• 回答数

    3

  • 浏览数

    133

上善若水maggie
首页 > 学术期刊 > 激光雕刻课程研究论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

xyz小鱼子

已采纳

《模具工业》2001. No . 4 总 242 40激 光 加 工 技 术 在 模 具 制 造 中 的 应 用江苏理工大学(江苏镇江 212013) 张 莹 周建忠 戴亚春[摘要]随着激光加工技术的日趋成熟和工业用大功率激光设备价格的逐渐下降 ,给产品和模具的制造工艺带来了新的变革 ,在模具制造、 模具表面强化与维修、 取代模具等 3个方面 ,就激光优化模具制造工艺作了较为详细的分析和探讨。关键词 模具 激光 工艺优化[ Abstract ]Wi t h t he mat uri ng of t he las e r p r oces si ng t echnology and t he dec r easi ng of p rice of t hei ndus t rial la r ge - p owe r las e r e quipme nt , a new i nnovat ion was br ought t o t he manuf act uri ngt echnology of t he p r oduct s and t he dies and moulds . A r elat ively de t ailed analysis and dis cus sionwas made on t he las e r op t imized manuf act uri ng p r oces s f or dies and moulds f r om t hr e e asp ect s ofmanuf act uri ng , s urf ace r ei nf orceme nt and mai nt e nance , and s ubs t i t ut ive dies or moulds .Key words die and mould , las e r , t echnological p r oces s op t imizat ion1 引 言激烈的市场竞争使制造企业对快速响应市场需求和一次制造成功等要求日益迫切。而在常规制造系统中 , 产品生产所需大量模具的设计、制造和装配调试不仅耗费大量资金 , 更严重的是延长了产品生产的准备时间 , 从而延长了新产品开发周期 ,形成制造过程中的瓶颈。因此 , 如何快速有效地制造出高质量、低成本的模具及产品 , 就成为人们不断探索的课题。随着激光加工技术的日趋成熟和工业用大功率激光器设备价格的下降 , 给产品和模具制造工艺带来了重大变革。本文在模具制造、模具表面强化与维修、取代模具等 3个方面 , 就激光加工在模具制造中的应用作一些探讨。2 模具制造2. 1 模具的激光叠加制造1982年 ,日本东京大学的中川教授等人提出用薄片叠加法制造拉伸模 , 1985年 , 美国加州某公司推出了模具的激光叠加制造法 , 并获得专利 , 其工艺流程见图 1 ,原理为将激光切割的多层薄板叠加 ,并使其形状逐渐发生变化 , 最终获得所需的模具立体几何形状。日本在冲模的激光叠加制造方面已达到实用阶段 ,所制的凸、 凹模质量高 ,加工尺寸精度— — —— — —— — —— — —— — —— — ——收稿日期:2000年8月10日已达 ±0. 01mm ,切割厚度为 12mm。 经激光切割后 ,在切口表面形成深 0. 1~0. 2mm、 硬度为 800HV 的硬化层 ,用来冲裁 1mm 厚的钢板 ,单凭自冷硬化层就可冲压 10 000 件 , 如在激光切割后再经火焰淬火 ,则可冲压 3~5万件。 由于各薄板间的连接简单 ,故用叠加法制作冲模 ,成本可降低一半 ,生产周期大大缩短。用来制造复合模、落料模和级进模等都取得了显著的经济效益。图 1 激光叠加模具制造工艺流程由模具 CAD 和激光切割相结合构成一个完整的模具 CAD/ CAM 系统 ,实现板料切割的 FMS ,适用于多品种小批量生产。用激光切割的薄板来叠加合成任意三维曲面的制造系统 , 不仅为在塑性加工和模具领域中实行 FMS 提供了思路 , 而且对于内部结构复杂的模具制造 ,如型孔、 中孔体及复杂的冷却管道等 ,也是快速而经济的制造模具的有效方法 ,并且能带动其他技术如固相扩散等的发展。2. 2 快速模具制造模具 CAD三维设计二维外形NC 程序激光切割去除梯级创层面精加工成形模具装配薄片连结精加工NC 程序模 具 制 造 技 术《模具工业》2001. No . 4 总 242 41快速成型制造技术(RPM)是 80年代后期出现的一项制造技术 , 目前 RPM 技术已发展了十几种工艺方法。基于 RPM 技术快速制造模具的方法多为间接制模法 , 即利用 RPM 原型间接地翻制模具。(1) 软质简易模具 (如汽车覆盖件模具) 的制作。采用硅橡胶、低熔点合金等将原型准确复制成模具 , 或对原型表面用金属喷涂法或物理蒸发沉积法镀上一层熔点极低的合金来制作模具。这些简易模具的寿命为 50~5 000件 ,由于其制造成本低 ,制作周期短 , 特别适用于产品试制阶段的小批量生产。(2) 钢质模具制作。RPM 原型 — — — 三维砂轮— — — 整体石墨电极 — — — 钢模 ,一个中等大小、 较为复杂的电极一般 4~8h 即可完成。 美国福特汽车公司用此技术制造汽车覆盖件模具取得了满意的效果 ,与传统机械加工制作模具相比 , 快速模具制造省去了耗时、 昂贵的 CNC加工 ,加工成本及周期大大降低 ,具有广阔的应用前景。3 模具表面强化与修复为提高模具的使用寿命 , 常常需对模具表面进行强化处理。常用的模具表面强化处理工艺有化学处理 (如渗碳、 碳氮共渗等) 、 表层复合处理 (如堆焊、 热喷涂、 电火花表面强化、 PVD 和 CVD 等) 以及表面加工强化处理(如喷丸等) 。这些方法大多工艺较为复杂 , 处理周期较长 , 且处理后存在较大的变形。采用激光技术来强化和修复模具 , 具有柔性大 , 表面硬度高 , 工艺周期短 , 工作环境洁净等优点 ,因此具有很强的生命力。3. 1 激光相变硬化激光相变硬化 (激光淬火) 是利用激光辐照到金属表面 , 使其表面以很高的升温速度达到相变温度 (但低于熔化温度) 而形成奥氏体 ,当激光束离开后 , 利用金属表面本身热传导而发生自淬火 , 使金属表面发生马氏体转变 , 形成硬度高、抗磨损的表层 , 从而使金属表面得到强化。所用设备为三轴联动的数控激光加工机。影响激光强化的主要因素有激光功率、光斑尺寸和扫描速度。在强化过程中要对这些参数进行优化 , 并对具体材料选择合适的激光处理参数。对于CrWMn、 Cr12MoV、 Cr12、 T10A 及 Cr-Mo 铸铁等的常用模具材料 , 在激光处理后 , 其组织性能较常规热处理普遍改善。 例如 ,CrWMn 钢在常规加热时易在奥氏体晶界上形成网状的二次碳化物 , 显著增加工件脆性 ,降低冲击韧性 ,使用在模具刃口或关键部位寿命较低。采用激光淬火后可获得细马氏体和弥散分布的碳化物颗粒 ,清除网状 ,并获得最大硬化层深度以及最大硬度 1 017. 2HV。Cr12MoV 钢激光淬火后的硬度、抗塑性变形和抗粘磨损能力均较常规热处理有所提高。对 T8A 钢制造的凸模和Cr12Mo 钢制造的凹模 ,激光硬化深 0. 12mm ,硬度1 200HV , 寿命提高 4~6倍 , 既由冲压 2万件提高到 10~14万件。 对于 T10钢 ,激光淬火后可获得硬度 1 024HV、 深 0. 55mm 的硬化层;对于 Cr12 ,激光淬火后可获得硬度 1 000HV、 深 0. 4mm 的硬化层 ,使用寿命均得到了较大的提高。3. 2 激光涂覆激光涂覆是用激光在基体表面覆盖一层薄的具有一定性能的涂覆材料 , 这类材料可以是金属或合金 ,也可以是非金属 ,还可以是化合物及其混合物。在涂覆过程中 , 涂覆层在激光作用下与基体表面通过熔合迅速结合在一起。它与激光合金化的主要区别在于经激光作用后涂层的化学成分基本上不变化 , 基体的成分基本上不进入涂层内。激光涂覆工艺实用的材料范围很广 , 正在研究的母体材料有低碳钢、 合金钢、 铸铁、 镍铬钛耐热合金等 ,研究的添加材料有钴基合金、 铁基合金和镍基合金等。采用激光技术在有送粉器的 2kW CO2 激光器上 , 对 4Cr5MoV1Si 钢基体表面涂覆一层由镍基高温合金和 WC + W2C 粒子组成的高温耐磨合金粉末 ,在激光功率 P = 1 500W ,送粉量为 10g/ min ,工件移动速度为 2~3mm/ s 条件下 ,获得多道搭接的大面积高温耐磨合金。 在试验温度为 600℃ 时 ,硬度为 550~580HV0 .2 ; 在温度为 950℃时 , 硬度为100~200HV0 .2。 可见在 1 000℃ 左右高温下 ,涂覆层仍有很高的强硬性 , 是较理想的高温模具耐磨合金。另外 , 采用激光涂覆方法来修复已磨损的冲模及拉伸模等 ,可大大延长模具的使用寿命 ,降低模具的使用成本。3. 3 激光堆焊对于一些汽车覆盖件冲裁修边模具 , 为提高使用寿命 ,节省优质模具材料 ,刃口往往采用在较差的基体材料上堆焊一层性能优异的合金。 过去 ,堆焊大多采用人工氧 — 乙炔火焰堆焊法 ,这种方法虽然设备《模具工业》2001. No . 4 总 242 42费用低 ,但功率密度不高(102~103W/ cm 2) ,且难以进行精确控制 , 因而堆焊质量和生产率都较低。70年代以来 , 开发成功了等离子粉末堆焊技术 , 由于其具有较高的功率密度且控制性能也较好 , 因而得到了广泛的应用。但等离子堆焊存在着电极寿命短、 堆焊层母材稀释率较高等问题。80年代以来出现的激光堆焊法与使用同一材料的氧 —乙炔火焰堆焊法相比 ,激光堆焊层组织细微、 致密 ,不良品率仅为前者的 1/ 10。激光堆焊的速度快 ,生产率比氧— 乙炔火焰堆焊高 1. 75倍 , 而堆焊的材料使用量仅为其 1/ 2。而且激光堆焊层的室温硬度比氧 — 乙炔火焰堆焊的高 50HV 左右。 激光堆焊质量与激光的光束模式、 功率及堆焊速度等因素有关。4 激光加工替代模具冲压加工4. 1 激光切割替代薄板件的冲裁模激光切割替代钣金件及汽车车身制造中的冲裁修边模大有可为。三维激光切割技术 , 由于其本身具有加工灵活和保证质量的特性 , 在 80 年代就开始在汽车车身制造中应用。切割时只需用平直的支撑块来支撑工件 , 因此夹具的制作不仅成本低而且快速。由于与 CAD/ CAM 技术相结合 ,切割过程易于控制 , 可实现连续生产和并行加工 , 从而实现高效率的切割生产。切割板材所使用的激光器主要有两大类 , 即CO2 激光器和 Nd : YA G激光器 ,功率为 100~1 500W , 因为功率小于 1 500W 的激光器其振动模式为单模 , 切缝宽度为 0. 1~0. 2mm , 切割面也很整洁 ,而输出功率大于 1 500W 时激光器的振动模式为多模 , 割缝宽度近 1mm , 切割面质量较差。因 Nd :YA G的激光可通过光导纤维输送 , 比较灵活方便 ,适用于机器人手执激光喷嘴配程序控制进行精确操作 , 因此在三维切割时大多采用。影响激光切割工件质量的主要因素有切割速度、焦点位置、辅助气体压力、 激光输出功率及模式。美国福特和通用汽车公司以及日本的丰田、日产等汽车公司 , 在汽车生产线上普遍采用激光切割技术 , 它不必采用各种规格的金属模具 , 除了快速方便地切割各种不同形状的坯料外 , 还用来大量切割加工因规格不同需要更改的零件安装孔位置 , 如汽车标志灯、 车架、 车身两侧装饰线等。通用汽车公司生产的卡车仅车门就有直径为 <2. 8~<39mm 的20种孔 , 公司采用 Rofin- Sinar 的 500W 激光器通过光纤连接到装在机械手的焊头上 , 用以切割这些孔 ,1min 就完成一扇门开孔的加工 ,孔边缘光滑 ,背面平整 。<2. 8mm 孔的公差为 0. 03~0. 08mm ,<12mm 孔的公差为 - 0. 25mm~ + 0. 03mm。该公司生产的卡车和客车有 89 种孔径和孔位配置不同的底盘 ,经过优化设计 ,现在只需要冲压 5种不同的底盘 ,然后再由激光切割出配置不同的孔 ,简化了工艺 ,提高了效率 ,降低了成本。我国自然科学基金委在 1997 年把大功率 CO2及 YA G激光三维焊接和切割理论与技术作为重点项目进行资助 , 国家产学研激光技术中心的课题组成员对此进行了系统的研究 , 为在我国汽车车身制造业中应用三维激光立体加工技术做出了很大贡献。该中心为一汽轿车公司、宝山钢铁公司等国有大型企业的技术改造开展了重大工程项目攻关 , 其中开发红旗加长型轿车覆盖件的三维激光制造工艺技术 , 在我国轿车生产中是首次采用。在汽车用薄厚钢板激光大拼板拼接工艺试验研究中首次采用了激光切割替代精裁工艺技术 , 取得了较好的技术经济效果。三维激光切割在车身装配后的加工也十分有用 ,例如开行李架固定孔、 顶盖滑轨孔、 天线安装孔、修改车轮挡泥板形状等。在新车试制中用于切割轮廓和修正 ,既缩短了试制周期又节省了模具 ,充分体现出采用激光切割加工的优点。4. 2 激光打标替代冲模打标企业在其生产的零部件上常常需要打上企业自己的标志或特定的符号与数字 , 以往的方法是使用冲模打标或用铸模成型 , 打标质量不高。采用数控激光机打标不仅速度快 , 而且克服了冲模打标中常见的毛边、尖锐的边缘和畸变。由于采用计算机控制 , 因此可以打出任意复杂的图案 , 省去了模具设计、 制造及调试等环节 ,大大缩短了产品的开发制造周期 , 同时也降低了成本。因激光打标机所需功率小 ,成本低 ,打出的标记美观、 漂亮 ,现已为大多数企业所采用。4. 3 激光成形替代弯曲模成形金属板料的激光成形技术是一种利用聚焦光束以一定的速度扫描金属板料表面 (扫描速度应足够快以防止表面熔化) ,使热作用区内的材料产生明显的温度梯度 ,导致非均匀分布的热应力 ,从而使板料塑性变形的方法。与常规成形方法相比 , 激光成形《模具工业》2001. No . 4 总 242 43具有许多优点: ① 属于无模成形 ,生产周期短 ,柔性大 , 可不受加工环境限制 , 通过优化激光加工工艺参数 , 精确控制热作用区域以及热应力的分布 , 将板料无模成形; ② 因其是一种仅靠热应力而不用模具使板料变形的塑性加工方法 , 因此属无外力成形; ③ 为非接触式成形 ,所以不存在模具制作、 磨损和润滑等问题 ,也不存在贴模、 回弹现象 ,成形精度高; ④ 可使板料通过复合成形得到形状复杂的异形件(如球形件、 锥形件和抛物形件等) 。激光成形机理的实质就是弯曲机理。当激光加热板料时 , 一方面在激光作用区及其周围产生热应力 , 同时降低了被加热区域板料的屈服极根 , 从而使热应力作用区的热态材料产生非均匀的塑性变形 ,实现板料的弯曲成形。试验表明 ,激光每扫描一道次 ,金属板料可弯曲 1° ~5° ,不同的扫描轨迹和工艺参数组合能够产生不同的成形效果和不同程度的变形量 , 即可得到各种复杂形状的工件。图 2表示在工艺参数为激光速功率 1. 5kW , 激光束直径5. 4mm , 材料 SUS304 , 厚 1mm , 碳涂覆面的条件下 ,激光扫面速度与材料弯曲角之间的变化关系。图 2 激光扫描速度对弯曲角的影响现在世界上许多国家都投入较大的人力、物力对激光成形技术进行专项研究 , 在某些领域现已开始了初步的工业应用。波兰基础技术研究所的HFrackiewicz 教授利用激光成形先后制造出了筒形件、 球形件、 波纹管和金属管的扩口缩口、 弯曲成形等;德国学者 MGeiger 等将激光成形与其他加工工序复合运用于汽车制造业 , 进行了汽车覆盖件的柔性校平和其他成形件的成形 , 而且对弯曲成形过程进行计算机闭环控制 , 提高了成形精度。德国Trumpf 公司于 1997 年开发了商品化激光成形多用机床 Trumat ic L 3030。 相信随着研究的不断深入以及其他相关技术的发展 , 激光成形技术将逐趋成熟 ,进入实用化阶段。5 结束语激光加工技术作为一种先进的加工工艺 , 在国外各行业已得到了广泛的应用 ,我国机械行业在 “九五”期间也将其作为十大技术之一。国家自然科学基金委也把激光加工工艺和激光加工设备的研究作为重点研究项目进行资助 , 并明确指出其主要应用领域应该在汽车制造业。模具作为一种工具 , 其生产周期、质量和成本直接影响产品的制造过程和销售。而激光作为一种万能加工工具 , 在减少模具制造装备 ,缩短模具制造周期 ,降低制造成本和保证模具质量等方面具有很大的优势。如何在实际生产中应用激光加工技术来优化模具制造工艺 , 对传统的模具制造工艺进行改进和组合 , 需要我们做出不断的努力。参 考 文 献1 陈大明 ,徐有容 . 模具钢表面激光熔覆硬面合金层改性研究.金属热处理 ,1998 , (1)2 李懦荀 ,平雪良.连续激光强化模具刃口的工艺研究.电加工 ,1995 , (6)3 孙中发 . 我国激光产业发展对策.上海交通大学学报 ,1997 , (10)4 曹 能 ,冯 梅.激光加工技术在汽车工业中的应用 ,宝钢技术 ,1998 , (3)5 管延锦 ,孙升.激光快速成形与制造技术及其在汽车工业中的应用.汽车工艺与材料 ,1999 , (9)6 A Domenico . 加工汽车车身部件的三维激光切割技术 .机电信息 ,1999 , (6)7 周建忠 ,袁国定.应用激光强化技术提高覆盖件模具寿命.模具工业 ,2000 , (4)8 胡晓峰 . 基于数控激光切割的快速制模方法研究 . 江苏理工大学硕士论文 , M Geiger ,F Voll tert sen. Flexible St raightening ofcar Body Shells by laser .10 Bob Trving. Welding Tailorde Blanks. Welding Jou-rnal ,1995 , (8)11 M Geiger . Synergy of laser Material Porcessing andMetal Forming. Annals of t he CIRP ,1994 ,43(2)12 H Arnet ,F Vollert sen. Extending Laset bendingfor t he generation of convex shapes. Porc . Inst . Engrs. ,1995 , (209)13 Trumf Lt d. The heat is on for laser profiler . SheetMetal Indust ries ,1997 , (1)

327 评论

月影星云

电子雕刻机雕刻头研究现状与发展[摘要] 介绍了电子雕刻机雕刻头的研究现状与发展。目前成熟应用的主要是电磁驱动式的,分为摆动式和直动式,具有雕刻频率高、雕刻质量好的特点;同时介绍了工作原理不同于电磁式雕刻头的电子束雕刻和激光雕刻,尤其激光雕刻,具有强大的发展潜力;以及正在研究和发展的压电陶瓷和超磁致伸缩驱动器,这些功能材料的应用为雕刻头的发展提供了很好的参考方向。关键词:雕刻头; 电磁驱动; 激光雕刻; 电子束雕刻; 压电陶瓷; 超磁致伸缩驱动器凹版印刷以其印品墨层厚实、颜色鲜艳、饱和度高、印版耐印力高、印刷速度快等优点在图文出版和包装印刷领域内占据重要的地位。目前,电雕凹版因技术先进、成本低、制版质量高且稳定、适应范围广、利于环保等优点已在凹版制造中占主导地位,一直是近年来的主流雕刻方法。印版的好坏是决定印刷质量的一个关键因素,凹版电子雕刻效率的高低直接影响到整个凹版制版的进程。印版是电雕系统根据数字化的图文信息驱动雕刻头在版辊上雕刻网穴后处理而成,因此,雕刻头的驱动装置在整个制版过程中起着重要作用。从上个世纪60年代开始,此领域的科技人员不断探索,希望能提高电子凹版雕刻的效率及质量,雕刻效率及质量可以从多方面提高,提高电子雕刻机的雕刻频率是一种最有效最直接的途径。德国、美国、瑞土和日本在电子雕刻技术方面处领先地位,我国在这方面的研究基本为空白[ 1O2 ]。文中主要介绍了电子雕刻头的研究现状及发展方向。1 电子机械雕刻电子机械雕刻是由电O机械转换器驱动雕刻刀,在滚筒上雕刻出网穴的一种方法,其关键在于电O机械转换器的工作性能。111 常用结构的原理及特点一般而言,磁钢产生稳恒磁通,控制线圈产生控制磁通,二者差动叠加产生驱动衔铁运动的电磁力,带动衔铁运动。112 转动式电磁铁结构原理如图1所示[ 2 ] ,磁钢在气隙中产生稳恒磁场,在控制线圈未加电时,通过装配时的调试,衔铁处于相对平衡位置;当控制线圈加电时,衔铁被极化,产生磁力拉动衔铁转动,图中显示了衔铁的一种极化方式。当控制线圈加以高频变化的电流或电压时,衔铁便产生高频摆动,带动雕刻刀进行雕刻工作。高刚度的回复弹簧是利用衔铁所在扭杆的弹性扭转来得到,结构简单,高刚度易实现;且带有稳恒磁场调节结构,可以调节电磁铁系统的工作点,使磁钢发挥最好效能;控制线圈只有一个,与采用2个控制线圈的相比,简化了结构,缩小了体积。Hell公司的电雕机采用的摆动式雕刻头如图2所示,其衔铁结构如图3所示。通过衔铁的摆动带动金刚石雕刻刀在版辊上雕刻凹穴,利用扭杆的扭转变形来实现高刚度回复弹簧的功能,并且其半圆型的一端用来调节扭杆的刚度,输出杆上有45张策等 电子雕刻机雕刻头研究现状与发展阻尼环,用来调节电磁铁系统的输出特性[ 3 ]。图1 摆动式电磁铁 图2 电磁雕刻头Fig. 1 Swing electromagnet Fig. 2 Electeomagnetic engraving head113 直动式电磁铁[ 2O5 ]结构原理如图4所示,带有雕刻刀的直动轴固定在衔铁上,装配时调节衔铁,使之在磁场中处于相对平衡状态,当控制线圈未加电时,磁钢的引力不能使衔铁产生动作;当控制线圈加电时,衔铁产生极性,在电磁力的作用下,克服衔铁刚度,运动一定位移。给控制线圈加以高频电压或电流,衔铁产生上下运动,从而带动雕刻刀的垂直运动,完成在版辊上雕刻凹穴的工作。图3 衔铁结构 图4 直动式电磁铁Fig. 3 Armature structure Fig. 4 DirectOacting electromagnet在此结构中,衔铁的运动是平动,气隙两侧是异名磁极;高刚度回复弹簧通过衔铁的弹性变形得到。国外某些公司采用该结构原理,也可以达到很高频率。该结构电磁铁结构较复杂,体积也较大,装配调试也有一定的难度。在电子机械雕刻方面, Hell公司雕刻头的雕刻频率由起初的4000Hz发展到如今的12800Hz,MDC公司的V ISION3雕刻头达到8100Hz,在网穴深度稍减时可达8600Hz,提高了生产效率,电子雕刻具有雕刻网穴的深度和面积均可变化、重复性强的优点,且雕刻过程中无污染。2 激光雕刻和电子束雕刻211 激光雕刻[ 5O8 ]20世纪70年代,激光就开始在胶印、凹印制版领域发挥作用,在90年代,国外的公司开始激光直接雕刻的研究。激光直接雕刻铜版,在技术上一直认为是不可行的,但它可以直接雕刻锌。瑞士MDC公司通过制版工艺的改进,实现激光直接雕刻。先在钢辊上电镀一薄层镍,然后再在其表面镀铜,随后又镀了一层锌。这层锌可吸收激光能量并被蒸发,随之蒸发的还有其下面的铜,便生成了载墨的网穴。雕刻后,像其他雕刻滚筒一样,最终在滚筒上镀一层坚硬的铬。还开发了大约500W功率的YAG激光器,每秒能雕刻7万个网穴。直接激光雕刻系统主要由3部分组成:高能量的激光;激光传输系统;光学系统,通过调节焦距,来调节单位面积上的能量。激光的原理如图5所示。激光脉冲的聚焦点直径和入射能量决定网点的几何形状。简单的直接激光雕版系统只能调整能量的大小,而激光聚焦点的直径根据所需的网点预先设置,在雕版过程中不能改变。网点直径由激光聚焦点的直径决定。先进的SHC (New Super Halfautotyp ical Cell)调整方法使每个激光脉冲的2 个参数:能量和聚焦点的直径都可以调整。“先进”意味着每个网点的几何形状网点的直径和网点的深度可以相互独立,在确保直接激光雕版的精度下任意调整。Hell解决了激光直接雕刻铜版的技术困难,在Drupa2004上展示了所研制的可直接在铜版或铬版上进行雕刻的激光雕刻机样机,给业界带来了巨大反响。随着激光技术的发展,激光雕刻不仅体现了电子机械雕刻的优点,而且具有许多自身的优点,比如无接触雕刻等,目前该方法制作版辊成本稍高,但其众多优点使其成为雕刻发展的一个方向。212 镀铜凹版的电子束雕刻[ 1 ]图5 激光雕刻原理图 图6 电子束雕刻示意图Fig. 5 Laser engraving Fig. 6 Electron beamp rincip le engraving p rincip le如图6所示,采用高能电子束可以对镀铜的凹版滚筒进行雕刻。电子束由热阴极产生,在2. 5~5万V电场的加速下射向滚筒表面。在此过程中、电子束受到电磁场的会聚控制。在小于l的时间内使电子束会聚到网穴所应该达到的直径。电子束按所需网穴深度大小在镀铜层上作用一定时间,以便达到所需深度。每个网穴的雕刻时间不长于6,以此达到l5万个网穴/ s的高频率。在滚筒表面上,电子束的动能转化为热能,使铜熔化和汽化,残留在网穴边缘的熔化物被刮刀刮掉。由此可46包装工程 PACKAGING ENGINEER ING Vol. 26 No12 2005知,电子束凹版雕刻所形成的网穴是开口面积和凹下深度都变化类型的。由于电于束的能量会与空气中的各种离子碰撞而损失,因此,电子束雕刻必须在真空装置内进行。使用高能电子束发生器和真空仓,造成设备成本高昂,最终导致其难以实用化。由于电子束离子与金属表面的吸附作用,使得所雕刻的网穴偏深,尤其在雕刻中调颜色的网穴时,得不到预期效果[ 9 ]。3 正在研究和发展的雕刻头311 压电陶瓷( PZT)在压电陶瓷两端加以电场,压电陶瓷发生伸长现象,这是压电陶瓷内部的晶体结构变化引起的。利用压电晶体的逆压电效应,实现电机械转换[ 10 ]。单片压电陶瓷的伸长量很小,一般要多片叠加成压电陶瓷堆,以满足雕刻位移要求;其输出力很大,可以比电磁力大10倍左右。对压电陶瓷堆加以高频变化电压时,其伸缩随之变化。理论上可达1~2. 5万网穴/ s的雕刻频率[ 4 ] 。压电晶体会产生较大的滞环,必须设计合适的驱动电路以减小压电晶体的滞环影响[ 11 ]。压电陶瓷驱动器结构如图7[ 1O2 ]所示。超磁致伸缩材料( Giant Magnetostrictive Material,简写为GMM)是一种新型功能材料,具有高刚度、磁滞小、应变大、响应速度快、能量传输密度高和输出力大等特点[ 12O13 ]。图7 压电陶瓷雕刻头示意图 图8 超磁致伸缩驱动结构原理图Fig. 7 Princip le of pzt driving Fig. 8 Structure p rincip leengraving head of GMM driverGMM电O机械转换器常见结构如图8所示,当给线圈提供电流时,在线圈内产生磁场,超磁致伸缩材料便产生长度变化,推动输出件工作,其具体工作情况见文献[ 13 ]。在电子雕刻中需要高频率,输出力并不需要很大,因此GMM的输出力大的优点并不适用于此处; GMM的输出是非线形的,受热效应的影响较大,这些都需要进行补偿,特别是高频时必须处理好焦耳热效应和涡流;此外, GMM需专门的驱动装置来提供磁场,材料本身价格也较高[ 12 ]。虽然如此, GMM所具有的许多优异性能,仍使其成为高频电O机械转换器开发的一个参考方向。4 结 语电子机械雕刻头主要有摆动式和直动式,其特点是雕刻频率高,雕刻质量好,且已产品化,为许多制版企业应用;激光雕刻,经过多年的发展,在版辊雕刻方面已表现出了优异性能,目前虽然成本较高,但其表现出了强大的发展潜力。在发展电子机械雕刻头方面,压电陶瓷和超磁致伸缩等功能材料是很好的发展方向。参考文献[ 1 ] 金杨1 凹版电子雕刻原理及其技术进展[ J ] 1 印刷技术, 1999,(4)[ 2 ] 朱广宙, 方平, 王传礼,等1现代电子雕刻系统及其关键技术[ J ]1现代机械, 2003, (2)[ 3 ] Laserstrahl versus DiamantstichelOTeil 3 Druck &MedienOMagazin,2004, (5)[ 4 ] 朱广宙1 电子雕刻机高频电机械转换器的研究[ C ] 1硕士学位论文, 2003[ 5 ] 张改梅, 王辉1 激光雕刻会取代电子雕刻吗[ J ] 1 印刷技术,2003, (7)[ 6 ] 金杨1 从德鲁巴看激光雕刻凹版及柔版制版技术的发展[ J ] 1印刷技术, 2000, (10)[ 7 ] Laserstrahl versus DiamantstichelOTeil 4 Druck &MedienOMagazin,2004, (7~8)[ 8 ] 王棣坊1 新的雕刻方法给凹印开拓新的未来[ J ] 1 印刷世界印刷杂志, 2001, (10)

205 评论

思念你的情意

激光加工属于无接触加工,它具有以下优点: 1.光点小,能量集中,热影响区小; 2.不接触加工工件,对工件无污染; 3不受电磁干扰,与电子束加工相比应用更方便; 4激光束易于聚焦、导向,便于自动化控制。 5范围广泛:几乎可对任何材料进行雕刻切割。6安全可靠:采用非接触式加工,不会对材料造成机械挤压或机械应力。7精确细致:加工精度可达到效果一致:保证同一批次的加工效果几乎完全一致。9高速快捷:可立即根据电脑输出的图样进行高速雕刻和切割,且激光切割的速度与线切割的速度相比要快很多。10成本低廉:不受加工数量的限制,对于小批量加工服务,激光加工更加便宜。11热变形小:激光加工的激光割缝细、速度快、能量集中,因此传到被切割材料上的热量小,引起材料的变形也非常小。12适合大件产品的加工:大件产品的模具制造费用很高,激光加工不需任何模具制造,而且激光加工完全避免材料冲剪时形成的塌边,可以大幅度地降低企业的生产成本提高产品的档次。

296 评论

相关问答

  • 激光整形美容研究论文

    ------------------------关于运用“皮肤生物钟”规律指导美容实践----------------------- 皮肤是人体(体表)最大的器

    谁是小小 5人参与回答 2023-12-11
  • 雕刻论文题目

    你就写雕塑是怎么雕出来的

    可爱的giraffe 5人参与回答 2023-12-10
  • 翡翠雕刻的论文范文

    我眼中的校园,它很有活力。新学期开始了,我高兴地来到了久别的学校。学校里到处是欢迎新同学的标语,一派欣欣向荣的景象。下面是我为大家整理的我眼中的校园话题作文范文

    虎潜山林 1人参与回答 2023-12-05
  • 光纤激光器研究进展论文

    2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2

    伊泽瑞言 3人参与回答 2023-12-06
  • 雕刻菌属相关研究论文

    什么是微生物?微生物是泛指肉眼看不到或看不清楚的微小生物。它们体积微小,结构简单。它与人类关系密切,它既能造福于人类,也能给人类带来毁灭性的灾难。微生物学在解决

    洁博利郑少波 2人参与回答 2023-12-07