• 回答数

    6

  • 浏览数

    94

sleepworm88
首页 > 学术期刊 > 高一数学论文300字以上

6个回答 默认排序
  • 默认排序
  • 按时间排序

双子座的小蛇

已采纳

高一是数学学习的一个关键时期.我发现,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟斗就栽在数学上. 要学好高中数学,要求自己对高中数学知识有整体的认识和把握.集合 进入高中,学习数学的第一课,就是集合.概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等.集合中的元素具有“三性”:(1)确定性:集合中的元素应该是确定的,不能模棱两可.(2)互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个.(3)无序性:集合中的元素是无次序关系的.例:已知集合M={X|X²+X-6=0}集合N={Y|aY+2,a∈R},且N∩CuM=Φ,则实数a=多少?因为N∩CuM=Φ所以N⊆ M\x09因为M={X|X²+X-6=0}={-3,2}所以N={2}或{-3}或{-3,2}\x09当N=Φ时,a=0\x09当N={2}时,2a+2=0,a=-1\x09当N={-3}时,-3a+2=0,a=2/3\x09所以实数a=0或a=-1或a=2/3注意:不能忘记Φ时的情况 不等式(1)绝对值的问题,考虑去绝对值,去绝对值的方法有:对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;通过两边平方去绝对值;需要注意的是不等号两边为非负值.含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解.(2)分式不等式的解法:通解变形为整式不等式;(3)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分.(4)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小.例:解关于x的不等式x-a/x+1

133 评论

毛毛球英子

数学,一个多么熟悉的字眼,平凡而又美丽。你也许会说:“数学不就是几个阿拉伯数字嘛,那也谈得上美丽?”然而,正是它的简洁,才造就了它的美丽与神奇。初识数学,是再简单不过的“1、2、3”,难道这就是我想象中的数学?可是,我错了,我看到的仅仅是一个表面,它有着更深层的含义。数学的难度渐渐的加深。从加、减、乘、除到小数、分数,数学的奥妙与美丽正逐渐向我展现。数学就像一个大集体,而那一个个数字则像一个个快活的小精灵,整天舞动着。“1”是它们的大哥,将身体挺得笔直,显得威风凛凛;而“2”则像个恬静的少女,扭曲着身体,显得羞答答的;“3”是个健壮的小伙子,天性乐观,怀抱远大的理想……其他几个兄妹更是俊俏、清秀,个个身怀绝技。这十个小精灵朝夕相处,团结一心,见姐妹太少,它们还会进行自我组合,产生新的数字呢!看,“1”见“0”一个人太寂寞,胆子又小,便主动与它组合,陪伴在它身边,便产生了“10”。其他兄妹受到启发,纷纷响应,庞大的数字从此遍布天下。有数字还不够,小精灵们觉得不够热闹,便请来了更多的玩伴。于是,小数点来了、分数带着家人来了、字母们也应邀而来……凡是受到邀请的,都从四面八方赶来了。数学王国热闹极了!可是,尽管来了,调皮的本性依旧改不了。瞧,“顽皮鬼”小数点趁主人不注意,从“2”的身边一蹦蹦到了“3”的前面。见主人心急火燎地寻找,它却在一旁哈哈大笑,活像是在与主人捉迷藏。为此,我也没少被它愚弄。见它“胜利”后得意洋洋的模样,我暗下决心:一定要养成细心的好习惯,抓住这调皮的小数点!很快,在考试时,我俩又相遇了,一见是我,小数点轻蔑地说道:“嘿嘿,手下败将,怎么又回来了?”说着,又想使用“看家本领”来迷惑我。早有防备的我一举看穿它的诡计,迅速将它揪住,将它放回原位去了。调皮的小数点终于被制服了,望着它那垂头丧气的模样,一丝快慰不禁涌上心头。如果仅仅是外表,数学还不足以称得上美丽,它那独特的内在美,更是使它留名千古。数学的范围很广,得到的传播空间也较多,几千年前,印度人创造了它,阿拉伯人将期修正,它有着很强的表达力,形象以及快捷铸就它不朽的历史。古今中外,它成就了多少事物的诞生,世界七大奇迹,有哪一样不是在数学的熏陶下完成的?从祖冲之精密的推算到陈景润的哥德巴赫猜想,从爱迪生数千种发明到高科技世界,数学都起了决定性的作用!如果没有数学,哪有许许多多的发明?哪来猜想与定理?会有哪一个工程能顺利进展?数学是无私的,它将自己的一切奉献给大家,从不索取什么;数学是公平的,它只将自己奉献给勤奋努力的人,鼓励他们继续奋斗;数学是“无情”的,它憎恨懒惰,面对那一只只贪婪而不肯付出的手,它一概置之不理。数学就像一根丝带,将自己与人们的生活紧紧地连在一起。如果没有这根丝带,世界将会是怎样呢?其实,数学的美丽还远远不只这些。它带给人们独立性,带给人们成功的喜悦,带给人们探索与发现的精神,它将自己的“美”献给每一位热爱数学的人。数学是春天的第一滴春雨,滋润大地;数学是夏日的太阳,充满激情;数学是深秋丰收的田野,带给人无限喜悦;数学是寒冬的一片雪花,洁白无暇。它是智慧与汗水的结晶,它是送给奋斗者最好的礼物,它是千古文化不朽的功臣。啊,朋友,爱上数学,播下智慧的种子,洒下辛勤的汗水,收获成功的喜悦吧!

191 评论

小小爱小吃

圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。在数学中我们通常根据定义,通常用圆规来画圆。 圆,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 在占有材料相同的情况下,圆形具有最大的面积。几何学告诉我们,这时圆的面积比其他任何形状的面积都来得大,如果有相同数量的材料希望做成容积最大的东西,当然圆形是最合适的了。自来水管、煤气管等,就是对这一自然现象的仿造。

240 评论

戏说小默

容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

297 评论

狮城*青云

到处都是 车轮 ...

118 评论

小小小文er

正余弦定理若干推论的探究与应用(一)探究目的正弦定理和余弦定理是高中数学中重要的三角公式,它们具有广泛的应用。而在教材中对它们的研究却比较单一。在学习上,为了开拓视野,更加体会到数学灵活多变的奥妙,我们有必要结合三角变换的知识对其进行总结、探究及延伸。因此,我们探究了它的一些变式以及应用。(二)探究过程、应用及结论 (1)正余弦定理 1、正弦定理:a/ sinA=b/ sinB=c/ sinC =2R 2、余弦定理:a^2=b^2+c^2-2bcCosA CosA=(c^2+b^2-a^2)/2bc b^2=a^2+c^2-2acCosB CosB=(a^2+c^2-b^2)/2ac c^2=a^2+b^2-2abCosC CosC=(a^2+b^2-c^2)/2ab(2)正余弦定理的推论 设三角形ABC的三个内角A、B、C所对的边分别为a、b、c,则 推论1、acosA+bcosB = ccos(A-B)≤C......① bcosB+ccosC = acos(B-C) ≤ a......② acosA+ccosC = bcos(A-C) ≤b......③ 证明:由正弦定理得, acosA+bcosB =2RsinAcosA+2RsinBcosB =R(2sinAcosA+2sinBcosB) =R(sin2A+sin2B) =R{sin[(A+B)+(A-B)]+sin[(A+B)-(A-B)]} =R[sin(A+B)cos(A-B)+cos(A+B)sin(A-B)+sin(A+B)cos(A-B)-cos (A+B)sin(A-B)] =2Rsin(A+B) cos(A-B) =2Rsin(�-C) cos(A-B) =2RsinC cos(A-B) =Ccos(A-B) 又A、B∈(0,�),-1≤cos(A-B) ≤1 ∴ccos(A-B)≤C,当且仅当A=B时取等号. 同理,由三角形三边和三个角的对称性可证②③式. 应用:在⊿ABC中,求证:cosAcosBcosC ≤1/8 证明:①当⊿ABC为钝角三角形或直角三角形时,cosA、cosB、cosC其中必有一个小于等于0,故结论成立. ②若⊿ABC为锐角三角形时,由推论(1)及均值不等式得 a≥bcosB+ccosC≥2倍根号bcosBccosC>0......① b≥acosA+ccosC≥2倍根号acosAccosC>0......② C≥acosA+bcosB≥2倍根号acosAbcosB>0......③ ①×②×③得abC≥8abCcosAcosBcosC ∴cosAcosBcosC≤1/8 结论:①在三角形中,任意两边与其对角的余弦值的和等于第三边与两 边的对角差的余弦的积,小于或等于第三边。 ②三角形三个角的余弦值的积恒小于或等于1/8. ③观察式子,我们可以得出 a、若已知三角形中的两角以及对应两边,可知第三边的取值范围或最小值。 b、若已知三角形中的两角,可知三边之间的数量关系。 推论2、c/(a+b)=sin(C/2)/cos[(A-B)/2] ≥sin(C/2) ......① b/(a+c)=sin(B/2)/cos[(A-C)/2] ≥sin(B/2) ......② a/(b+c)=sin(A/2)/cos[(B-C)/2] ≥sin(A/2) ......③ 证明:由正弦定理, c/(a+b)=(2RsinC)/[2R(sinA+sinB)] =sin(�-c)/(sinA+sinB) =sin(A+B)/ (sinA+sinB) =sin[(A+B)/2+(A+B)/2]/{sin[(A+B)/2+(A-B)/2]+ sin[(A+B)/2-(A-B)/2]} ={2sin[(A+B)/2]cos[(A+B)/2]}/{ sin[(A+B)/2]cos[(A- B)/2]+sin[(A-B)/2]cos[(A+B)/2]+sin[(A+B)/2]cos [(A-B)/2]—sin[(A-B)/2]cos[(A+B)/2]} ={2sin[(A+B)/2]cos[(A+B)/2]}/{2sin[(A+B)/2]cos[(A- B)/2]} =cos[(A+B)/2]/ cos[(A-B)/2] =sin[�/2—(A+B)/2]/ cos[(A-B)/2] =sin(C/2)/cos[(A-B)/2] 又A、B∈(0,�) ∴ 0<cos[(A-B)/2] ≤1 ∴sin(C/2)/ cos[(A-B)/2]≥sin(C/2), 当且仅当A=B时取等号. 同理可证②③式.应用:已知在⊿ABC中,设a+c=2b,A-C=60度,求sinB.解:由题设和推论2可知, b/(a+c)=b/2b=1/2=sin(B/2)/[cos(A-C)/2]=sin(B/2)/cos(�/6) ∴sin(B/2)=(根号3)/4 ∴cos(B/2)=根号(1-sin(B/2)^2)= (根号13)/4 ∴sinB=2 sin(B/2) cos(B/2)= (根号39)/2 结论:①在三角形中,任意一边与另外两边和的比值,等于该边的 半对角的正弦与另两边的对角差半角的余弦,这是模尔外得公 式的其中一组。 ②应用: a、求解斜三角形未知元素后,可用它验算。 b、若已知三边可求角的最大值。 推论3、a≥2(根号bC)sin(A/2) ......① b≥2(根号aC)sin(B/2) ......② c≥2(根号ab)sin(C/2) ......③ 证明:∵(b-c)^2≥0 ∴b^2+c^2≥2bc 由余弦定理,a^2= b^2+c^2-2bccosA≥2bc-2bccosA =2bc(1-cosA)=4bcsin(A/2)^2 ∴a≥2(根号bC)sin(A/2), 同理可证②③式. 应用:在⊿ABC中,已知A=�/3,a=10,求bC的最大值。 解:由题设和推论3可知,10≥2(根号bC)sin(60度/2) ∴(根号bC)≤10 ∴bC≤100 故bC的最大值为100. 结论:①在三角形中,任意一边大于或等于另外两边二次方根的二倍与 该边的半对角正弦的积。 ②应用: a、已知两边和一角可求该角所对边的取值范围或最小值。 b、已知一边以及其对角可求另两边乘积的最大值。 C、已知三边可求角的最大值。 推论4、(a^2- b^2)/ c^2= (sinA^2-sinB^2)/ sinC^2……① (b^2- c^2)/ a^2= (sinB^2-sinC^2)/ sinA^2……② (a^2- c^2)/ b^2= (sinA^2-sinC^2)/ sinB^2……③ 证明:由正弦定理得, (a^2- b^2)/ c^2=[4R^2(sinA^2-sinB^2)]/( 4R^2*sinC^2) =(sinA^2- sinB^2)/ sinC^2 同理可证②③式. 应用:在⊿ABC中,A、B、C的对边分别为a、b、c,证明: (a^2- b^2)/ c^2=sin(A-B)/sinC 证明:由题设和推论4可知, (a^2- b^2)/ c^2 =(sinA^2- sinB^2)/ sinC^2 =(sinA+sinB)(sinA-sinB)/sinC^2 ={sin[(A+B)/2+(A-B)/2]+sin[(A+B)/2-(A-B)/2]}{sin[(A+B)/2+ (A-B)/2]—sin[(A+B)/2-(A-B)/2]}/{sinCsin[�—(A+B)]} ={2sin[(A+B)/2] cos[(A-B)/2]}{2cos[(A+B)/2]sin[(A- B)/2]}/[sinCsin(A+B)] ={2sin[(A+B)/2] cos[(A+B)/2]}{2sin[(A—B)/2] cos[(A- B)/2]}/[sinCsin(A+B)] =[sin(A+B)sin(A—B)]/ [sin(A+B) sinC] =sin(A—B)/ sinC 结论:①在三角形中,任意两边的平方差与第三边的平方之比等于 两边对角正弦的平方差与第三边对角的正弦的平方之比。 推论5、sinA^2= sinB^2+sinC^2-2sinBsinCcosA……① sinB^2= sinA^2+sinC^2-2sinAsinCcosB……② sinC^2= sinB^2+sinA^2-2sinBsinAcosC……③ 证明:由正弦定理和余弦定理得, (2RsinA)^2=(2RsinB)^2+(2RsinC)^2-2(2RsinA (2RsinB)cosA 化简得sinA^2= sinB^2+sinC^2-2sinBsinCcosA 同理可证②③式. 应用:求(sin10度)^2+(sin50度)^2+sin10度sin50度的值. 解:构造⊿ABC,使A=10度,B=50度,C=120度,应用推论5得 原式=(sin10度)^2+(sin50度)^2-(-1/2)×2sin10度sin50 度 =(sin10度)^2+(sin50度)^2-2sin10度sin50度cos120度 =(sin120度)^2 =3/4 结论:①在三角形中,任意角正弦的平方等于另外两角正弦的平方 和减去2倍两角正弦与该角余弦的积。 ②应用: a、若已知任意两角角度或正弦,可求另外一角余弦及角度。 b、若式子(sinA)^2+(sinB)^2+sinAsinB满足A+B=�/3,则 其值恒为3/4. C、若存在形如sinB^2+sinC^2-2sinBsinCcosA的式子,其值为 sinA^2. 推论6、a=bcosC+ccosB……① b=acosC+ccosA……② c=acosB+bcosA……③ 证明:由余弦定理得, b^2+c^2=(c^2+a^2-2accosB)+(a^2+b^2-2abcosC) 化简得a=bcosC+ccosB 同理可证②③式成立. 应用:已知�、�∈(0,�/2),且3(sin�)^2+2(sin�)^2=1, 3sin2�-2Sin2�=0,求证:�+2�=90度. 证明:∵3(sin�)^2+2(sin�)^2=1 ∴3(1-cos2�)/2+2(1- cos2�)/2=1 ∴3cos2�+2 cos2�=3 ∴2cos2�=3(1- cos2�)>0 ∴3 cos2�=3-2 cos2�>0 ∴2�、2�∈(0,�/2) 又3sin2�-2Sin2�=0 ∴3/Sin2�=2/sin2� 构造⊿ABC,使A=2�,B=2�,BC=2,则AC=3 由推论6得,AB=ACcos2�+BCcos2� = 3cos2�+2cos2�=3 ∴AB=AC ∴⊿ABC为等腰三角形. ∴C=B=2� 而在⊿ABC中,A+B+C=2�+2�+2�=180度 ∴�+2�=90度 结论:①推论6为著名的射影定理。 ②应用:可处理边、角、弦三者的转化问题。

253 评论

相关问答

  • 数学论文300字以上

    有一天,我跟妈妈去逛商场.妈妈进了超市买东西,让我站在付钱的地方等她.我没什么事,就看着营业员阿姨收钱.看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元

    芝士大人 8人参与回答 2023-12-06
  • 物理小论文高一300字

    给你几个例子,你再写个开头结尾,组织下语言就可以了例如,在物态变化一章的教学中的汽化一节,讲清物理规律,即:蒸发和沸腾是汽化的两种方式。前者只能在液体表面上缓慢

    唔记得叫咩名 6人参与回答 2023-12-06
  • 高一数学论文500字

    随着新课改的全面推进,一场更新 教育 观念,改革教学内容、 教学 方法 的运动正在兴起。教育呼唤教师教学方式的转变,对学生自身的学习能力也提出

    慧心永梅 4人参与回答 2023-12-07
  • 高一政治小论文300字

    、全球变暖与城市“热岛”全球变暖会引起世界各地区降水与干湿状况的变化,进而导致世界各国经济结构的变化。中纬度地区将会因气候变暖使蒸发强烈而变得干旱,现在农业发达

    水之云端 6人参与回答 2023-12-06
  • 数学小论文300字以上

    有一天,我跟妈妈去逛商场.妈妈进了超市买东西,让我站在付钱的地方等她.我没什么事,就看着营业员阿姨收钱.看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元

    羋修羋修 5人参与回答 2023-12-07