• 回答数

    4

  • 浏览数

    133

快乐糖糖K
首页 > 学术期刊 > 计算机视觉的论文题目

4个回答 默认排序
  • 默认排序
  • 按时间排序

大大大小精灵

已采纳

计算机专业毕业论文选题要明确方向,确定误区。

一、计算机论文选题的基本方向

计算机论文选题想要选择好,一定要知晓基本的写作方向,比如计算机仿真、计算机科学、计算机视觉、计算机网络应用、计算机应用、计算机技术、计算机网络安全、教学中的应用、信息管理系统、研究与实现、模糊控制、地理信息系统、嵌入式系、系统设计与实现、计算机教学等。

二、计算机论文选题误区

1、题目涵盖范围过于宽泛。由于范围过于宽泛,题目不集中,或者题目太大,所要讨论的问题一篇论文难以容纳;或者题目中包含两个以上的题目,使文章的论述无法集中。

2、题目涵盖范围过于窄浅。由于范围过于窄浅,文章只能讨论教育活动中的某个细节问题,就事论事,不具备可推广、可操作性,价值不大。

3、题目的理论性过于高深。这类文章由于难有真正的理论突破或建树,常常流于泛泛而谈,失去实际意义。

4、题目言语表述缺乏新意。言语表达的平庸,不仅增加研究表述的难度,而且影响论文的价值。

314 评论

肥肥来了啊

学术堂提供了十五个新颖的计算机毕业论文题目,希望能帮助大家:1、基于特征提取的图像质量评价及计算机辅助诊断2、多功能体育馆音质控制计算机仿真实例对比研究3、中职计算机应用基础课游戏化学习软件的设计研究4、基于图像的计算机物体识别研究5、中职计算机生态课堂高效教学策略的实践性研究6、基于计算机视觉的胶囊缺陷检测系统的设计与实现7、计算机网络信息安全风险评估标准与方法研究8、基于计算机视觉的表面缺陷检测及应用9、擦窗机伸缩臂计算机辅助设计系统研究10、基于乳腺癌计算机辅助诊断的病理图像分析11、面向创新创业的民办高校计算机基础课程教学改革研究12、中职学校计算机类课程作业提交与评价系统研究13、基于物联网的计算机监控系统设计与开发14、基于计算机视觉的皮革测配色研究15、基于计算机视觉的杂草种子鉴别

153 评论

悠悠思忞

我给你一个题目,如果你写出来了,我保你论文得优秀。因为当年我就是选这个题目得的优秀。刚才我在网上搜了一下,网上还是没有与这个系统相关的论文。 《高考最低录取分数线查询系统》基本思想很简单,现在的高考分数线查询是很繁琐的,需要先把分数查出来,然后根据录取指南再找你的分数能被录取的学校,高考过的都知道,高考报考指南是一本多么厚的书。所以,这个系统的思想就是:你用所有高校近十年的录取分数线建立一个数据库,然后开发一个系统,当你输入查询命令的时候(查询命令可以用1,2,3这三个数来代替,用flog实现;输入1,查询的是符合你所输入的分数以下的所有高校信息;输入2,查询的是符合你所输入分数段之间的所有高校信息;输入3,查询大于你所给的分数线的高校信息。)当然,你可以再加上一些附加的功能。大致思想就这些。 郑州今迈网络部竭诚为你解答,希望我的答案能帮到你!

260 评论

坠落的梦天使

GitHub CSDN

目前。计算机视觉中的性能最好的目标检测方法主要分为两种: one-stage 和two-stage 方法。two-stage方法分为两步,第一步为候选区域生成阶段(Proposal stage),通过如Selective Search、EdgeBoxes等方法可以生成数量相对较小候选目标检测框;第二步为分类与回归阶段,对第一阶段生成的 Candiate Proposal 进行分类和位置回归。one-stage 代表性的方法是R-CNN系列,如 R-CNN, Fast R-CNN, Faster R-CNN。 而one-stage 方法直接对图像的大量 Candiate Proposals 进行分类与回归。

这两类方法中均存在类别不平衡问题,two-stage 方法通过第一步已经将当量的候选区域降低到一个数量较小的范围,同时又在第二步通过一些启发式原则,将正负样本的比例降低到一定程度。而 one-stage 优于没有这降低候选框的步骤,因此,候选区域的数量大大超过 two-stage 方法,因此,在精度上,two-stage 仍然优于 one-stage 方法,但是在速度和模型复杂度上, one-stage 占优势。

类别不平衡会使检测器评估 的候选位置,但是通常只有少量的位置存在目标,这回导致两个问题:

因此,解决样本不平衡问题是提高目标检测精度的一个关键技术之一。

论文题目: Training Region-based Object Detectors with Online Hard Example Mining

OHEM 是通过改进 Hard Example Mining 方法,使其适应online learning算法特别是基于SGD的神经网络方法。Hard Example Mining 通过交替地用当前样本集训练模型,然后将模型固定,选择 False Positive 样本来重新组建用于下一次模型训练的样本集。但是因为训练神经网络本事就是一个耗时的操作,这样在训练中固定模型,这样会急剧降低模型的训练进程。

Hard Examples Mining通常有两种方法:

OHEM算法的大致流程是: 首先计算出每个ROI的loss, 然后按loss从高到低来排列每个 ROI, 然后为每张图片选择 个损失最高的 ROI 作为Hard Examples,其中 B 表示总的 ROI 数量, 表示batch-size 的大小,在 Fast R-CNN 中, N=2, B=128时,效果很好。

但是如果直接按照 loss 对所有的 ROI 进行选择,会有一个缺点,由于 ROI 很多,这样 很多 ROI 的位置就会相关并重叠,如果和某个高 Loss 的 ROI 重合度很高的其它 ROI很多, 这样, 这些 ROI 的 Loss 通常也会很多,这样这些样本都会被选择,但是它们可以近似认为时同一个,这样就会给其它较低 Loss 的 ROI 更少的选择余地,这样就会存在冗余。为了消除这种冗余,作者提出先使用 NMS (non-maximum suppression) 删除部分重合度很高的 ROI, 在使用上述方法进行 选择 Hard Example。

实现技巧:

论文,作者将该方法是现在 Fsat R-CNN 目标检测方法中。最简单做法是更改损失函数层,损失函数层首先计算所有 ROI 的 loss, 然后根据 loss 对 ROI 进行排序,并选择 hard RoIs, 让 那些 non-RoIs的损失变为0. 这种方法虽然很简单,但是非常不高效,因为还需要为所有的 RoIs 分配进行反向传播时需要的内存空间。

为了克服这个缺点,作者对下面的 Figure 1 进行改进, 如下面的 Figure 2.该改进时使用两份同样的 RoI network。 其中一个是只读的(readonly), 即只进行前向计算,不进行反向传播优化,所以只需要为前向传播分配内存,它的参数实时保持和另一个 RoI network(regular RoI network)保持一样。在每次迭代时,首先使用 readonly RoI network 对每个 ROI 计算起 loss,然后用上面描述的选择 hard RoIs 的方法选择 hard RoIs. 然后利用 regular RoI network来对选择的 hard RoIs 进行前向和后向计算来优化网络。

论文题目 Focal Loss for Dense Object Detection

在改论文中,作者认为样本类别的不平衡可以归结为难易样本的不平衡,从而更改交叉熵损失函数,重新对样本赋予不同的权值,之前的模型这些样本都是同等重要的,从而使模型训练更加关注 hard examples。

首先引入交叉熵的公式:

其中, ,表示真实类别, 表示我们预测的概率,为了方便,我们定义:

因此, ,该方法在 较大时,该loss是一个较小的量级, 如下图的连线所示所示,因为存在大量的易分类样本,相加后会淹没正样本的loss。

一个常见的解决类别不平衡的方式是引入一个加权因子 来表示正样本的权重, 表示负样本的权重。我们按照定义 的方法重新定义 为 , 定义如下:

虽然可以平衡 positive和negative的重要性,但是对 easy/hard 样本还是无法区分, Focal loss 通过更 Cross loss来达到区分easy/hard的目的:

上图展示了不同 取值对应的 loss,通过分析上述公式,我们发现,当 非常小时,即样本被分类错误,此时 接近1, loss几乎不受影响,当 接近于1时,即样本被分类正确,此时 接近0,此时降低了该样本的权重,比如,取 , 当时 时,该样本的 loss 会降低100倍,

在实际应用中,作者使用了该 Focal loss的变体,即加入了 平衡因子:

作者提出,对于二分类,一般模型的模型初始化会同概率的对待正负样本,由于类别不平衡,负样本的 loss 会占主导,作者提出在训练初始阶段对正样本的概率估计“prior”的概念,用 表示, 通过设置它来达到正样本的输出概率低的效果,比如为,从而使模型更加关注正样本。实际操作中,出了最后一个用于分类的卷积层,其余卷积层的参数初始化为bias ,而最后一层 , 实验中设置为 .

两个实现细节

论文题目: Gradient Harmonized Single-stage Detector

改论文提出 Focal Loss 存在两个缺点:

该论文有一句概括该篇论文的核心思想的一句话: 类别的不平衡可以归结为难易样本的不平衡,难易样本的不平衡可以归结为梯度的不平衡原话如下:

如下图所示:

左边是样本数量关于梯度的分布,中间表示各个修正后的函数的梯度(使用了log scale)对原始梯度的,右边表示所有样本集的梯度贡献的分布。

定义 是模型未经过 sigmoid 之前的输出, 则 ,得出该损失函数对 的梯度为:

定义梯度的模长(norm) 为:

训练样本的梯度密度(Gradient Density)定义如下:

其中, 是第 k 个样本的gradient norm,

这个公式可以理解为,以梯度 为中心,宽度为 的区域内的样本密度。

梯度密度协调参数:

分母是对梯度位于 范围的部分样本进行归一化,如果所有样本的梯度时均分分布,那么对于任意 都有 .(这里不是很理解为什么N,可以理解它们相等)

通过将梯度密度协调参数将 GHM 嵌入到损失函数中,则 GHM-C Loss 为:

计算公式11时,求和有一个N,再求 时会遍历所有的样本,因此该公式的时间复杂度为 .如果并行的化,每个计算单元也有N的计算量。对gradient norm进行排序的最好的算法复杂度为 ,然后用一个队列去扫描样本得到梯度密度的时间复杂度为 n 。基于排序的方法即使并行也不能较快的计算,因为N往往是 甚至 ,仍然是非常耗时的.

作者提出的近似求解的方法如下:

根据上述定义,得出近似梯度密度函数为:

利用上面的公式,由于我们可以事先求好 , 在求和时只需查找 即可,因此时间复杂度为 .

因为loss的计算是基于梯度密度函数,而梯度密度函数根据一个batch中的数据得到,一个batch的统计结果是有噪声的。与batch normalization相同,作者用Exponential moving average来解决这个问题,也就是

将模型鱼的的偏移量定义为 , 将真实的偏移量定义为 ,回归loss采用 Smooth L1 loss:

其中

则 关于 的梯度为:

从公式可以看出,当样本操作 时, 所有样本都有相同的梯度 1, 这就使依赖梯度范数来区分不同样本是不可能的, 一种简单的替代方法时直接使用 作为衡量标准,但是该值理论上无限大,导致 无法实现,

为了将 GHM 应用到回归损失上,作者修改了原始的 损失函数:

该函数和 具有类似的属性,当d的绝对值很小时,近似 L2 loss, 当d的绝对值比较大时, 近似 L1 loss, 关于d的梯度为:

这样就将梯度值限制在

定义 , 则 GHM-R Loss 为:

论文题目: Prime Sample Attention in Object Detection

PISA 方法和 Focal loss 和 GHM 有着不同, Focal loss 和 GHM 是利用 loss 来度量样本的难以程度,而本篇论文作者从 mAP 出法来度量样本的难易程度。

作者提出提出改论文的方法考虑了两个方面:

Prime Samples 是指那些对检测性能有着巨大影响的样本。作者研究表明样本的重要程度依赖于它和ground truth 的 IoU值,因此作者提出了一种 IOU-HLR 排序。

在目标检测中时如何定义正样本(True Positive)的呢?

剩余的标注为负样本。

mAP 的原理揭露了对目标检测器更重要的 两个准则 :

基于上述分析,作者提出了一种称为 IoU-HLR 的排序方法,它既反映了局部的IoU关系(每个ground truth目标周围),也反映了全局的IoU关系(覆盖整个图像或小批图像)。值得注意的是,不同于回归前的边界框坐标,IoU-HLR是根据样本的最终定位位置来计算的,因为mAP是根据回归后的样本位置来计算的。

该排序方法的大致流程如下图所示,其原理如下:

IoU-HLR遵循上述两个准则。首先,它通过局部排序(即上面的步骤2)将每个单独的 GT 的 对应的样本中 IoU 较高的样本放在前面,其次通过重采样和排序(步骤3, 4)将不同 GT 的 对应的样本中, 将 IoU 较高的放在了前面。

作者提出Prime Sample Attention,一种简单且有效的采样策略,该采样策略将更多的注意力集中到 Prime examples 上, PISA 由两部分组成: Importance- based Sample Reweighting(ISR)和Classification Aware Regression Loss(为CARL).

PISA 的训练过程是基于 prime samples 而不是同等对待所有样本。

作者提出一种基于 soft sampling 的方法: Importance-based Sample Reweighting (ISR), 他给不同样本根据重要性赋予不同的权重。首先它将Iou-HLR排序转化为线性映射的真实值。 IoU-HLR在每个类中分别进行计算。对于类 , 假设总共有 个样本, 通过 IoU-HLR 表示为 . 其中 ,使用一个线性转换函数将 转换为 , 表示第 类中的第 个样本的重要程度:

采用指数函数的形式来京一部将样本重要性 转换为 loss 的权值 , 表示对重要样本给予多大的优先权的程度因子, 决定最小样本权值的偏差(感觉就是一个决定最小的权值大小的一个变量)。

根据上面得到的权重值,重写交叉熵:

其中 n 和 m 分别表示真样本和负样本的数量, 和 分别表示预测分数和分类目标,需要注意的是,如果只是简单的添加 loss 权值将会改变 loss 的值,并改变正负样本的比例,因此为了保持正样本的总的 loss 值不变, 作者将 归一化为 (这里不是很理解,欢迎大家解惑)

已经介绍如何染个分类器知道 prime samples, 那么如何让回归其也知道 prime sample,作者提出了 Classification-Aware Regression Loss(CARL) 来联合优化分类器和回归其两个分支。CARL可以提升主要样本的分数,同时抑制其他样本的分数。回归质量决定了样本的重要性,我们期望分类器对重要样本输出更高的分数。两个分支的优化应该是相互关联的,而不是相互独立的。

作者的方法是让回归器知道分类器的分数,这样梯度就可以从回归器传播到分期其分支。公式如下:

表示相应类别的预测分数, 表示输出的回归偏移量。利用一个指数函数将 转化为 ,随后根据所有样本的平均值对它进行缩放。为了保持损失规模不变,对具有分类感知的 进行归一化。 是常用的smooth L1 loss。

关于 的梯度与原回归损失 成正比。 p_i \mathcal{L}(d_i, \hat d_i) \mathcal{L}(d_i, \hat d_i)$ 反映了样本i的定位质量,因此可以认为是一个IoU的估计,进一步可以看作是一个IoU-HLR的估计。可以近似认为,排序靠前的样本有较低的回归损失,于是分类得分的梯度较小。对于CARL来说,分类分支受到回归损失的监督。 不重要样本的得分被极大的抑制掉,而对重要样本的关注得到加强。

待续。。。

上面的方法大致可以分为两种:

Focal Loss认为正负样本的不平衡,本质上是因为难易样本的不平衡,于是通过修改交叉熵,使得训练过程更加关注那些困难样本,而GHM在Focal Loss的基础上继续研究,发现难易样本的不平衡本质上是因为梯度范数分布的不平衡,和Focal Loss的最大区别是GHM认为最困难的那些样本应当认为是异常样本,让检测器强行去拟合异常样本对训练过程是没有帮助的。PISA则是跳出了Focal Loss的思路,认为采样策略应当从mAP这个指标出发,通过IoU Hierarchical Local Rank (IoU-HLR),对样本进行排序并权值重标定,从而使得recall和precision都能够提升。

142 评论

相关问答

  • 关于计算机视觉技术的研究论文

    我肯定好的能,我能完成任务

    天天要开心哦 4人参与回答 2023-12-09
  • 计算机视觉研究生小论文投稿

    研究生如果想要在期刊上发表论文是有一定难度的,所以是需要通过努力才可以发表的。

    DIY不锈钢橱柜 6人参与回答 2023-12-11
  • 计算机视觉的核心期刊

    目前,公认的计算机视觉三大会议分别为ICCV,ECCV,CVPR。1、ICCV ICCV的全称是 IEEE International Conferen

    深田和美 3人参与回答 2023-12-07
  • 计算机视觉芯片问题研究论文

    目前,公认的计算机视觉三大会议分别为ICCV,ECCV,CVPR。1、ICCV ICCV的全称是 IEEE International Conference o

    吃喝玩乐nnn 1人参与回答 2023-12-09
  • 计算机学报论文机器视觉

    蔡自兴教授已在国内外发表论文和科技报告等860多篇。2010年:1.Cai Zixing. Research on navigation control and

    mm糖糖豆 3人参与回答 2023-12-07