念念花语
首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。。。。一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处
fairyzhangyanting
Z = 3(x+y)-x3-y3 Z'x = 3-3x2 =0 Z'y = 3 -3y2 =0 极值点 x =±1,y= ±1--(极值点) A= Z''xx =-6x B= Z''xy = 0 C= Z''yy = -6y B2-AC=-36xy-----------(判别式)<0 有极值 x=y=1 取极大值:Zmax=4 x=y=-1 取极小值:Zmin=-4
北京吃贷123
求f(x,y)=x³+2xy-y³+2的极值,解:令∂f/∂x=3x²+2y=0.............①再令∂f/∂y=2x-3y²=0..................②由②得x=(3/2)y²;代入①式得 (27/4)y^4+2y=y[(27/4)y³+2]=0,故得:y₁=0;y₂=-2/3;相应地,x₁=0;x₂=2/3;即有两个驻点:M(0,0);N(-2/3,2/3)。
再求两驻点处的二阶导数:A=∂²f/∂x²=6x; B=∂²f/∂x∂y=2; C=∂²f/∂y²=-6y;M(0,0): A=0;B=2;C=0;B²-AC=4>0,故M不是极值点;N(-2/3,2/3): A=-4<0; B=2; C=-4; B²-AC=4-16=-12<0;故N是极大点。极大值f(x,y)=f(-2/3,2/3)=(-2/3)³+2(-2/3)(2/3)-(2/3)³+2=-16/27-8/9+2=14/27
扩展资料
人们常常说的函数y=f(x),是因变量与一个自变量之间的关系,即因变量的值只依赖于一个自变量,称为一元函数。
但在许多实际问题中往往需要研究因变量与几个自变量之间的关系,即因变量的值依赖于几个自变量。
例如,某种商品的市场需求量不仅仅与其市场价格有关,而且与消费者的收入以及这种商品的其它代用品的价格等因素有关,即决定该商品需求量的因素不止一个而是多个。要全面研究这类问题,就需要引入多元函数的概念。
参考资料来源:百度百科-多元函数
参考文献那么多,也要看你是写哪一方面的。
随着个人素质的提升,需要使用报告的情况越来越多,报告具有成文事后性的特点。写起报告来就毫无头绪?下面是我整理的硕士论文开题报告,仅供参考,欢迎大家阅读。 课题名
b^2-ac未定
极限 在高等数学中,极限是一个重要的概念
首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到