一坨Lemon
在一阶逻辑中描述一个数学理论,首先会涉及这个理论所讨论的对象、定义在这些对象上的函数、以及这些对象之间的关系或性质。数学理论所讨论的对象称为个体,由个体组成的非空集合称为论域或个体域。按通常数学中的定义,一个n元函数就是从论域A的个体的所有n元组的集合至A中的一个映射。A中个体的n元组(α1,α2,…,αn)经映射F对应到A中的个体表示为F(α1,α2,…,αn)。函数增加了个体的表达形式。人们也考虑论域A中哪些n元组满足关系R,即A中哪些n元组(α1,α2,…,αn)使得R(α1,α2,…,αn)为真。此时的R(α1,α2,…,αn)就是一个命题。在各种关系中,相等关系是经常要用的。因为常常需要知道不同个体的表达式是否指称同一个对象。例如3+3与2×3是否表示同一个数。可以将关系或命题用命题连接词来构成更复杂的关系或命题。当描述一些个数为无穷的对象的性质时,就需要引进量词。例如说“对任何一个自然数,都有一个比它大的素数”时,就引进了量词“所有个体”及“存在个体”,并且将关系或命题经量词构成了更复杂的关系或命题。“论域中的所有个体”称为全称量词,由它所构成的命题“论域中所有的个体有某性质”,当论域中所有个体都有此性质时,此命题是真的,否则为假。“论域中存在个体”称为存在量词,由它所构成的命题“论域中存在个体有某性质”,当论域中某些个体有此性质时为真,否则为假。“所有个体”、“存在个体”中,量词加在论域的个体上,称为一阶量词。在一阶逻辑中使用的量词仅限于一阶量词。“所有函数”、“存在函数”、“所有关系”和“存在关系”是二阶量词。此外还有更高阶的量词。相应地也有二阶逻辑、高阶逻辑等。按照建立形式系统的一般原则(见逻辑演算),一阶逻辑的形式系统应包括它的语言,即一阶语言,以及逻辑公理和推理规则。一阶语言的符号包括以下几类。① 个体变元x,y,z,…。② 函数符号(表示函数),g,h,…;个体符号(表示论域中的个体) α,b,с,…;及谓词(表示关系)p,Q,R,…。其中有一个二元谓词=,称为等词(表示恒同关系)。③ 命题联结词┐,∧,∨,→,以及量词(存在量词),(全称量词)。①,③及等词称为逻辑符号,其他符号,即等词外的②称为非逻辑符号。归纳地定义一阶语言的项和公式,也称之为形成规则。项的定义:① 变元和个体符号是项。② 若t1,t2,…,tn是项,是一个n元函数符号,则(t1,t2,…,tn)是项。公式可定义为:① 若t1,t2,…,tn是项,p是n元谓词符号,则p(t1,t2,…,tn)是公式,也称为原子公式。② 若A是公式,则塡A是公式;若A,B是公式,则A∧B,A∨B,A→B,A凮B是公式。③ 若A是公式,则xA,凬xA是公式。如果变元x出现在公式 A中形如xB或凬xB的部分,称这个出现为x在A中的约束出现;否则,称为x在A中的自由出现。例如在公式x=0∨x(x>0)中,第一个x是自由出现,第二、三个x是约束出现。没有变元自由出现的公式称为闭公式。谓词演算作为一个形式系统,可以规定它的解释。给定一个论域,对于谓词演算中出现的个体符号、函数符号及谓词依次解释为论域中的个体及定义在此论域上的函数及关系。此论域及其对于谓词演算中形式符号的解释称为该演算的一个结构或模型。由对于个体符号和函数符号的解释可知,项可解释为复合函数,它指称个体。原子公式p(t1,t2,…,tn)解释为t1,t2,…,tn所指称的个体满足n元关系p。若公式A(x)表示关系,则凬xA(x)解释为论域中所有个体满足关系A,xA(x)解释为论域中存在某个体满足关系A。谓词演算的推理规则可规定如下:谓词演算的逻辑公理陈述逻辑符号的性质,分为三类:① 命题公理 将重言式(见命题逻辑)中出现的命题变元代之以谓词演算中的任意公式后得到的公式;② 恒同公理 x=x及相等性公理③ 替换公理 Ax【α】→xA及凬xA→Ax【α】,其中Ax【α】表示将公式A中所有x的自由出现代之以项α。谓词演算的公理,即逻辑公理并不界定具体的函数或关系,而仅仅处理逻辑词项的一般性质。换言之,对它的个体符号、函数符号、及谓词的解释可以是任意论域中的任意个体、函数及关系。谓词演算的这个抽象性质对于近年来模型论的发展是本质的。在谓词演算的框架中,用形式语言表述数学的公理(并不一定能完全表述),就得到不同数学理论的形式系统。这类形式公理刻画了某些具体的非逻辑符号的性质,称为非逻辑公理。例如:全序理论的形式系统中仅有一个非逻辑符号二元谓词≤。除逻辑公理外,它还有非逻辑公理:①x≤y∧y≤z→x≤z;②x≤y∧y≤x→x=y;③x≤x;④x≤y∨y≤x。自然数集合及其上的顺序关系就是全序理论的一个模型。群论的形式系统中只有两个非逻辑符号:个体符号1及二元函数符号·。它的非逻辑公理为:① x·(y·z)=(x·y)·z;②x·1=x;1·x=x;③y(x·y=1∧y·x=1)。任何一个群都是它的模型。数论的形式系统中的非逻辑符号有:个体符号0,一元函数符号s及两个二元函数符号+及·。数论(或皮亚诺算术)的公理为:①塡s(x)=0,②s(x)=s(y)→x =y,③x+0=x,④ x+s(x)=s(x+y),⑤ x·0=0,⑥x·s(y)=(x·y)+x,⑦若A为系统内的公式,x0在A中自由出现,则对每个这样的公式A,有公理自然数的算术就是它的一个模型。陈述在一阶语言中,由逻辑公理、非逻辑公理及推理规则推出的全部形式定理(见逻辑演算)称为一阶理论,记为T。为区别不同的一阶理论T,只要指出T的语言中的非逻辑符号及非逻辑公理就够了。任何一阶理论都包含了谓词演算作为它的子系统。在谓词演算的任意模型中均为真的公式称为永真的或有效的公式。例如,公式A(x,y)∨塡A(x,y)就是有效的公式,而x≤y∨y≤x就不是有效的。因为在全序结构中,对x,y在个体域中的任意取值,该公式的解释均为真。而在半序结构中,例如该结构的论域为一个集合的全体子集的集合,≤解释为集合的包含关系,那么上式的解释当x,y取任意的两个子集时就不都是真的了。直观上看,逻辑的定理应当是在一切可能的世界中均为真的定理。在一定意义下,谓词演算满足这个性质。可以验证,谓词演算的公理均为有效的,它的推理规则的假设有效则结论也必有效。因此,谓词演算的所有定理都是有效的。这个性质称为谓词演算的有效性或可靠性。反之,任意有效的公式必为谓词演算的定理。这就是著名的哥德尔完备性定理。由K.哥德尔于1930年证明。用├A表示A是谓词演算的形式定理,即A 是系统内的定理。而可靠性与完备性刻画了整个形式系统的性质,是关于系统的定理,也称为元定理。形式系统的性质是数理逻辑主要的研究对象之一。由谓词演算的有效性及完备性容易推知一阶理论的可靠性与完备性。使一阶理论 T的所有公理为真的结构称为T 的一个模型。若T的一个公式A在T 的任意模型中均有效,称A在T中有效,记为T喺A。A是T的定理记为T├A。那么T的可靠性与完备性就可以陈述为T├ A的充分必要条件为T 喺A。若不存在A使得T├A且├塡 A,则称T是协调的。若T 是协调的,则T 必有模型(广义完备性定理)。形如x1,x2,…,xnB 的公式称为前束型公式,其中xi表示 xj或凬xj,B 是一个不含量词的公式。任何一个一阶理论T(当T 的非逻辑公理集为空集时就是一个谓词演算)的公式A,都有一个公式A′,使得T├A凮A┡,其中A┡为前束型公式x1,x2,…,xηB,且B中的非逻辑符号均在A中出现。A′也称为A的前束范式。此性质可用于对谓词演算或一阶理论的公式进行分类上。此时只需考虑前束范式中的量词,将它作为公式复杂性的一种测度。
大大大小精灵
实际上,一阶逻辑是一种形式系统(Formal System),即形式符号推理系统,也叫一阶谓词演算、低阶谓词演算(Predicate Calculus)、限量词(Quantifier)理论,也有人称其为“谓词逻辑”,虽然这种说法不够精确。总之,不管怎么说,一阶逻辑就是一种形式推理的逻辑系统,是一种抽象推理的符号工具。要注意的是,一阶逻辑不同于单纯的“命题逻辑”(Proposition Logic),因为,一阶逻辑里面使用了大量所谓“限量词变量”(Quantified variables),比如:∃x(意思是存在一个变量x),限量词符号“∃”是把字母“E”从左向右反转过来产生的,其原本的意思的“Exist”(存在);而限量词∀x(对所有的变量x),符号”∀“是将字母”A“从下向上反转而产生的,其原本意思是”All“(所有、全部)。在这里,逻辑符号”∃“和”∀“就是一阶逻辑的”限量词“(Quantifer)。实际上,在一阶逻辑的文献中,会看到以下一阶逻辑的逻辑表达式:∃x(Math(x)) → Prof(x)注意:其中的箭头符号”→“表示:”如果......,那么......“的逻辑关系,而该逻辑表达式里面的字符串”Matr”与“Prof”就是所谓的逻辑“谓词”(可以任意赋值),也就是说,Math(x)的意思代表”x是数学家“,而谓词“Prof(x)”表示”x是教授“。那么,上述整个逻辑表达式的意思是:有一个(或存在一个)数学家x是教授,在严格意义上就是:如果x是数学家,那么,他必定是教授。
肥肥来了啊
某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。供参考。
加强逻辑学学科的建设和教学优秀论文 [摘要]本文认为,逻辑思维是具有创新性质与创新功能的思维,是撬动科学发展的思维工具。我们只有培养富有创新思维能力的学生,才能
Springer LinkScience Direct
1、创办免费DM杂志---自己印刷设计、招商,通过渠道发放,赚取广告费! 2、与具有渠道资源的企业合作创办--比如航空公司-创办杂志 3、与知名杂志合作开创子杂
学术堂整理了八十五个管理学论文题目选题,供大家参考:1、 论企业核心竞争力2、 现代管理理论热点问题研究3、 消费者行为研究4、 现代商务谈判5、 激励理论的研
在一阶逻辑中描述一个数学理论,首先会涉及这个理论所讨论的对象、定义在这些对象上的函数、以及这些对象之间的关系或性质。数学理论所讨论的对象称为个体,由个体组成的非