• 回答数

    5

  • 浏览数

    296

雅婷0302
首页 > 学术期刊 > 浅谈数学的文化价值论文外文文献

5个回答 默认排序
  • 默认排序
  • 按时间排序

臭臭爱毛毛

已采纳

浅谈数学的文化价值一、数学:打开科学大门的钥匙 科学史表明,一些划时代的科学理论成就的出现,无一不借助于数学的力量。早在古代,希腊的毕达哥拉斯(Pythagoras)学派就把数看作万物之本源。享有“近代自然科学之父”尊称的伽利略(G. Galileo)认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。物理学家伦琴( @①ntgen)因发现了X射线而成为1910 年开始的诺贝尔物理奖的第一位获得者。当有人问这位卓越的实验物理学家科学家需要什么样的修养时,他的回答是:第一是数学,第二是数学,第三还是数学。对计算机的发展做出过重大贡献的冯·诺依曼( )认为“数学处于人类智能的中心领域”。他还指出:“数学方法渗透进支配着一切自然科学的理论分支,……它已愈来愈成为衡量成就的主要标志。” 科学家们如此重视教学,他们述说的这些切身经验和坚定的信念,如果从哲学的层次来理解,其实就是说,任何事物都是量和质的统一体,都有自身的量的方面的规律,不掌握量的规律,就不可能对各种事物的质获得明确清晰的认识。而数学正是一门研究“量”的科学,它不断地在总结和积累各种量的规律性,因而必然会成为人们认识世界的有力工具。 马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”这是对数学作用的深刻理解,也是对科学化趋势的深刻预见。事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。 二、数学:科学的语言 有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔()就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克( )也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦()则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。) 一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。 数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J. C. Maxwell )的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann )几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W. K. Heisenberg)和狄拉克引起的物理学革命奠定了基础。 随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。 三、数学:思维的工具 数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。 其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。 第三,数学也是辩证的辅助工具和表现方式。这是恩格斯()对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿(I. Newton )—莱布尼兹(G. W. Leibniz )公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。 最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力

186 评论

樱桃鹿儿

数学作为一种文化现象,早已是人们的常识。历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家。最著名的如柏拉图和达·芬奇。晚近以来,爱因斯坦、希尔伯特、罗素、冯·诺依曼等文化名人也都是20世纪数学文明的缔造者。数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特()的数学文化论力图把数学回归到文化层面。克莱因()的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。认识和实施数学文化教育进入21世纪之后,数学文化的研究更加深入。一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动。那么,如何在中小学数学教学中进行数学文化教育呢?笔者认为应该从以下几个方面加以认识和实施。认识数学文化的民族性和世界性每个民族都有自己的文化,也就一定有属于这个文化的数学。古希腊的数学和中国传统数学都有辉煌的成就、优秀的传统。但是,它们之间有着明显的差异。古希腊和古代中国的不同政治文明孕育了不同的数学。古希腊是奴隶制国家。当时希腊的雅典城邦实行奴隶主的民主政治(广大奴隶不能享受这种民主)。男性奴隶主的全体大会选举执政官,对一些战争、财政大事实行民主表决。这种政治文明包含着某些合理的因素。奴隶主之间讲民主,往往需要用理由说服对方,使学术上的辩论风气浓厚。为了证明自己坚持的是真理,也就需要证明。先设一些人人皆同意的“公理”,规定一些名词的意义,然后把要陈述的命题,称为公理的逻辑推论。欧氏的《几何原本》正是在这样的背景下产生的。 中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度。春秋战国时期,也是知识分子自由表达见解的黄金年代。当时的思想家和数学家,主要目标是帮助君王统治臣民、管理国家。因此,中国的古代数学,多半以“管理数学”的形式出现,目的是为了丈量田亩、兴修水利、分配劳力、计算税收、运输粮食等国家管理的实用目标。理性探讨在这里退居其次。因此,从文化意义上看,中国数学可以说是“管理数学”和“木匠数学”,存在的形式则是官方的文书。古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标。因此,“对顶角相等”这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明。在中国的数学文化里,不可能给这样的直观命题留下位置。 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展。负数的运用、解方程的开根法,以及杨辉(贾宪)三角、祖冲之的圆周率计算、天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视。 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统。当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来。揭示数学文化内涵,走出数学孤立主义的阴影数学的内涵十分丰富。但在中国数学教育界,常常有“数学=逻辑”的观念。据调查,学生们把数学看作“一堆绝对真理的总集”,或者是“一种符号的游戏”。“数学遵循记忆事实-运用算法-执行记忆得来的公式-算出答案”的模式[1],“数学=逻辑”的公式带来了许多负面影响。正如一位智者所说,一个充满活力的数学美女,只剩下一副X光照片上的骨架了!数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言、图表、符号表示,进行数学交流。通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美。半个多世纪以前,著名数学家柯朗()在名著《数学是什么》的序言中这样写道:“今天,数学教育的传统地位陷入严重的危机。数学教学有时竟变成一种空洞的解题训练。数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系。教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础。” 2002年8月20日,丘成桐接受《东方时空》的采访时说:“我把《史记》当作歌剧来欣赏”,“由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样。” 这是一位数学大家的数学文化阐述。 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:“这使我明白了:数学本身很美,然而不要被它迷了路。应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的。从这一观点上讲,我们应该是解决实际问题的优秀‘屠夫’,而不是制刀的‘刀匠’,更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠。”这是一个力学家的数学文化观。和所有文化现象一样,数学文化直接支配着人们的行动。孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成“怪人”。学校里的数学,原本是青少年喜爱的学科,却成为过滤的“筛子”、打人的“棒子”。优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史。确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径。但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念、数学方法、数学思想中揭示数学的文化底蕴。以下将阐述一些新视角,力求多侧面地展现数学文化。1. 数学和文学。数学和文学的思考方法往往是相通的。举例来说,中学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么对仗是什么?无非是上联变成下联,但是字词句的某些特性不变。王维诗云:“明月松间照,清泉石上流”。这里,明月对清泉,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变。其余各词均如此。变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。2.欧氏几何和中国古代的时空观。初唐诗人陈子昂有句云:“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下。”这是时间和三维欧几里得空间的文学描述。在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线。天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千。数学正是把这种人生感受精确化、形式化。诗人的想象可以补充我们的数学理解。3. 数学与语言。语言是文化的载体和外壳。数学的一种文化表现形式,就是把数学溶入语言之中。“不管三七二十一”涉及乘法口诀,“三下二除五就把它解决了”则是算盘口诀。再如“万无一失”,在中国语言里比喻“有绝对把握”,但是,这句成语可以联系“小概率事件”进行思考。“十万有一失”在航天器的零件中也是不允许的。此外,“指数爆炸”“直线上升”等等已经进入日常语言。它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的。“事业坐标”“人生轨迹”也已经是人们耳熟能详的词语。4. 数学的宏观和微观认识。宏观和微观是从物理学借用过来的,后来变成一种常识性的名词。以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别。初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态。高中的对应则是微观的分析。在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行。政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的。是否要从这样的观点考察函数呢?5. 数学和美学。“1/2+1/3=2/5 ?”是不是和谐美?二次方程的求根公式美不美?这涉及到美学观。三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上。欣赏艾舍尔()的画、计算机画出的分形图,也是数学美的表现。总之,数学文化离不开数学史,但是不能仅限于数学史。当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。

164 评论

大大大吉CQ

数学与文化系别:中文系 专业:08新闻 学号:200830161010 姓名:李西淳 数学与经济学的关系内容摘要:经济学需要很好的逻辑能力,数学培养了这种能力,经济学还要有计算等方面的能力,这也是数学需要并培养的。高等数学主要是侧重于掌握数学知识,及培养应用数学的能力,而数学分析却对培养学生的逻辑分析能力和创造性思维能力大有作用,数学可以是研究经济学的一种方法但不是唯一的方法。关键词:数学 经济学 关系 意义 局限性 一、 数学与经济学关系概述数学与经济的关系在今天可以说是息息相关,任何一项经济学的研究、决策,几乎都不能离开数学的应用。比如,在宏观经济中的综合指标控制、价格控制,都有数学问题,在微观经济中数理统计的“实验设计”、“质量控制(QC)”、“多元分析”等,对提高产品的质量往往能起到重要的作用。当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论,进行决策和预测。 当今在经济学中使用数学方法的趋势越来越明显,领域越来越广泛。自从1969年诺贝尔经济学奖创设以来,利用数学工具分析经济问题的理论成果获奖不断。事实上,从1969年到1998年的30年中,有l9位诺贝尔经济学奖的获得者以数学作为主要研究方法,占总人数的%;而几乎所有的获奖者都运用数学方法来研究经济理论。在中国,最近几年对在经济学中使用数学方法的问题讨论比较热烈,数学的介入究竟是祸还是福,对此,可谓仁者见仁,智者见智。有的人认为,数学使经济学由乌托邦上升为科学;而另一些人则认为,数学就像魔鬼一样,会使经济学误入歧途。这说明我国经济学界在经历大力引进西方经济学的热潮后开始了独立自主的思考和探索。二、数学对现代经济学研究和发展的影响随着经济学发展以及研究的深化,经济学家们逐渐认识到,在考虑和研究问题时,要求具有逻辑严谨的理论分析模型和通过计量分析方法进行实证检验,需要完全弄清楚一个结论成立需要哪些具体条件。单纯依靠文字描述进行推理分、析,不能保证对所研究问题前提的规范性及推理逻辑的一致性和严密性,也不能保证其研究结论的准确性、易证实性和理论体系的严密。这样以数学和数理统计作为基本的分析工具就成为现代经济学研究中最重要的分析工具之一。每个学习现代经济学和从事现代经济学研究的人必须掌握必要的数学和数理统计知识。现代经济学中几乎每个领域或多或少都要用到数学、数理统计及计量经济学方面的知识,而且不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论,更谈不上自己做研究,给出结论时所需要的边界条件或约束条件。理解概念是学习一门学科,分析某一问题的前提。如果想要学好现代经济学,从事现代经济学的研究,就需要掌握必要的数学。二、 数学在经济学应用中的意义 如果经济学没有采用数学,经济学就不可能成为现代经济学。许多经济学概念是需要用数学来定义,经济行为和经济现象也主要是通过运用数学语言来分析和研究的。用数学语言来表达关于经济环境和个人行为方式的假设,用数学表达式来表示每个经济变量和经济规则间的逻辑关系,通过建立数学模型来研究经济问题,并且按照数学的语言逻辑地推导结论。因此,不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论。数学在理论分析中的作用是:(1)使得所用语言更加精确和精炼,假设前提条件的陈述更加清楚,这样可以减少许多由于定义不清所造成的争议;(2)分析的逻辑更加严谨,并且清楚地阐明了一个经济结论成立的边界和适应范围,给出了一个理论结论成立的确切条件;(3)利用数学有利于得到不是那么直观就得到的结果;(4)它可改进或推广已有的经济理论。四、数学在经济学中应用的局限性首先,经济学不是数学,数学在经济学中只是作为一种工具被用来考虑或研究经济行为和经济现象。数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用而不能将之替代经济学。其次,经济理论的发展要从自身独有的研究视角出发去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件它不是无条件地适用于任何场所,而是有条件适用于特定的领域。再次,数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化从而不利于经济的发展。 数学在现代经济学中的作用数学现在已经成为现代经济学研究中最重要的工具。现代经济学中几乎每个领域或多或少都用到数学、统计及计量经济学方面的知识,因此数学与经济学的关系是相当密切的。参考文献:田国强 <<现代经济学的基本分析框架与研究方法>> 张真.投入产出经济学中运用数学方法的机理分析[J]. 林毅夫.关于经济学方法论的对话[J].东岳论丛 赵凌云.经济学数学化的是与非[J].经济学家

154 评论

果冻爱之梦

我有一本书电子版的 《数学的美》吴振奎 写的,次数比较系统介绍数学美。徐利治先生的书也不错 我的毕业论文题目是:数学奇异美现在正在写着呢。不要忘记给我加分

326 评论

桠枫娇娇

数学是一种文化,数学文化是人类社会优秀的、先进的文化。下文是我为大家整理的关于数学文化的论文范文的内容,欢迎大家阅读参考!

浅谈数学文化建设

摘要 随着新课改的不断深入,数学文化在小学数学教学中的地位和作用显得越来越重要。本文从教师数学文化素养、教材数学文化建设、教学数学文化渗透三个方面对小学数学文化建设作了探索,希望能给新课改提供借鉴和启示。

关键词 小学数学教学;数学文化;数学文化建设

数学是人类的文化,数学文化表现在数学的起源、发展、完善和应用的过程中。新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学文化的核心是数学产生、发展的历史进程中,逐步沉淀下来的数学思考,数学观念,数学品质。因此,就小学数学教学而言,小学数学文化的建设显得尤为重要。下面是我关于小学数学文化建设的几点思考。

一、小学数学教师数学文化素养

数学新课程精神强调:数学课程应展示数学文化的魅力,即展示数学文化的悠久历史,展示数学文化的博大精深,展示数学家的探索精神,展示数学文化的美学价值。作为数学文化传播者的小学数学教师,其自身的数学文化素养是决定小学数学文化建设的关键因素。

1.强化数学文化意识

数学之于文化好比种子之于土壤,是厚重的人类历史文化孕育了今天的数学。无论是从数学本身的发展看,还是从数学对社会与人类进步的作用看,数学文化的教育功能都是非常重要的。数学文化的教育功能主要包括四个方面:(1)使学生真正理解数学的本质;(2)发展学生理性精神;(3)培养学生创新精神;(4)培养学生审美能力。所以,小学数学教师首先要强化自身的“数学文化”意识,树立学生的“数学文化”意识。如果只掌握专业知识而没有深厚的数学文化底蕴,那他的数学王国将成为无源之水、无本之木。数学家们有这样一种观点:三流的教师传授知识,二流的教师传授技巧,一流的教师传授思想方法,而超级大师传播数学文化。

2.加强数学文化学习研究

小学数学教师仅仅具有“数学文化”意识是远远不够的,还必须认真地系统学习与研究数学文化,切实把它当做一项系统工程来做。

学习研究数学文化的发展历史,可以从中汲取丰富的数学文化养分,提高自身的数学素养。比如,最早系统提出数学文化观的美国数学家怀尔德()的《数学概念的进化》和《作为文化体系的数学》、美国著名数学教育家M・克莱因的《西方文化中的数学》、《古今数学思想》和《数学―――确定性的丧失》,郑毓信的《数学文化学》,方延明的《数学文化导论》,黄秦安的《数学哲学与数学文化》,齐民友的《数学与文化》,张顺燕的《数学的源与流》,张奠宙的《20世纪数学经纬》等国内外著作,都为我们的数学文化研究指明了方向。其次,学校要通过数学文化的知识培训、讲课比赛、外出交流等方式,切实为小学数学教师提供更多学习研究展示数学文化的机会与平台。

二、小学数学教材数学文化建设

除了应该不断加强数学文化的研究学习,自觉提高自身数学文化素养外,还必须认真进行教材研究,并着力推进教材数学文化校本化建设。

1.教材数学文化建设研究

在自身具有一定数学文化素养基础上,小学数学教师还需要下大力气深入研究小学数学教材,充分挖掘教材中数学文化的丰富内涵。只有将课本中枯燥的、抽象的数学问题经过自己的“加工、提炼、再创造”,才能还原成原汁原味的生活问题生动地呈现给学生,把他们带进一个绚丽多彩的数学皇宫,让他们感受数学丰富的方法、深邃的思想、独特的艺术之美,分享数学前行足迹中的创造、超越及其背后折射出的人类智慧和人性光芒,真正实现探索数学本质的理性回归。

2.教材数学文化校本化建设

鉴于地域不同和学生差异,地区的发展状况、学生的生活背景不尽相同,因此教师通常需要对手头使用的教材加以改进,适应自己的课堂教学的需求。为此宜在本地区组织数学骨干教师,充分挖掘教材中所隐藏的数学文化意蕴,使数学内容充满浓郁的生活气息和文化气息,从而使学生体会到数学与自然、与社会、与生活的密切相关性,重视学生数学知识与现实生活的有机结合,重视学生的情感、态度、价值观等人本教育,重视学生动手实践、合作交流、自主探索、创新能力的培养,彰显数学的文化价值和教育价值。只要不断探索和完善,就能开发出适合本地区特色的数学校本教材。

三、小学数学教学数学文化渗透

为加强小学数学文化建设,学校要采取多种方法形成“数学文化场”,使数学文化真正走进校园、走进课堂。

1.校园数学文化渗透

数学文化是校园文化的一个重要组成部分,数学文化是培养学生文化素养的重要载体。学校可通过校园文化平台、校园网络平台、多媒体平台等多种方式倾力打造“数学文化场”,形成浓郁的数学文化氛围,使数学文化真正走进校园。学校可通过数学板报、班级数学网页、数学角、数学晚会、数学文化节、数学文化读本、数学长廊等多种形式丰富学生的校园生活,推进校园数学文化建设,提升数学文化的品位,潜移默化地渗透数学文化。

2.课堂数学文化渗透

传统的数学教学忽视了数学文化的重要作用。在教学目标上,往往只重视数学知识传授和技能训练而忽视情感、态度、价值观等人文教育;在教学内容上,过分拘泥于知识的逻辑性,思维的抽象性,忽视数学知识与学生生活的有机结合,忽视数学学习和学生情感体验的有机融合;在学习方式上,学生往往是被动接受、机械练习,缺少动手实践、自主探索的机会,忽视挖掘数学文化内涵,培养学生主动参与数学学习的意识和兴趣。

数学教师只有不断提高自身的数学文化素养、加强数学文化研究,才能更好地将数学文化渗透于课堂教学中,让学生更好地体验数学、理解数学、热爱数学,实现数学文化的科学价值和人文价值的真正回归。

参考文献:

[1]M・克莱因著.张祖贵译.西方文化中的数学[M].上海:复旦大学出版社,2010.

[2]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2011.

浅析数学教育中渗透数学文化

摘 要:随着新课改的深入,数学课堂中的种种问题凸显出来。本文从数学文化的角度来反思了我国的数学教育,得出了一些结果。我们的数学教育不光是要教学生们加减乘除,更多的是要通过我们的数学教育,培养学生具有数学的精神、数学的思维、数学解决问题的方法。

中关键词:数学文化 价值 精神 兴趣

古老的中华民族早就有数学文化的传统,并闪闪发光,而我们在初高中所接触的数学却是丝毫提不起学生的精神,那我们的数学教育究竟有什么问题呢?为什么在别人的眼里我们国家的数学教育是那么成功,而我们国人却把我们的数学教育批评得一文不值、学生学得那么痛苦?通过学习数学文化这门课,我对这个问题有了深入的思考。

很多中学生认为数学不好,没什么用,只是考试的工具,每天把他们的头都学疼了。是我们的数学无用无趣,还是我们的学生意识不到数学的价值与乐趣?以前的我,也是对数学厌烦,没有好感,像很多学生一样,只是迫于高考才学习数学。但是自从学了数学文化这门课后,我才知道原来数学这么有价值、有用,而且历史悠久。数学的魅力让我赞叹。蜗牛、波浪、植物、蜘蛛网、建筑物,几乎一切事物都有数学的影子。

数学无处不在。有了数学才让建筑物妙不可言,有了数学才让预测如此准确,有了数学才让科学的宝塔如此坚固。我们的哲学家赞美数学,我们的科学家喜欢数学,可是怎么才能让我们的中小学生热爱数学呢?

数学作为一种文化,它不仅仅包括我们中小学生每天接触的加减乘除,还包括其他宝贵丰富的内容。例如,数学精神,它也是数学文化的一部份。日本数学家、数学教育家米山国藏就曾提出过七种数学精神,其中包括应用化的精神、扩张化的精神、系统化的精神、致力于发明发现的精神、统一建设的精神、严密化的精神以及思想经济化的精神。[1]虽然说我们不能完全体会到数学的所有精神,但是数学所具有的独特的精神足可以让我们赞叹不已。

没有一个学科可以像数学这样言简意赅却严密、不可击破。我们要学会欣赏数学这种简单、严密的美。这就要求我们教育工作者,不仅仅教授我们学生那些运算、定理,还要传递给我们学生数学的精神、数学的美。记得上数学文化课时,梅老师曾说:“我们的传统数学教育的一个弊端就是向我们的学生提供的更多的是符号变换方面的知识与技能。”其实,我们完全可以去教给学生那些知识,但是当我们在教的时候,应该引导学生去欣赏数学的美。

数学有了符号去抽象表达事物、定理,数学就有了这种简单、朴素的美。我们知道一种知识它越抽象,它就越具有概括性与普适性,也就越有用、越高级。当我们的学生学会欣赏数学的这种简单美,他也就不会那么讨厌数学了,同时,我们的数学教育也会更进一步。

数学家的理性思维、锲而不舍的探索精神也是值得学生去学习的。例如,欧拉是科学史上最多产的一位数学家,他十九岁开始发表论文,直到七十六岁,他一生共有八百多本著作和论文。他三十一岁右眼失明,晚年视力极差,最终双目失明,也没有停止对数学的研究与创作。如果我们的学生了解了欧拉,再来学习他的公式定理,那么我们的教学一定会取得成功。[2]学生要在数学这块土壤上汲取的营养太多太多,而不仅仅是课本上的定理。数学文化需要去丰富我们的数学课堂,我们的数学教育要多方面开展。

数学作为一种文化,它有着悠久的历史。从古至今,在这漫长的时间旅途中,出现了多少数学伟人,创造了多少有利于人类发展的文明成果。例如,欧拉公式和欧拉解决的著名哥尼斯堡七桥问题,黄金分割比的发现,我们中国的祖冲之与他的圆周率、刘徽的割圆术等等这些数学成果都为我们人类的文明发展做出了卓越贡献。就像我上高中时一样,有很多学生和我一样都不知道数学这些悠久灿烂的文明以及它们的重大意义。

其实,每一次数学的重大发现,都会推动历史的脚步向前发展。我们的学生要更多地了解数学的历史,了解数学家的事迹,了解那些对我们有过重大意义的数学发明发现。历史是一面镜子,如果我们不知道历史,我们就会对现在的东西不相信,不感兴趣,不珍惜。如果我们知道了它的历史,我们就会更好地认识今天的事物,去珍惜、学习它。我们的教师要多让我们的学生了解数学的历史,给学生们提供学习的机会。例如,在高一数学第一章《集合与函数概念》时,我们的教师可以先插入康托创立的集合论的历史知识。

这样的教学,就会改变传统的一味授受知识的境况,不仅教师讲得有趣,学生听得也有味。虽然说这样的教学好,但是这给我们的教师带来了难度与挑战,所以很多教师即使知道这样好也不愿意这样做。我们的教育者要真正担负起教书育人的职责,既然你来当教师,你就要对你的学生负责,对你自己负责。不要应付教学的差事,而是要在平常课余时间多看些有关自己科目的书,了解一下它的历史,它的名人趣事,这样才会在教学时有话可讲。我们的学生才会愿意听课,愿意学习,这样才能使我们的数学课堂生气盎然。

数学作为一种文化,它的作用、价值无处不在。我们要让学生了解数学的价值,从而给予他们学习数学的动力。可以这样说,如果一个人不懂得数学,不懂得数学文化,他将不能在未来这个世纪生存。数学促进了整个社会的发展,同时社会的发展离不开数学。数学被应用在各个领域,艺术品的设计、建筑物的创造、国家财政的预算、统计工作的完成都离不开数学。我们的学生知道了数学的价值如此之大,他就会自觉自动地去学习数学了。

当学生看到了他所要学习的东西的效益,他就会对它抱以积极的兴趣。那么就需要我们的教育工作者在传递知识的同时,还要向我们学生展示数学的价值。比如我们在讲授数学知识时,可以联系生活中的实例来激发学生的学习兴趣,例如购房分期付款问题等。总之,数学教育就是要贴近生活、贴近自然,让学生自己去体会数学的价值。

没有数学的创新,也就没有科技的创新。我们的教育工作者也可以在上课时多教授学生依靠数学科技进步的例子,让学生认识到数学的巨大价值,意识到数学离我们不远,数学就在我们身边。同学们可以自己利用数学去创新,可以是在学科内部,也可以是跨学科的,我们现在就可以学以致用。如果我们同学都意识到这一点了,我们民族也就有了希望。

年过花甲、有着四十年教龄的天津著名教师王连笑曾经说过:“数学不仅是计算、解题,数学中还包括学科思想文化、科学的思维方法以及人生哲理。对于学生来说,这些比数学知识本身更重要。教师不可能将每一个学生都培养成数学家,但是可以做到使每一个学生学会欣赏数学之美,感受数学带来的快乐。作为一名数学教师,不仅要教会学生数学的理性思维,更应将美好的人类情感交给学生,滋润学生的心灵。”[3]是的,我们的数学教育并不是把学生都培养成数学家,我们的教育工作者要开阔学生的视野,丰富课堂教育,提高我们学生对数学的认识,增强他们对数学的好感。

总结

我们国家今天的中小学生数学基础教育已经很成功了,人们都说我们到任何一个国家去,我们国家的小孩数学过硬。但为什么我们的数学教育不好呢?我们的数学教育缺的已不是那些加减乘除,缺的更多的是数学精神、数学思维、数学方法。数学文化需要灌注课堂,课堂需要数学文化。只有充满了数学文化气息的数学课堂才是飞舞的,洋溢着活力的。

参考文献:

[1]数学课程教材研究开发中心.数学文化[M].人民教育出版社,2003,第49页.

[2]徐秀兰.数学教学中如何渗透数学文化[J].科教文汇,2007,(3).

[3]天津教育.2007,(1).

226 评论

相关问答

  • 浅谈数学中的美的毕业论文

    在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!

    月儿丸丸 3人参与回答 2023-12-07
  • 水文化浅谈的论文题目

    海洋科学前沿这本期刊上肯定有你想看的文献

    咕噜1313 6人参与回答 2023-12-06
  • 浅谈数学教育的论文范文

    由于 七年级数学 是重要的教学工作,教师要注重激发学生学习数学的兴趣。下面是我为大家整理的七年级数学教学论文,供大家参考。 【关键词】七年级新生 数学教学解

    lucy一只鱼 3人参与回答 2023-12-10
  • 浅谈后进生的转化论文文献

    小学数学教学中后进生的4个方面的转化措施:1、激发学习兴趣,提高学习积极性。必须从学生生活经验出发,弗赖登塔尔--数学来源于生活,也必须根植于生活。我们在教学中

    708带你去吃吧 3人参与回答 2023-12-09
  • 浅谈催化剂论文的参考文献

    请留下邮箱,传递论文,文章无法直接罗列

    xiamisally 4人参与回答 2023-12-06