和制造厂协商决定。

2、 投运前的检测

定期检测的新设备及大修后的设备,投运前应至少做一次检测。如果在现场进行感应耐压和局部放电试验,则应在试验后停放一段时间再做一次检测。

3、投运时的检测

新的或大修后的变压器至少应在投运后4天、10天、30天各做一次检测,若无异常,可转为定期检测。

4、运行中的定期检测

220 kV及以上定期检测 6个月一次。

5、特殊情况下的检测

当设备出现异常情况时(如气体继电器动作,受大电流冲击或过励磁等),或对测试结果有怀疑时,应立即取油样进行检测,并根据检测出的气体含量情况,适当缩短检测周期。

结语: 变压器油气体色谱分析是预防性试验和故障分析判断的重要方法,已得到广泛应用。在用气体特征值和注意值及产气速率估计已存在故障的条件下,三比值法分析能较准确地做出故障分析、判断故障类型、性质和严重程度,采用三比值法时要注意结合其他检测试验和新式先进在线监测工具及设备结构、运行、检修情况,经综合分析和判断后对故障准确定位并采取相应措施。变压器故障原因可能十分复杂,往往同时有多种故障存在,并在发展中。加强预防性试验和定期分析检测对保障变压器的正常运行十分必要。三比值法也在实践中被人们不断探索中,必将在电力应用中发挥更大作用。

89 评论

bonbean棒冰

信号采集和分析技术中的现代技术为变压器诊断提供了新工具。特别值得关注的是介电响应测量,可以在其中研究油/纸系统的绝缘性能。介电频率响应或DFR(也称为频域光谱法或FDS)于20多年前被引入,并已在许多研究项目和现场测试中得到评估,通常效果良好。DFR数据与油/纸绝缘材料的数学模型相结合,已被证明是水分评估的绝佳工具。由于建模理论包含温度的影响,因此DFR和建模也可以用于计算绝缘系统的温度依赖性。本文,由已故的Matz Ohlen和瑞典Megger的Peter Werelius共同提供,提供了DFR和绝缘模型的背景知识。它还说明了如何利用它们来增进对绝缘性能的理解,以及如何将其用于套管和仪表变压器的绝缘评估。 Recotec Ad [对象对象]使用介电频率响应评估衬套&#038;  仪表变压器绝缘Reinhausen 绝缘条件对于确保变压器,发电机,电缆和其他高压设备的运行可靠性至关重要。水分含量高的变压器无法承受高负荷而不会增加风险。此外,高温下具有高耗散因数的套管和电缆会由于“热失控”而爆炸。另一方面,在老化的设备中识别“良好”的设备也很重要。将变压器或套管的预期寿命再加上几年,可以节省大量成本。 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘CSL广告e80 50/60 Hz耗散因数测量 常见的绝缘诊断测试是在50/60 Hz时测量电容和损耗因子(DF)。这是在需要研究绝缘性能时执行的标准测试。DF测试通常在“任何”温度下使用大约30 V至大约10 kV的测试电压进行现场测试,并在工厂测量时达到标称电压。也有可变电压测试(升压/升压测试),以及在整个温度下测量损耗角正切的测试。分析基于标准,历史数据以及与工厂价值的比较。由于绝缘性能取决于温度,因此温度校正通常用于不在20°C下执行的测量。通常使用某些设备类别的温度校正表值来实现此目的。在IEEE 中, 表1:典型的tanδ评估值[对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 表1:典型的tanδ评估值。 点击放大 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图1:典型的耗散因数温度校正。 点击放大 典型的温度校正值如图1所示。显然,给定值仅是近似准则。例如,IEEE 指出:“ 虽然老式变压器的功率因数也将<%(20°C),但%至%(20°C)之间的功率因数是可以接受的;此外,在IEEE 中进行了说明;但是,应研究功率因数> %(20°C)。“经验表明,功率因数随温度的变化很大且不稳定,因此,没有一条校正曲线能适合所有情况。”BPG国际广告公司[目标对象]使用介电频率响应评估衬套&#038;  互感器绝缘BPG标语 介电频率响应测量 1995年推出了第一台用于变压器,套管和电缆的DFR / FDS测量的现场仪器。从那时起,就对该技术进行了全面评估。实际上,一些国际项目/报告将介电响应测量与绝缘模型一起定义为测量电力变压器中纤维素绝缘的水分含量的首选方法。在DFR测试中,将测量电容和耗散/功率因数。测量原理和设置类似于传统的50/60 Hz DF测试,但不同之处在于,通常使用较低的测量电压(140至1400 V),并且绝缘性能不是在50/60 Hz的线路频率下进行测量在一个通常为1 mHz至1 kHz的频率范围内测量。结果表示为电容和/或损耗角正切/功率因数与频率的关系。测量设置如图2所示。图2:DFR测量设置。 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2016 02 25 at 10 图2:DFR测量设置。 点击放大 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图3:在不同温度下,水分含量为%至%的4个变压器的DFR测量。 点击放大 图3给出了在不同湿度条件下对变压器进行测量得到的典型DFR结果。 水分评估 DFR能够测量损耗因数随频率变化的能力,为用户提供了用于诊断测试的强大工具。水分评估是一个很好的例子。变压器中的高水分含量是一个严重的问题,因为它们限制了最大负载能力,并且加速了老化过程。要确定采取的纠正措施,更换/报废或将其重新放置到网络中具有降低负荷的其他位置的措施,必须准确了解变压器中的实际水分含量。在几篇论文和文章中详细介绍了使用DFR确定油浸式电力变压器内部油纸绝缘层中水分含量的方法,因此在此仅作简要概述。 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图:4:影响各种频率下的损耗因子的参数。 点击放大 相对于频率绘制的油/纸绝缘体的耗散因数显示出典型的倒S形曲线。随着温度的升高,曲线向更高的频率移动。水分主要影响低频和高频区域。曲线的中间部分具有陡峭的梯度,反映了油的电导率。图4描述了这些参数对参考曲线的影响。 使用DFR水分确定是基于变压器的一个模拟电介质响应(参考曲线)介电响应的比较。匹配算法重新安排了建模的介电响应,并提供了一条反映所测变压器的新响应曲线。测试结果显示了水分含量以及参考曲线的油电导率。仅需要输入绝缘温度(顶油温度和/或绕组温度)作为固定参数。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图5:DFR水分分析。 点击放大 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图6. 3种不同油质和水分含量的变压器的DFR分析。 点击放大 图6中显示了三种不同的变压器。这些单元具有相同的%,50 Hz DF值,通常以“警告/警报”极限状态为特征,要求进行“调查”。这种调查是作为DFR分析进行的。这三台变压器有很大的不同,它们的维护措施也将有所不同。变压器1的油很好,但需要干燥。变压器3的水分少,但需要换油或再生。变压器2处于正常使用状态。广告 [对象对象]使用介电频率响应评估衬套&#038;  仪表变压器绝缘集成工程软件3月11日 个别温度校正(ITC) DFR测量和分析以及绝缘系统的建模也包括温度依赖性。一种获得专利的新方法是执行DFR测量,并将结果转换为50 Hz下随温度变化的耗散因数。该技术在简化套管测量方面具有主要优势。代替耗时的套管加热/冷却并在各种温度下进行多次测量,可以执行一次DFR测量,并将结果转换为50 Hz tanδ值作为温度的函数。该方法基于以下事实:在特定频率和温度下的特定损耗因子测量值对应于在不同温度和不同频率下进行的测量值。转换计算基于阿伦尼乌斯定律/方程,κ=κ 0 ·EXP( - w ^ 一个 / K Ť)活化能为W a,玻尔兹曼常数为k。图7中描述了单材料绝缘和三种不同活化能的这种关系。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图7:在不同温度下获得的不同频率下的功率因数值之间的关系。 点击放大 温度校正表(例如,IEEE 中的表)给出的平均值是假设“平均”条件的,对于单个变压器或套管而言,它们是不正确的。这在现场实验中得到了证实,一些公用事业公司建议通过在狭窄的温度范围内进行测量来避免应用温度校正。示例在图1和2中示出。参见图8和9。耗散因数是在10 kV下对4台变压器和3个不同年龄,条件和温度的套管进行测量的。变压器和套管的温度依赖性非常不同,使用标准温度校正表将无法给出20°C参考值的正确值。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图8:tanδ值作为用于4个不同的变压器温度的函数(℃)。 点击放大 图9:3种不同套管的Tan delta值与温度(ºC)的关系。 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图9:3种不同套管的Tan delta值与温度(ºC)的关系。 点击放大 使用DFR和用于将数据转换为温度相关性的技术,可以进行准确的个性化温度校正(正在申请专利)。对于“良好”的组件,温度依赖性很弱。当组件变老和/或变质时,温度校正系数变得更大,即温度依赖性是老化状态的函数。这一观察结果符合几个项目和研究。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图10:干牛皮纸的耗散因数与频率的关系。 点击放大 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图11:干牛皮纸在50Hz时的tanδ与温度的关系。 点击放大 使用该技术的一个例子在图1和2中示出。参见图10和11。在不同温度下测量了具有不同水分含量的牛皮纸样品。干纸的介电响应(含水量<%)如图10所示。使用DFR技术仅基于一个温度下的测量值来估计温度依赖性,结果如图11所示。可以看出,计算出的温度依赖性与不同温度下实际测得的耗散因数紧密匹配。广告 Yizumi广告[目标对象]使用介电频率响应评估衬套&#038;  仪表变压器绝缘INMR YIZUMI 7月版 套管诊断 50/60 Hz DF测量是对套管执行的最常见的绝缘诊断测试。C1(UST)是一项常见测试,评估C1耗散因数的典型准则如下:•在铭牌正切角和最多两次铭牌正切角之间–套管可以接受•在两次铭牌正切增量之间和最多3次铭牌正切增量之间–密切监视套管•3倍以上的铭牌棕褐色–更换衬套查看表1和上述指南,可以确定油浸纸(OIP)衬套的典型基准值,如表2所示。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 表2:典型OIP套管的Tan增量值 单击放大 在高温下(尤其是在高温下)测量套管可提供有关绝缘状况的更多信息,并指示老化/高水分含量(见图12)。在较高温度下,耗散因数增加是衬套问题的良好指示。较高温度下的高耗散因数会导致套管发热增加,进而增加损耗,导致额外的热量,进而进一步增加损耗,直到套管最终爆炸。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图12.不同水分含量的OIP套管的耗散因数(%)与温度的关系。 点击放大 GE U型–加速老化测试GE U型衬套的性能记录较差,并为公用事业提供了重大资产更换问题。在加拿大前安大略水电公司(现为HydroOne)和美国太平洋燃气公司发起的一项研究项目中,对6 x 155 kV U型套管进行了加速老化程序,其中涉及对套管进行各种诊断测试。套管同时经受热和电老化。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图13:6个GE U型套管在20°C时的耗散系数(%)。 点击放大 在老化程序中,对套管施加了66 kV(标称线对地电压)。热老化是通过循环通过套管的工频电流实现的,始于1200 A,然后逐渐增加至2000A。在老化程序中,两个套管(#3&#4)在电流升高(1900 A)时发生故障。根据tanδ(功率因数)测量结果选择套管进行测试。两个单位的价值较低,两个单位的价值较高,两个单位的价值为“中间”(见图13)。铭牌DF假定为%。在老化过程中,进行了定期和连续的诊断测试,即Tan增量,电容,DFR,PD,DGA等。传统测试方法的结果在其他地方已有报道,本文仅关注DFR测量结果。DFR测量在程序开始时执行DFR测量。在各种电压下(耐压测试)和温度下对套管进行了测试(请参见表3)。绝缘温度是根据在环境温度下使用DFR数据确定温度依赖性(ITC)得出的。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 表3:GE U型衬套的DFR测量。 点击放大 图14:在 kV和环境温度下测得的Tanδ与频率的关系。 点击放大[object object]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图14:在 kV和环境温度下测得的Tanδ与频率的关系。 点击放大 低压DFR结果如图14所示。与60 Hz的值相比,低频情况下套管之间的耗散因数差异更大。温度依赖性使用所描述的技术,DFR数据可用于估计温度依赖性。结果在图15中显示为6个套管的正切增量温度依赖性。套管#5和#6的温度相关性对应于表明这些套管处于良好状态的工厂数据。其他套管具有更高的温度依赖性。分类为M /“中级”的#2套管与在加速老化测试中失败的“坏”套管(#3和#4)具有相同的温度依赖性。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图15:6个套管的Tanδ温度依赖性(相对tanδ)(x轴上的温度)。 点击放大 图3和图4给出了两个套管在3个温度下的DFR测量结果。16和17。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图16:在不同温度下对#1套管的DFR测量。 点击放大 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图17.不同温度下5号套管上的DFR测量。 点击放大 加速测量在图1和图2中示出了两个补给结果。18和19。图18:#3衬套('坏')的DFR倾斜测量。 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2016 02 25 at 11 图18:#3衬套('坏')的DFR倾斜测量。 点击放大 图19:在5号衬套(“良好”)上进行DFR倾斜测量。 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2016 02 25 at 11 图19:在5号衬套(“良好”)上进行DFR倾斜测量。 点击放大 60 Hz tanδ值几乎与测试电压无关,并且对老化效果不敏感。在较低的频率下,对于“良好”的衬套,有一个“向下倾角”效应,该效应非常小。广告 Desma广告[目标对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘DESMA INMR OnlineAd 电流互感器诊断 在进行中的项目中,仪表变压器也获得了类似的经验。在一个实验中,例如,在25°C至50°C的温度范围内测量了6个相同类型但在各种条件下的电流互感器。表4总结了CT单位:[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 表4:电流互感器测量 点击放大 图20:不同温度下CT#1的DFR结果。 数值调整为25°C,活化能为 eV。 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2016 02 25 at 11 图20:不同温度下CT#1的DFR结果。数值调整为25°C,活化能为 eV。 点击放大 第一项分析是要确认绝缘材料的性能是否符合预期,并确定该材料的活化能。结果表明,活化能为,对于6个单位非常相似(示例如图20所示)。广告 [对象对象]使用介电频率响应评估衬套&#038;  仪表变压器绝缘OFIL banner 300X125 July1 基于这些积极的结果,可以探讨为单位的温度依赖性。示例显示在表5和6中。CT7是“好”单元,在这种情况下,表校正使其更“好”。CT 3是一个“不良”设备,工作台校正甚至使其“更糟”。ITC估计所有实际温度的正确20°C值。[对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘屏幕截图2017年11月24日在16 表5:7 CT,温度校正的数据 点击放大 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘屏幕截图2017年11月24日在16 表6:CT 3,温度校正数据。 点击放大 [对象对象]使用介电频率响应评估衬套&#038;  仪器变压器绝缘截屏2017 11 24 at 15 图21:26个电流互感器的1 Hz和50 Hz tan增量值。 点击放大 如一些出版物中所述,在低温下,较大的温度依赖性通常与高耗散因数对齐。在本次调查的CT中也可以看到这一点。在图21中,绘制了4个系列的电流互感器测量的1 Hz和50 Hz值-总共26个单位。不出所料,具有50 Hz tanδ高值(> 1%)的CT也具有1 Hz的高值。但是,当查看1 Hz值时,tanδ在“可接受”范围为%的单位可能会显着不同。这证实了低频数据和/或损耗角正切温度依赖性是比传统50 Hz值更好的诊断参数-特别是在寻找绝缘劣化的早期迹象时。讨论区 在将相之间的测量结果与先前的测试或出厂值进行比较时,需要考虑绝缘材料耗散因数的温度依赖性。历史上,这是使用平均温度校正表完成的。结果令人失望,资产所有者因此宁愿在特定(狭窄)温度范围内执行诊断测量。使用频率数据并估计实际组件的温度依赖性的新方法为等待“正确”温度,然后进行测试提供了一种替代方法。它可以提供正确的20°C参考值,并且还可以与其他绝缘温度下先前测量的未校正数据进行正确比较。温度依赖性也可以用作套管和仪表变压器的分析方法。将测得的温度依赖性与制造商的数据进行温度校正进行比较,将可以得知设备的状态是否良好。在绝缘诊断中,低频下的高损耗角正切值和较大的损耗角正切温度依赖性(高温下的耗散因数增加)是绝缘劣化的良好指标。总结与结论 介电频率响应(DFR / FDS)测量是一种用于常规绝缘测试和诊断的技术。与50/60 Hz损耗因子测量相比,DFR测量具有以下优点:•能够对各种温度下测得的50/60 Hz耗散因数进行单独的温度校正,达到参考温度20°C的值。 •能够估算对象的温度依赖性,并基于在特定温度下测得的耗散因数,计算在不同温度下的耗散因数。 •能够估算电源,仪表变压器和套管中油浸纤维素绝缘层的水分含量。 •能够普遍调查功率组件中损耗因数增加的原因。绝缘特性对于确定电力系统组件的状况非常重要。了解情况有助于避免潜在的灾难性故障,并确定“良好”的设备并决定正确的维护,这可因推迟的投资成本而节省大量资金。

256 评论

我爱微辣

变压器检修的主要内容(上)变压器检修的主要内容(上)A. 准备工作① 编制检修项目和验收制度。检修项目是按变压器运行发现的各种缺陷以及需要改进的课题进行编制的。验收制度包括分段验收、工序验收以及竣工验收等。目的是严格贯测检修工艺和质量标准。以及技术资料的收集和积累。② 制定技术质量标准,技术安全措施。组织措施以及施工进度表。③ 检修人员的组织及责任制度的编制。④ 检修场地、设备和工具的准备。⑤ 技术文件、责任制度及其他有关文件的学习和落实.。⑥ 清理场地、运输和安装设备及工具器材。⑦ 吊心(吊钟罩)前的电气试验。做好原始记录。⑧ 放油及准备滤油或换油。⑨ 拆除变压器附件及准备吊心检查。B. 变压器吊心或吊钟罩工作吊心前的准备① 现场应有所需的起重设备,能吊出器身或吊开中罩(重量见铭牌所示)② 准备好滤油设备。一般用真空滤油机。③ 准备好干燥方案和设备。④ 准备好试验设备以及各种仪表和操作工具等,变压器的周围用围栏围上。 ⑤ 对吊心前的变压器做绝缘电阻,直流电阻等测试目的是了解变压器检修前的绝缘状况和电器参数。变压器经修理后座试验时测试的数据可与吊心前比较另外要做油化验等工作。总之,要留有原始记录。⑥ 现场要有消防器材,并严禁吸烟。吊心拆卸步骤① 中小型变压器在现场停电后,可考虑运到修理厂去,吊心检修,为此要先将可可拆式的散热器拆下来后才运送变压器,拆散热器前要先做好临时的蝶形阀的固定板进行密封。因为原有的蝶阀渗油,拆散热器前要对散热器编号为了组装时“对号入座”然后关闭每个散热器的蝶形阀。使油箱内的油不在大量的进入散热器内。这时打开散热器的下边放油阀和上面的放气阀进行放油,放油后用起重机装置将散热器逐一掉下来单独运输,这是要用临时铁板和密封垫将油箱上下两个蝶形阀密封住,同时也要把拆下来的散热器两个蝶形阀处用铁板密封好。② 将油箱内变压器油适当放出,露出铁芯上的轭铁表面即可。为吊起油箱盖吊出器身。事先要拆除箱盖上的附件以及与箱盖联接的零件。即先后拆除储油柜及气体继电器,安全气道,温度计等,对于中型变压器打开箱盖上入口,进入变压器内,拆除变压器绕组与瓷套管的连接线及分接开关的超动杆与箱盖上面的操作手柄之间的轴销。③ 对于大型变压器是在现场就地检修,进入入孔拆瓷套管(充油绝缘瓷套管)要待油箱内温度降到一定程度,穿上雨衣、工作服。不可有金属物,操作者进入入孔后,先拧下瓷套管顶部的接线端头帽盖,然后拿出绕组引线接1/2头,拆除绕组引线头与套管之间的定位销钉,将绕组的端头拉出到套管外,用铅丝挂到绕组的端头,再去拆套管中部的安装法兰螺钉。最后吊出套管。 ④ 小容量的变压器是不可拆式的散热管,所以不存在拆热器的工序。对于小容量变压器一般不再现场修理,首先放部分油露出上轭铁即可,然后拆下储油柜,安全起到和气体继电器,最后拆除箱盖四周于箱体连接的螺栓后,就可以起重设备将油箱盖和器身一起吊出。⑤ 对于8000KVA及以上变压器为钟罩式变压器。只要吊出钟罩即可露出器身,所以不存在吊心问题。在吊钟罩前,也要拆去与器身连接的零件,所以也要先放出一部分有,使油面至上轭铁一下,然后入上述相继采取储油柜、安全气道、气体继电器、温度计以及套管40KV及以下的套管于绕组连接导线是从油箱侧面的受控进行拆开的,而60KV及以上的套管,分解开关操动竿等腰从油箱孔进行拆除,同样其他附件也一一拆除,这是再继续放油,一直使油低于钟罩箱沿下面的法兰口,这时可拆开上下箱沿法兰的连接螺栓,吊走钟罩,钟罩不要放在地面上,要用道木支柱,这是器身全部露出,可进行检修。山西变压器厂家:3、吊心注意事项① 起吊之前做好起吊准备工作,起吊设备吨位足够,所用钢丝绳应经严格检查°合格,否则不能使用,吊绳与铅垂线之间夹角不大于30;先试吊,合格后能正式吊心。② 吊心时要选择无风晴天相对湿度不大于75%,器身在空气中停留时间尽可能短,一方绕组绝缘受潮。环境温度应大于-15℃,器身低于环境温度时,应该使器身加热温度高于大气温度10℃以上,器身暴露在空气中的时间按下表的规定修时间等。器身在空气中暴露的时间,是从开始放油时器身于外界空气相对接触时算起,注油时间不包括在内,当空气相对温度大于75%时不允许吊心检查。 ③ 吊心时,要有专人负责,油箱四角要有人监视,防止器身与油箱相撞,钟罩吊起时不可以在空气中摆动,以防撞坏器身,钟罩吊起100mm时暂停,检查吊绳有无偏斜,放下找正后在吊起。④ 使用的工具要有专人保管,事先等级件数。

83 评论

相关问答

  • 压力检测仪器论文

    一、概述 可编程控制器(PLC)是一种新型的通用控制装置,他将传统的继电器控制技术、计算机控制技术和通信技术融为一体,专为工业控制而设计,具有功能强、通用灵活

    摇滚小青蛙 3人参与回答 2023-12-07
  • 现代变形检测技术论文

    岩石的变形特性及试验方法研究论文 岩石的变形特性是指岩石在外力作用下岩石中的应力与应变的关系特性,它是影响建筑物稳定的重要因素。岩石在较小的力的作用下首先发生变

    诗酒趁年少r 3人参与回答 2023-12-11
  • 升压变压器毕业论文

    沙角C电厂厂用电结线分析1 方案选择沙角C电厂(简称沙角C厂)有3台660MW机组,每台机组发出的电能都是经各自的主变压器升压至500kV,由500kV变电站进

    nanami小明 4人参与回答 2023-12-10
  • 低压电器检测技术论文

    电工技师技术论文范文篇二 电工技术实验装置常见故障维修 摘 要 文章总结了电工技术实验装置常见的故障现象、故障原因及维修方法

    篮球手仙道彰 3人参与回答 2023-12-09
  • 压力容器检验检测论文

    简要分析化工企业常压容器使用安全与管理论文 化工企业生产中涉及易燃易爆、有毒、腐蚀性介质较多,工作条件有高温、高压等危险工况,因而压力容器事故成为企业的监控重点

    茶痴吃茶去 3人参与回答 2023-12-10