• 回答数

    4

  • 浏览数

    127

完善自已
首页 > 学术期刊 > 构造函数高中数学论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

candy小蔡

已采纳

构造函数法在解题中的应用 摘要:函数思想是数学思想的有机组成部分,它在数学解题中的应用越来越广泛。本文就构造函数这一方法在不等式、数列、方程有解及恒成立问题等方面的应用举例说明。 关键词:函数思想;构造函数;不等式;方程;应用 函数思想,指运用函数的概念和性质,通过类比联想转化合理地构造函数,然后去分析、研究问题,转化问题并解决问题。因此函数思想的实质是用联系和变化的观点提出数学对象,抽象其数量特征,建立函数关系。 函数思想在数学应用中占有重要的地位,应用范围很广。函数思想不仅体现在本身就是函数问题的高考试题中,而且对于诸如方程、三角函数、不等式、数列、解析几何等问题也常常可以通过构造函数来求解。 根据需要,构造辅助函数是高等数学中一种常用的方法,这种方法也已渗透到中学数学中。首先解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,用函数的观点加以分析,常可使问题变得明了,从而易于找到一种科学的解题途径。其次数量关系是数学中的一种基本关系。现实世界的复杂性决定了数量关系的多元性。因此,如何从多变元的数量关系中选定合适的主变元,从而揭示其中主要的函数关系,有时便成了数学问题能否“明朗化”的关键所在。下面我们举例说明构造函数的方法在解题中的应用。 一、构造函数解决有关不等式的问题 有些不等式证明和比较大小的问题,如能根据其结构特征,构造相应的函数,从函数的单调性或有界性等角度入手,去分析推理,证明过程就会简洁又明快。 例1:若 ,则 的大小关系是 。 分析:式中各项的结构相同,只是字母不同,故可构造函数 进行判断。 解:构造函数 ,易证函数 在其区间 是单调递增函数。 例2(2008年山东理):已知函数 其中 为常数。当 时,证明:对任意的正整数 ,当 时,有 证法一:因为 ,所以 。 当 为偶数时,令 则 ( )所以 当 时, 单调递增。又 ,因此 恒成立,所以 成立。当 为奇数时,要证 ,由于 ,所以只需证 ,令 ,则 ( ),所以,当 时, 单调递增,又 ,所以当 时,恒有 ,即 命题成立。 综上所述,结论成立。 证法二:当 时, ,当 时,对任意的正整数 ,恒有 ,故只需证明 。令 则 ,当 时, ,故 在 上单调递增,因此 当 时, ,即 成立。故 当 时,有 ,即 。 试题分析:第二问需要对构造的'新函数 进行“常规处理”,即先证单调性,然后求最值,最后作出判断。 评注:函数类问题的解题方法要内悟、归纳、整理,使之成为一个系统,在具体运用时自如流畅,既要具有一定的思维定向,也要谨防盲目套用。函数与不等式之间如同一对孪生兄弟,通过对不等式结构特征的分析,来构造函数模型,常常可以收到出奇制胜的效果。此类问题对转化能力要求很高,不能有效转化是解题难以突破的主要原因,要善于构造函数证明不等式,从而体现导数的工具性。 二、构造函数解决数列中的有关问题 数列的实质是函数,用函数思想解数列问题能够加深对数列概念及公式的理解,加强知识点间的联系. 例3:在等差数列中,已知 Sp = q , Sq = p ( p ≠q) , 求 Sp+q 的值。 略解:因为 是n的一次函数,点( n , ) 共线,所以点 (p , ) , ( q , ) , ( p + q , ) 共线, 则有 化简即得 Sp+q = -( p + q ) 。 例4:等差数列{ }的首项 ,前 项的和为 ,若 ,问 为何值时 最大? 简析:运用数列中的通项公式的特点,把数列问题转化为函数问题解决。 解:依题意,设此函数是以 为自变量的二次函数。 故二次函数 的图象开口向下当 时, 最大,但 中, 当 为偶数时, 时, 最大当 为奇数时, 时, 最大。 三、构造函数解决方程有解、无解及若干个解的问题 方程有解、无解问题可以用“变量分离法”转化为求函数的值域,或直接构造函数。 例5(2010上海文科数学):若 是方程式 的解,则 属于区间() A. (0,1) B.(1,) C.(,) D.(,2) 解析: 知 属于区间(,2) 例6(2010天津文科数学):设函数f(x)=x- ,对任意 恒成立,则实数m的取值范围是________。答案:m<-1 解析:本题主要考查了恒成立问题的基本解法及分类讨论思想,属于难题。

266 评论

陆陆1234

以上3个网站最好,你去看看吧!

176 评论

唯一201314

数学思想是人脑对现 /a>思想是人脑对现实世界的空间形式和数量关系的本质的反映,是思维加工的产物。函数思想是数学思想的重要组成部分,在高中数学中起到横向联系和纽带连结的主干作用。用变量和函数来思考问题的方法就是函数思想。这是一种考虑运动变化、相依关系,以一种状态确定地刻划另一种状态过渡到研究变化过程的思想方法。函数思想是函数概念、性质等知识更高层次的提炼和概括,是在知识和方法反复学习运用中抽象出的带有观念性的指导方法。 所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。下面简单介绍一下运用函数思想来解决方程、不等式、数列、参数的取值范围等问题。一、运用函数思想求解方程问题 函数与方程既是两个不同的概念,又存在着密切的联系。一个函数若能用一个解析式表达,则这个表达式就可看成一个方程;一个二元方程的两个未知数间存在着对应关系,如果这个对应关系是单值的,那么这个方程也可以看成一个函数。一个方程的两端可以分别看成函数,方程的解就是这两个函数图象交点的横坐标。因此,许多有关方程的问题都可用函数思想来解决。例1 求证:不论 a取什么实数,方程x2 - ( a2 + a ) x + a - 2=0必有两个不相等的实根。分析:此题若用常规解法,求出判别式△是一个关于a的一元四次多项式,符号不易判断。若用函数思想去分析题意,设函数f(x)=x2-(a2+a)x+a-2,要证明命题成立,只需证明函数y=f(x)的图象与x轴有两个交点,由于它的开口向上,只要找到一个实数X0,使f(x0)<0即可。比如f(1)=1-(a2+a)+a-2= - a2-1<0。故函数y=f(x) 的图象与x轴有两个交点,因此命题成立。例2 已知关于x的实系数二次方程x2+ax+b=0 有两个实数根α,β,证明:(I)如果 |α|< 2,|β |< 2,那么2| a |< 4+b且| b | < 4;(II)如果2| a |< 4+b且 | b | < 4,那么|α|< 2,|β| < 2;分析:本题表面上看是方程问题,方程的根的分布与参数a,b之间满足的关系式,如果用纯方程理论处理则十分繁琐;如果用函数思想来分析,将方程根的分布问题转化为函数图像与x轴交点问题,则可抓往本质。解:本题(I)(II)的结果是2 | a | < 4+b{ <==> α,β ∈(-2,2)| b | < 4可设函数f(x)=x2+ax+b( I )由二次函数的图像知f(2)>0α,β∈(-2,2) ==>{ f(-2)>0|b|=|α�6�1β|< 44+2a+b>0 2a> - (4+b)==>{ ==> {4-2a+b>0 2a< 4+b==> 2|a| <4+b且|b| < 42 |a| <4+b 4+2a+b>0 f(2)>0(Ⅱ) 如果{ ==> { ==>{ 则| b | < 4 4-2a+b>0 f(-2)>0α,β在(-2,2)之内或在(-2,2)之外,若α,β在(-2,2)之外,则 |α�6�1β| = b > 4,这与| b | < 4相矛盾,故α,β∈(-2,2)。二 、运用函数思想证明不等式例3 设 a , b , c 均为正数,且a+b>c,a b c求证:----- + ------ > -------1+a 1+b 1+ca b c分析:不等式左右两边,结构相似: -----, ------, -------,因1+a 1+b 1+c此可以联想函数f(x)=x / (1+x) (x>0)的单调性。证明:先证函数f(x)=x / (1+x) (x>0)的单调性。任取x1>0 , x2>0,不妨设x1 0 , x2> 0 ∴ 1+ x1 >0 , 1+ x2 >0又∵x1< x2 ∴x1- x2< 0x1- x2 ∴------------------- < 0(1+ x1)(1+ x2)即f(x1)c>0 ∴f(a+b)>f(c)a+b c即--------- > ----1+a+b 1+ca b a b a+b∵------ + ------ > ------- + ------- = -------1+a 1+b 1+a+b 1+a+b 1+a+b a b c∴------ + ------ > -------1+a 1+b 1+c例4 已知a、b、x、y都是实数,且a2+b2=1,x2+y2=1,求证:ax+by≤1分析:已知条件中有平方和等于1,可联想正、余弦之间的平方关系,再利用函数的有界性进行证明。证明:∵a2 + b2 = 1 , x2 + y2 = 1∴可设a=sinα, b=cosα, x=sinβ, y=cosβ则有ax+by=sinαsinβ+cosαcosβ=cos(α-β)≤1∴ax+by≤1三、运用函数思想解数列问题数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2......n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。因此,有些数列的问题可用函数思想来解决。例5 在等差数列中,前n项为Sn,已知Sp = q , Sq =p( p、q∈ N*且p≠q),求Sp+q分析:本题的常规解法是用求和公式建立方程组,求出a1和 d,进而求出Sp+q,但计算十分繁琐。若考虑到等差数列的前n项和是关于n的二次函数,且无常数项。故可考虑建立目标函数Sn=an2+bn(a,b为待定系数),可优化解题过程。解:设Sn=an2 + bn (a,b为待定系数)则Sp=ap2+bp ∴ap2+bp=q (1)Sq=aq2+bq ∴aq2+bq=p (2)(1) - (2)整理得(p-q)[a (p+q) + b)]=-(p-q )∵p≠q ∴p-q≠0 ∴a(p+q)+b= -1又∵Sp+q=a ( p + q )2 + b ( p + q ) = ( p + q ) [ a ( p+q ) + b ]= - (p+q)∴Sp+q= - (p+q)四、运用函数思想求参数(或变量)的范围(一)构造一次函数求参数的范围例6 若不等式2x-1>m(x2-1)对 |m|≤2的所有m均成立,求x的取值范围。解:构造关于m的一次函数f(m)=(x2-1)m - 2x+1,则由f(m)<0对m∈[-2,2]恒成立,得f(-2)<0 2x2+2x-3>0 √7 - 1 √3 + 1{ => { => ------------ < x < ----------f(2)<0 2x2-2x-1<0 2 2√7 - 1 √3 + 1∴x的取值范围是(---------- ,----------- )2 2(二 )构造二次函数求变量的范围例7 已知实数a , b , c , d , 满足a+b+c+d=5,a2+b2+c2+d2=7,求a的取值范围。解:构造关于x的二次函数f(x)=(x - b)2+(x - c)2+(x - d)2=3 x2 - 2(b + c + d) x+(b2 + c2 + d2)∵f(x)≥0 ∴△≤0即4(b + c + d)2-12(b 2+ c2 + d2)≤0亦即 4( 5 - a)2 - 12(7 - a2)≤0∴2a2-5a+2≤0∴1/2≤a≤2∴a的取值范围为[1/2,2] 这个 开头的话 和中间一些还是不错的啦 具体自己组织下~ 1、坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式,因此判断平面直角坐标系中的一个点是否在函数图象上,只需把点的坐标代入函数解析式进行检验,能满足函数解析式的表明点在图象上,不满足函数解析式的则表明点不在图象上。2、求两个函数的交点坐标,即求这两个函数解析式组成的二元方程组的解。3、在解决有关函数的问题时,要注意利用平面直角坐标系中X轴与Y轴之间的夹角为直角、以及勾股定理等平面几何知识,要能很熟练地求出函数与坐标轴的交点坐标。5、根据函数的概念、性质以及它们的图象,进行形与数、形与方程、形与不等式之间的相互转换,是解决函数问题的重要方法。 函数概念在数学中占有重要的地位。它在整个中学函数教学的这条主线上,起到承前启后的关键作用。函数概念以及它的思想方法成为中学数学教学的主线之一,函数概念的学习,是学生对现实世界中具体的数量关系的认识向抽象的数量关系的认识的一个飞跃。然而由于函数概念的复杂性,使它成为初中教学的一个难点。本文在前人的研究基础上,从函数的概念出发,通过问卷调查和个案访谈,从函数概念的定义、表示方法和应用三个角度调查了本人所在的中学的初中学生对函数概念的理解,并将此结果加以对比分析,得出以下结论:1.初中学生对函数概念本质的理解不深刻,不能全面认识自变量x与因变量y之间的关系,这与在新课程标准要求下对学生进行训练的重点有关。2.学生对图形和图表表征的函数的识别发展显著落后于对解析式表征的函数的识别。3.初中学生对函数概念的应用能力较低。4.初中学生在函数的认知发展水平方面存在差异,但总体没有明显差异:(1)在运用解析式来描述函数概念方面的能力,初三学生强于初二学生;(2)对于图表和图像法的运用方面,初二学生强于初三学生。本文对研究结果进行深入分析,结合教学实际,对初中现阶段的函数概念教学提出以下改进措施:(1)加强对函数概念的本质认识;(2)加强函数表示形式间的转换;(3)关注日常生活中的函数模型。 这些也可以用下的~

228 评论

美多多lady

说起数学思想,其实就是,就某一道题来说,有两种或以上的方法去解,也就是说,从两种或以上的角度去看问题,分析问题。现在就数学中四大思想作一篇论文。(数学四大思想:函数与方程思想、转化与化归思想、分类讨论思想与数形结合思想;)(一)函数与方程函数思想,是指用函数的概念和性质去分析问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化等式或是不等式,然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。“宇宙世界,充斥着等式和不等式。”换句话说,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;不等式问题也与方程是近亲,密切相关。应用方程思想时特别需要重点考虑的大体就是列方程、解方程和研究方程的特性。函数描述了自然界中数量之间的关系,函数思想通过题目中数量的关系,解决问题。一般地,函数思想是构造函数从而利用函数的性质解题,在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。要对所给的问题观察、分析、判断比较深入、充分、全面时,才能发现由此及彼的联系。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。(二)等量代换等量代换是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。我们要不断培养和训练自觉的转化意识,这有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。等量代换要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。它能给人带来思维的闪光点,找到解决问题的突破口。“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。”等量代换思想方法的特点是具有灵活性和多样性。它可以在数与数、形与形、数与形之间进行转换;它可以在分析和解决实际问题的过程中进行,在普通语言向数学语言的翻译中进行;消元法、换元法、数形结合法、求值求范围问题等等,都体现了等量代换思想,但是由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。在数学操作中实施等量代换时,我们要尽量熟悉、简单、直观、标准,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,顺水推舟,经常渗透等量代换思想,可以提高解题的水平和能力。(三)分类讨论在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。引起分类讨论的原因主要是以下几个方面:① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其全面性,更使之具有确定性。进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复。解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。(四)数形结合中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

300 评论

相关问答

  • 数学函数论文

    一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变

    liuyuecao110 3人参与回答 2023-12-07
  • 函数数学建模论文

    数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十

    liuyanfei0451 6人参与回答 2023-12-06
  • 大学数学函数论文

    数学这门古老而又充满生命力同时兼顾理论性和应用性的课程,被誉为“思维的 体操 ”,其中无论是理论(纯数学)还是实践(应用数学),都包含丰富的知识和思维的技巧

    月影星云 2人参与回答 2023-12-08
  • 高中函数论文范文

    微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。 摘要:初等微积分作为高等数学的一部分,属于

    Diana~蜜桃 3人参与回答 2023-12-08
  • 高中数学三角函数论文范文

    2009年06月03日 数学(shuxue)建模论文范文--利用数学(shuxue)建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,

    蔡一诺1989 4人参与回答 2023-12-07