snowmemory098
有关什么是黄金分割及黄金分割的应用问题详解:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以来近似,通过简单的计算就可以发现: 1/ ()/ 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。 由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。 黄金分割点约等于0.618:1 是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。 利用线段上的两黄金分割点,可作出正五角星,正五边形。 2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。 黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取 ,就像圆周率在应用时取一样。 发现历史 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 |..........a...........| +-------------+--------+ - | | | . | | | . | B | A | b | | | . | | | . | | | . +-------------+--------+ - |......b......|..a-b...| 通常用希腊字母 表示这个值。 黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:的倒数是,而与1:是一样的。 确切值为根号5+1/2 黄金分割数是无理数,前面的1024位为: 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362 1076738937 6455606060 5922...
小小乖肉球
生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:…而…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的…处。音乐家们则认为将琴马放在琴弦的…处会使琴声更柔和甜美。 数…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的处,效率将大大提高,这种方法被称作“法”,实践证明,对于一个因素的问题,用“法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现
Ares填词人
初二数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
长颈鹿之迷
数学家庭中的一对孪生兄弟――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。一、生活当中的轴对称图形1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。三、文学当中的轴对称图形1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。还有许多剪纸作品,也正是因为有了轴对称的存在,使其更加精致、美观。当然我们现在所写的简体字中,也有轴对称。如“丰”“目”“尖”等。文字的对称轴较为好找,横一横,竖一竖,基本上就能够找到。其实有时候,对称轴也具有复制的功能,它能够把一个字,分成与其相同的两个字,像“二”如果把它的对称轴当作是第一横的中点和第二横的中点,所连接成的线段所在的直线的话。那么左右两边的图案,不是可以近似的看成两个二吗?此时轴对称就具有复制的功能,但是在我的眼里它还具有另一个功能。就拿这个“一”来说吧。与前面相同,也是画竖下来的对称轴。画好之后,要把这条对称轴当成这个字原有的,那么你就会发现。“一”与这条对称轴就组成了一个“十”字。这就是在我眼里轴对称图形的第二个功能。能够使一个字变成另外一个字。2、文学中的轴对称图形刚刚说的都是文字当中轴对称的应用。那由字所组成的句子呢?其实仔细推敲一下,也有。我记得我以前与同学们都在玩一个游戏,就是一个人说出一句话,另一个人马上就得把这个句子反着读出来。在整个游戏过程当中,有一句话给我留下了深刻的印象“上海自来水来自海上”当我们把这个句子反着读一便时,就会发现它与正着读的语序一模一样。再仔细看一看,这又是一个关于轴对称的应用。这么来说吧,如果我们把“上海自来水来自海上”中的水字不看,那么两个“来”字的中点所在的那一条直线,就可以把这句话分成相等的两等份,这不就证明了句子当中也有轴对称的应用吗?这一系列的例子,也让我们看出了轴对称在文学方面所做出的成就,它能使一些作品更加完美,有画龙点睛的作用。也能使文字变化起来,使句子顺口起来。给文字与句子带来更多的趣味,也给文学添上了十分美丽的一笔。四、奥运当中的轴对称图形2008年北京奥运会即将来临。在这个令全中国人都兴奋起来,令全世界人都以不同形式参与进来的盛会中。我们也不难发现轴对称图形——奥运五环旗。我们可以把奥运五环旗(如图一),黄、绿两环相接触的地方点A与黑环上的点B相连接,此时对称轴就是线段A、B所在的那一条直线。在奥运会上有奥运五环旗当然也会有奥运吉祥物,2008年北京奥运会的吉祥物是奥运福娃。仔细看看我们的奥运福娃不禁让人喜欢的不得了。尤其是福娃晶晶更是惹人喜爱。他的憨厚,他的朴实,无不给人亲近的感觉。图二就是福娃晶晶在举重的画面。如果大家看一下图二这张图片,就会发现如果把这张图片中的点A与下端的点B相连接。那么这条线段所在的那一条直线就是福娃晶晶的对称轴。想不到吧,原来奥运福娃也是轴对称图形。还有在奥运会上,当各国的国旗徐徐上升时,又引发了我对轴对称图形的联想。像英国的国旗,它的对称轴就是国旗上下两边线段的中点,所连成的线段所在的那一条直线。像这样的国旗还有很多。如加拿大国旗、意大利国旗等等。轴对称图形的千变万化,使我眼花缭乱,头晕目眩。在它每一次变化中,都可以发现许多的惊喜。轴对称变化它也无处不在,它存在于各个角落,这也给我们研究它带来了很多的便利。在研究轴对称图形的过程中,我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。其实数学的世界真的好大好大。此时我真想将自己变成大山伫立在数学当中。变成流水穿梭与数学之中,化为白云漂浮在数学之中,成为鸟儿翱翔与数学之中。
luclmars明尼苏达
论文题目:(下附署名)要求准确,简练,醒目,新颖.2,目录目录是论文中主要段落的简表.(短篇论文不必列目录)3,摘要是文章主要内容的摘录,要求短,精,完整.字数少可几十字,多不超过三百字为宜.4,关键词或主题词关键词是从论文的题名,提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇.关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索. 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在"提要"的左下方.主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语.(参见《汉语主题词表》和《世界汉语主题词表》). 学位论文的标准格式二5,论文正文(1)引言:引言又称前言,序言和导言,用在论文的开头. 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围.引言要短小精悍,紧扣主题.(2)论文正文:正文是论文的主体,正文应包括论点,论据, 论证过程和结论.主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤; d.结论.6,参考文献一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾.参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行.中文:标题--作者--出版物信息(版地,版者,版期)英文:作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证.(2)所列举的参考文献要标明序号,著作或文章的标题,作者,出版物信息.如何选题获取最佳论文选题的途径 1,选择你有浓厚兴趣,而且在某方面较有专长的课题. 2,在不了解和了解不详的领域中寻找课题.3,要善于独辟蹊径,选择富有新意的课题.4,选择能够找得到足够参考资料的课题.5,征询导师和专家的意见.6,善于利用图书馆; 图书馆的自动化,网络化为读者选题提供了便利条件. 论文的核心不同的问题,有不同的写法,一般一篇论文论述一个核心问题(综述除外)论文的核心是作者根据国内外发展和自己工作梳理出来的,可以从多个方面着手元部件和系统,理论分析和实验,系统特性和测试,方案设计和实现等;新思想,新概念,新理论,新途径,新方案,新进展,不同看法.文章结构和长度结构题目,摘要和关键词引言正文结论和致谢(结束语)参考文献,附录等文章长度并无明确规定,一般科技期刊文章在4000-8000字(含图表),根据杂志和文章类别而定.综述文章多由编辑部门邀请权威撰写,涉及历史的回顾和未来的展望,内容广泛,可以较长.科技论文的篇名用简洁恰当的词组反映文章的特定内容,明确无误篇名简短,不超过20个字少用研究和空洞应用之类字避免用不熟悉的简称,缩写和公式等关键词4-6个反映文章特征内容,通用性比较强的词组第一个为本文主要工作或内容,或二级学科第二个为本文主要成果名称或若干成果类别名称第三个为本文采用的科学研究方法名称,综述或评论性文章应为"综述"或"评论"第四个为本文采用的研究对象的事或物质名称避免使用分析,特性等普通词组引言主要回答为什么研究(why)介绍论文背景,相关领域研究历史与现状,本文目的一般不要出现图表正文论文核心,主要回答怎么研究(how),一般正文应有下述几个部分组成本文观点,理论或原理分析实现方法或方案(根据内容而定)数值计算,仿真分析或实验结果(根据内容而定)讨论,主要根据理论分析,仿真或实验结果讨论不同参数产生的变化,理论分析与实验相符的程度以及可能出现的问题等结论文章的总结,要回答研究出什么(what)以正文为依据,简洁指出由研究结果所揭示的原理及其普遍性研究中有无例外或本论文尚难以解决的问题与以前已经发表的论文异同在理论与实际上的意义对近一步研究的建议致谢对给予本文研究的选题,构思,实验或撰写等方面给以指导,帮助或建议的人员致以谢意;由于论文作者不能太多,所以部分次要参加者可不列入作者,表示致谢;一般资助单位应在文章首页下脚加注,一般不再致谢.参考文献文章中引用他人成果或文章内容应注明参考文献参考文献规格应按国标或出版社编辑部格式作者,文献题名,刊名,年,卷(期),起止页码附录附录不是文章的必要组成部分,但可为深入了解本文人员提供参考主要提供论文有关公式推导,演算以及不宜列入正文的数据和图表等注意事项-缩写词,外文字母摘要和正文中的缩写词第一次出现都必须写出全称外文字母必须分清大小写,正斜体和上,下角正体:计量单位(cm, kg)斜体:物理量,坐标,函数符号 R,L,C注意事项-量和单位使用国际标准和国家法定计量单位一篇文章不要用一个符号表示两个或多个物理量,如用C同时表示常数和电容首次出现(公式)的符号应在其后说明物理意义量的符号一般为单个字母,如阈值电压(Threshold Voltage) 不能用TV ,应当用 Vt 组合单位的斜线不能多于1个,W/m2/k应为W/( m2· k)或W·m-2·k -1 注意事项-图,表图表内容及含义,坐标名称量纲清楚图和表内容不应重复,一种数据用图或表一个表示应按顺序连续编号 Fig. 1, Fig. 2, Table 1…图框宜细,曲线应粗表格应用三线表基本入手途径(一)1.选题最关键一定要选择具有一定理论深度的题目,可拓展性强的领域要尽可能选择研究学科交叉点不要盲目追随研究热点,强调独立选择.2.创新之路提出自然的,很简单的,具有直觉性的解决方法,做深下去考虑自己感兴趣的,具有实际意义的点做下去要广泛粗看,少量精看基本入手途径(二)3.提高论文写作能力背诵科技英文段落及常用句式由浅入深,勤于动笔向国外投稿,得到反馈科技论文的摘要简明扼要, 200字左右,无废话;用第三人称写,说明文章目的,方法,结果和结论,不应出现"本文","我们","作者"字眼,也不要有"首先" , "最后" , "简单" , "主要"和"次要"等修饰词;文摘可单独发表,应有独立性和自明性,不得使用文章中的章节号,图号和表号等;第一句不要重复文章篇名或已表述过的信息;不能写常识性内容,过去情况和未来的计划,只写最新进展.三,关于英文文摘英文摘要(Abstract)SCI,ISTP和EI等索引主要是根据英文题名和文摘选录文摘长度一般为100-200 words.内容要求与中文大体相同,主要讲目的,过程,方法和结果.内容要精练,不要将结论译成英文作摘要.文章题目第一词切不可用冠词The,A,An和And(单位名称也不用The Institute …)四,怎样读文章怎样读文章(一)在读文章前,确信它是值得的.先看题目,然后是摘要,如果没有完全失望,继续看介绍和结论(title->abstract->introduction->conclusions)在掌握所有细节之前,浏览整个文章,尽量找到那些关键点(the most implortant points).如果还觉得它是有关和值得的,就回去继续看(当然如果是老板要你看的重要文章,跳过前面的内容,直接读就行了). 高的效率从结论开始,浏览图示和表,看看他的引用. 只在你觉得相关或者你觉得能给你不同的观点的时候才读其他部分. 跳过你已经知道的部分(比如背景和动机). 怎样读文章(二)积极主动的思考作者怎么想出这个念头的 这件工作到底完成了什么 它和这个领域的其他工作有什么关系 其中重要的引用文献是哪些 在这个工作的基础上合理的下一步工作是什么 相关领域的什么想法和这个主题相关 有什么不同 这些想法怎样帮助解决自己的研究问题 怎样读文章(三)总结所读的每个主题关键问题key problems 所描述问题的不同表达形式 不同方法之间的关系 替代的方法 读完以后,看一下表述的问题 什么使得这篇文章易读 文章解决了哪个级别的细节问题 什么例子用来阐述重要的概念 什么问题没有解决 结果能够一般化(推广)吗 怎样读文章(四)良好的组织习惯一个有用的方法是,用笔记录自己读过和听过的东西.写下自己的想法(speculations),感兴趣的难题,可能的解决方法,要查看的参考数目,笔记,文章的概要,有趣的印证.阶段性的复习可以发现这些思想是不是开始走在一起(fit together).即使那些笔记没有用,也会帮助我们集中精力,找到重点和进行总结.(You may find yourself spending over half of your time reading, especially at the beginning. This is normal.) 怎样读文章(五)发展自己的IDEA确认所描述的思想真的有用(而不是仅仅理论上成立,或者是一些不重要的例子上面成立)真正理解文章,就要懂得问题的动机,解决方法的可能选择,解决方法基于的假设.这些假设是不是现实,它们是不是可以在使方法有效的情况下移除,进一步的研究方向,实际完成或者实现的工作,理论判定或者实验验证的有效性,扩充和延伸算法的潜力. 保存读过的文章,建立在线的参考书目.增加关键字的的域,文章的位置和感兴趣的文章的总结.这对以后写文章以及给其他的研究生很有用. 怎样读文章(六)阅读,思考,再阅读,再思考每周留一定的时间看看是不是可以想出研究想法 每周至少到图书馆看一下相关领域前面杂志的摘要.选择一两篇仔细阅读并且批判. 每周进行一次调查,利用电子资源或者图书馆寻找领域相关的技术报告,选择性批判性的阅读. 参加一个研讨会或者讨论组,批判性的听取. 了解研究的进展要注意你清楚这个领域的所有文献,如果你不经常复习一个月以前的文献,你可能发现自己对别人的思想不清楚了.另外一方面,也不要让别人的想法限制了你的创造力. 要注意避免的方面主动(活跃)的听和读需要被当作贯穿你整个事业的"不间断教育".不要愚蠢的认为在你开始研究前应当读完所有的文献,而应该选择性的阅读.一开始从经典的文章(询问你的老师或者同学从而得到一些最有用的杂志和会议)和最近几年的杂志和会议开始. 五,开始写作开始写作(一)读一些最新的论文,尤其是那些发表了的.学习它们的内容和表达,注意它们里面的-进一步工作.(future work) 仔细的记笔记.记下每一个新的结果,即使没有重要的和有帮助的东西. 写出一个纲要,它以后会经常改变,经常在头脑中保持一个新的构想对以后平滑的过渡很有好处. 开始写作(二)第一章:导言问题是什么 为什么重要 别人做了什么工作 自己方法的主要思想是什么 文章的其他部分是怎样组织的 第二章:问题问题定义术语介绍基本属性讨论第三章:主要想法1……第k+2章:主要想法k第k+3章:结论重述完成的工作讨论进一步的工作开始写作(三)不要总认为文章必须从第一页写.直接写主要想法big idea,记录怎样和其他部分组织在一起.一个组织各章的方法是展现给你的实验室同学(fellow students),如果你能够将它们组织成连贯的"一小时报告",那就表明你可以写你的文章了.开始写作(四)无休止的修改格式而不是内容也是常犯的错误.要避免这种情况 清楚自己想说什么.这是写清楚要的最难最重要的因素.如果你写出笨拙的东西,不断的修补,就表明不清楚自己想说什么.确信你的文章真的有思想(ideas).要说清楚为什么,不仅仅是怎么样. 从每一段到整个文章都应该把最引人入胜的东西放在前面.让读者容易看到你写的东西(Make it easy for the reader to find out what you've done).注意处理摘要(carefully craft the abstract).确定(be sure)说出了你的好思想是什么.确定你自己知道这个思想是什么,然后想想怎么用几句话写出来.开始写作(五)不要大肆夸耀你自己做的事情. 得到反馈如果你加入讨论组,会收到很多别人的文章,他们请你评论.知道别人对论文的意见很重要.你给别人帮助,别人会在你需要的时候帮助你.而且,自己也能提高.为文章写有用的评论是一门艺术.你应当读上两遍,第一遍了解其思想(IDEAS),第二遍看表达. 如何减少写论文的痛苦写下自己的想法是完善它的好方法.你可能发现自己的想法在纸上会变成一团糟. 慢慢 地你也发觉它清晰起来.记住你写得草稿很可能要全部推翻.着重于内容而不是格式不要追求完美记住:写作是一个不断完善的过程.当你发现所写的不是你开始想写的,写下粗稿,以后再修补.写粗稿可以理出自己的思想,渐渐进入状态.如果写不出全部内容,就写纲要,在容易写具体的内容时再补充.如果写不出来,就把想到的东西全部写出来,即使你觉得是垃圾.当你写出足够的内容,再编辑它们,转化成有意义的东西.另一个原因是想把所有的东西都有序的写出来(in order).次序是不一定的.你可能要从正文写起,最后在你知道你写的到底是什么的时候再写简介.写作是很痛苦的事情,有时候一天只能写上一页.追求完美也可能导致对已经完美的文章无休止的修改润饰.这不过是浪费时间罢了.把写作当作和人说话就行了. 积极的动力积极的反馈定下每天,每周,每月的目标是一个很好的主意 尽可能让自己获得成就感及时的交流要与人分享你的想法或者给别人以建议分而治之 在写论文时,不是写整个的文章,而是一节,一段,一章的写.一次实现一个部分,找出那些一个小时里可以解决的问题,如果不确信,不要让它们阻止你完成一些东西——一天一次.记住:你完成的每一步工作都使你接近完成.六,论文写作辅助工具论文模板绘图工具的使用公式编辑器实验七,一个例子及常见问题学士论文例子基于对等网络的即时消息系统在写之前把目录做好终点就是起点.以终为始,以始为终.学士论文常见问题1.论文格式不合要求或字数不够 2.第一章改为: "绪论"或"概述"或许要好一些,这一单应分为几个小节.概述最好写到4页以上.,概述写清背景,动机以及本文的工作安排.也可以把本文的贡献放上去, 3.对于论文的实验结果,应给出实验结果的详细分析,而不应是仅仅罗列一些结果.4.有的论文描述算法时给出了算法的代码,最好不要大段地拷贝代码,而尽量用流程图或伪代码.并对代码给出分析. 5.论文尽量少用或不用"我,我们"之类的词,尤其尽量不要用"我"这一字眼 6.你的情况,借本课本多从课本上找依据,再搞几个数学名著的理论用名著撑面子~有点乱,但是加油哈 一个专业论文网预祝马到成功o(∩_∩)o...
冷扇画屏
黄金分割点在现实生活中的应用论文 希腊的自然科学研究影响西方文化和文明的发展,他们重视分析、分解、假设、推理、推导、实验、验证等思维方式。这与东方重视整体、模糊处理、直觉综合、和谐大同、“仁者爱人”等思维方式和思想有明显的差别。胡适在“中国的文艺复兴”一文中说“当孟子在对人性的内在美德进行理论探讨时,欧几里德正在完善几何学,正在奠定欧洲的自然科学的基础。”这种说法不全面,东方的中华文明有过比西方更辉煌的历史,但在五百多年来,西方经历了继承希腊的文艺复兴和工业革命,使科学和技术快速发展,而中国因封建统治和闭关锁国等原因而衰落。现在应该撷取东西方文明的长处,把它们整合起来,创建中华夏兴。 “科学中的美和美的科学”,早期属于自然哲学,自古希腊人开始研究,至今约有2500年。古希腊人喜欢抽象研究。抽象研究又分为逻辑推理研究和形象推理研究,后者所用的工具有直尺和圆规。代数和平面几何为两者的典型代表。 曾提出这样一个问题:“一根棍从哪里分割最为美妙?”答案是:“前半段与后半段之比应等于后半段与全长之比”。设全长为1,后半段为x,此式即成为(1-x):x=x:1,也就是X2+X-1=0。其解为:。棍内分割只能取正值,此值就是著名的黄金分割比值G, G=≈。而且G(1+G)=1,即G和(1+G)互为倒数。 偏有一些古希腊人想用形象方法解决黄金分割问题,并获得漂亮的结果。欧几里德(约公元前330-257年)总结了前人的经验和研究成果,编著了《几何原理》十三卷。这是世界上最早用公理方法叙述的数学著作。其中所载的黄金分割几何问题已引起广泛的兴趣,在科学、艺术、建筑、技术各领域有着广泛的应用,哲学家和美学家也曾反复讨论,不断有文章发表。 自然界的形成、运行、演化、生长、繁衍、消亡等都是有规律的,有些物体可以直接感到自然美,但更多的物体令人迷惑不解。我们深信“天道崇美”,但需要人去探究,揭露其规律,使人感受到深层次的自然美和科学美。这就是“因人而彰”。黄金分割律,就是想梳理和探讨这种自然美和科学美。人有爱美的天性,而且人本身也是很精美的。“天道崇美,人性好美”有普遍性,无论是天然物品还是人工制品,形态的丑陋必然表明其功能的缺陷,而某些功能的完美,往往伴随着美的外形. 现代科学研究表明,在养生中也起重要作用。注意了这些黄金分割点,对养生健体大有好处。“",这个比值因具有美学价值而被古希腊美学家运用到造型艺术中,因为凡符合黄金分割律的形体总是最美的形体。现在发现此比值和医学保健、健康长寿有着千丝万缕的联系,亦可称为健康的黄金分割律。在人体结构上,更是无处不在。脐至脚底与头顶至脐之比;躯干长度与臀宽之比;下肢长度与上肢长度之比,均近似于。而且,越是接近于这个值,整个形体就越匀称,越令人觉得完美。人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与的乘积恰好是℃-℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。再如,营养学中强调,一餐主食中要有六成粗粮和四成细粮的搭配进食,有益于肠胃的消化与吸收,避免肠胃病。这也可纳入饮食的规律之列。抗衰老有生理与心理抗衰之分,哪个为重?研究证明,生理上的抗衰为四,而心理上的抗衰为六,也符合黄金分割律。充分调动与合理协调心理和生理两方面的力量来延缓衰老,可以达到最好的延年益寿的效果。一天合理的生活作息也符合的分割,24小时中,2/3时间是工作与生活,1/3时间是休息与睡眠;在动与静的关系上,究竟是"生命在于运动",还是"生命在于静养"?从辩证观和大量的生活实践证明,动与静的关系同一天休息与工作的比例一样,动四分,静六分,才是最佳的保健之道. 动静:从辩证观点看,动和静是一个比例关系,大致四分动六分静才是较佳养生之法。饮食:医学专家分析后还发现,饭吃六七成饱的人几乎不生胃病;摄入的饮食以六分粗粮、四分精食为适宜。从黄金分割律看,结婚的最佳季节是一年12个月的处,约在7月底至8月底。医学研究已表明,秋季是人的免疫力最佳的黄金季节。因为7月至8月时人体血液中淋巴细胞最多,能生成大量的抵抗各种微生物的淋巴因子,此时人的免疫力强.较少小户型以其"低总价、低首付、低月供",把众多刚刚踏入社会的年轻人吸引为有房一族。虽然市场上对小户型的需求很热烈,但也同样具有投资风险。如何进行小户型投资?市场时兴一套有趣的"黄金分割论".时间分割因为工作时间与居家时间之比正好构成一个黄金分割,即比,所以专家认为,最有价值的地段可能是工作与社区之间的黄金分割点.尺度分割小户型因其小,面积更要精打细算.在小户型越来越热的过程中,市场有一个趋势,即户型越小越好。但绝对的小既不符合居住者的正常生活需求,也绝对不会是潮流。新消费或投资趋势表明,小户型在面积大小上也存在黄金分割率.在30至80平方米之间,有一个黄金分割数,正好是50余平方米。所以,市场上50余平方米的小户型热卖度超过了其他规格.空间主要是卧室与起居,30平方米根本无法细分任何功能区,难以满足高品质居家生活。而50多平方米是功能上黄金分割区的最小面积,即可分出30平方米的主体空间和20平方米的配套空间,解决独立厨卫、阳台、储藏等各个功能.因此,根据"黄金分割论"选择的小户型应该是既节省户型面积,减少投资总额,同时又能满足空间上的审美和功能需求,保证居住者的生活品质与居家情趣。 黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似这个数比关系构成的。它特别表现艺术中,在美术史上曾经把它作为经典法则来应用。有许多美术家运用它创造了不少不朽的著名。 黄金分割对摄影画面构图可以说有着自然联系。例如照相机的片窗比例:135相机就是24X36即2:3的比例,这是很典型的。120相机近似3:5,6X6虽然是方框,但在后期制作用,仍多数裁剪为长方形近似黄金分割的比例。只要我们翻开影集看一看,就会发现,大多数的画幅形式,都是近似这个比例。这可能是受传统的影响,也养成了人们的审美习惯。另外,也确实因为它具有悦目的性质,所以有时人们在时间中并非注意到这个比例,而特意去运用它,但往往就不自觉中,进入了这个法则之中。这也说明了,黄金分割的本身就存在有美的性质。在摄影实践中,运用黄金分割法则,主要表象在黄金分割点、线、面的运用中。黄金分割点,在全景构图中,多是主要表现对象,或是视觉中心所处的位置,在中、近景构图中,多是景物主要部位所处的位。在人像构图中常常是将人的眼睛处理在近于黄金分割点的位置。黄金分割线,多用作地平线、水平线、天际线所处的位置。 《梦幻曲》是一首带再现三段曲式,由A、B和A′三段构成。每段又由等长的两个4小节乐句构成。全曲共分6句,24小节。理论计算黄金分割点应在第14小节(),与全曲高潮正好吻合。有些乐曲从整体至每一个局部都合乎黄金比例,本曲的六个乐句在各自的第2小节进行负相分割(前短后长);本曲的三个部分A、B、Aˊ在各自的第二乐句第2小节正相分割(前长后短),这样形成了乐曲从整体到每一个局部多层复合分割的生动局面,使乐曲的内容与形式更加完美。大、中型曲式中的奏鸣曲式、复三段曲式是一种三部性结构,其他如变奏曲、回旋曲及某些自由曲式都存在不同程度的三部性因素。黄金比例的原则在这些大、中型乐曲中也得到不同程度的体现。一般来说,曲式规模越大,黄金分割点的位置在中部或发展部越*后,甚至推迟到再现部的开端,这样可获得更强烈的艺术效果。莫扎特《D大调奏鸣曲》第一乐章全长160小节,再现部位于第99小节,不偏不依恰恰落在黄金分割点上()。据美国数学家乔巴兹统计,莫扎特的所有钢琴奏鸣曲中有94%符合黄金分割比例,这个结果令人惊叹。我们未必就能弄清,莫扎特是有意识地使自己的乐曲符合黄金分割呢,抑或只是一种纯直觉的巧合现象。然而美国的另一位音乐家认为。"我们应当知道,创作这些不朽作品的莫扎特,也是一位喜欢数字游戏的天才。莫扎特是懂得黄金分割,并有意识地运用它的。"贝多芬《悲怆奏鸣曲》第二乐章是如歌的慢板,回旋曲式,全曲共73小节。理论计算黄金分割点应在45小节,在43小节处形成全曲激越的高潮,并伴随着调式、调性的转换,高潮与黄金分割区基本吻合。肖邦的《降D大调夜曲》是三部性曲式。全曲不计前奏共76小节,理论计算黄金分割点应在46小节,再现部恰恰位于46小节,是全曲力度最强的高潮所在,真是巧夺天工。我们再举一首大型交响音乐的范例,俄国伟大作曲家里姆斯-柯萨科夫在他的《天方夜谭》交响组曲的第四乐章中,写至辛巴达的航船在汹涌滔天的狂涛恶浪里,无可挽回地猛撞在有青铜骑士像的峭壁上的一刹那,在整个乐队震耳欲聋的音浪中,乐队敲出一记强有力的锣声,锣声延长了六小节,随着它的音响逐渐消失,整个乐队力度迅速下降,象征着那艘支离破碎的航船沉入到海底深渊。在全曲最高潮也就是"黄金点"上,大锣致命的一击所造成的悲剧性效果慑人心魂。 黄金律历来被染上瑰丽诡秘的色彩,被人们称为"天然合理"的最美妙的形式比例。世界上到处都存在数的美,对于我们的眼睛,尤其是对我们学习音乐的人的耳朵来说,"美是到处都有的,不是缺乏美,而是缺少发现"。 ""还始终与军事发展有不解之缘,而且常常与战争不期而遇。无论是古希腊帕特农神庙的美轮,还是中国古代的兵马俑,它们的垂直线与水平线之间的关系竟然完全符合1∶的比例。成吉思汗的蒙古骑兵横扫欧亚大陆令人惊叹。经过研究发现,蒙古骑兵的战 斗队形与西方传统的方阵大不相同,在他的五排制阵型中,重骑兵和轻骑兵为2∶3,人盔马甲的重骑兵为2,快捷灵活的轻骑兵为3,两者在编配上恰巧符合黄金分割律。欧洲人是最早有意识地把黄金分割律运用于宗教和艺术方面的,而在军事上的应用是从黑火药时期开始的。那时滑膛枪呈现出取代长矛之势,率先将滑膛枪 兵和长矛兵对半混编的荷兰将军摩利士未能突破传统阵型的羁绊,瑞典国王古斯 塔夫对这种正面强翼侧弱的阵型进行调整后,使瑞典军队变成了当时欧洲战斗力最强的军队。他的做法是,在摩利士将军原来的216名长矛兵与198名滑膛枪兵混 合编组的基础上,再增加96名滑膛枪兵,这一改变,顺应了科技发展和武器装备 进步对战术发展的影响规律,突出了火器在战斗中的作用,使之跨越了冷热兵器时代的分水岭。198+96名滑膛枪兵与216名长矛兵之比,让我们又一次看到了黄金 分割律的神奇作用。1812年6月,拿破仑进攻俄国;9月,他在博罗金诺战役后进入莫斯科,这时的拿破仑并未意识到天才和运气正从他身上一点一点地消失,他一生事业的顶峰 和转折点正同时到来。一个月后,法军便在大雪纷飞中撤离莫斯科,三个月的胜 利进军加上两个月的盛极而衰,从时间轴线上看,拿破仑脚下正好踩在了黄金分割线上。 130年后的另一个6月,纳粹德国启动了针对苏联的"巴巴罗萨"计划,在长 达两年多的时间里,德军一直保持进攻势头,直到1943年8月,"城堡"行动结束,德军从此转攻为守,再也没有能对苏军发起一次战役规模的进攻行动。被所有 战史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的 第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点.海湾战争中,美军一再延长空袭时间,持续38天,直到摧毁了伊拉克在战区内4280辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,也就是将伊 拉克军事力量削弱到黄金分割点上后,才抽出"沙漠军刀"砍向萨达姆,地面作战只用100个小时就达成了战争目的。 透过战争中的一些零散战例,依稀可见""的影子在晃动、在徘徊。如 果孤立地看待它们,好似偶然巧合,但是如果太多的偶然遵循着同一个轨迹,那 就成为规律,就特别值得人们深入研究了。 一次无意中和同学在操场上打球,顺手测量了雕相牛顿的鼻子,其鼻孔间的距离和到鼻梁的比刚好接近于。之后又测量了几个人的鼻子,结果符合黄金分割点。接下来的生活中对变得很敏感,经过同学的推想与实践,我们发现了多弥乐古牌的长宽之比,蝴蝶的身体部位之比,漂亮花瓣的长宽之比也都符合这一规律。查询了很多的相关资料例如埃及金字塔便是这一规律的最好应用。 想象一下如何让一根很普通的细橡皮筋发出“哆来咪”的声音?把它拉紧,固定住,拨动一下,就是“1”,然后量出其长,作一道初三几何题——把这条“线段”进行黄金分割, 可以测出“分割”得到的两条线段中较长的一段,约是原线段长度的倍。捏住这个点,拨动较长的那段“弦”,就发出“2”;再把这段较长线进行黄金分割,就找到了“3”, 以此类推“4、5、6、7”同样可以找到。 你从电视中见过碧水轻流的安大略湖畔的加拿大名城多伦多吗?这个高楼大厦鳞次栉比的现 代化城市中,最醒目的建筑就是高耸的多伦多电视塔,它器宇轩昂,直冲云霄。有趣的是嵌 在塔中上部的扁圆的空中楼阁,恰好位于塔身全长的倍处,即在塔高的黄金分割点上。它使瘦削的电视塔显得和谐、典雅、别具一格。多伦多电视塔被称为“高塔之王”,这个 奇妙的“”起了决定性作用。与此类似,举世闻名的法兰西国土上的“高塔之祖”——埃菲尔铁塔,它的第二层平台正好坐落在塔高的黄金分割点上,给铁塔增添了无穷的魅力。 气势雄伟的建筑物少不了“”,艺术上更是如此。舞台上,演员既不是站在正中间, 也 不会站在台边上,而是站在舞台全长的倍处,站在这一点上,观众看上去才惬意。我们所熟悉的米洛斯的“维纳斯”、“雅典娜”女神像及“海姑娘”阿曼达等一些名垂千古的 雕像中,都可以找到“黄金比值”——,因而作品达到了美的奇境。 达·芬奇的《蒙娜丽莎》、拉斐尔笔下温和俊秀的圣母像,都有意无意地用上了这个比值。因为人体的很多部位,都遵循着黄金分割比例。人们公认的最完美的脸型——“鹅蛋”形,脸宽与脸长的比值约为,如果计算一下翩翩欲仙的芭蕾演员的优美身段,可以得知,他们的腿长与身 长的比值也大约是,组成了人体的美。 我国一位二胡演奏家在漫长的演奏生涯中发现 ,如果把二胡的“千斤”放在琴弦某处,音色会无与伦比的美妙。经过数学家验证,这一点恰恰是琴弦的黄金分割点!黄金比值,在创造着奇迹!� 偶然吗?不,在人们身边,到处都有的“杰作”:人们总是把桌面、门窗等做成长方形、宽与长比值为。在数学上,更是大显神通。,美的比值、美的色彩、美的旋律,广泛地体现在人们的日常生活中,与人们关系甚密。,奇妙的数字!它创造了无数的美,统一着人们的审美观。 爱开玩笑的,又制造了大量的“巧合”。在整个世界中,无处不闪耀着那黄金一样熠熠的光辉!人们时时刻刻在有意无意创造着一个个的黄金分割。只要稍微留心一下便可发现它离我们的生活有多近!数学离我们很近,无时不刻地在应用着它! 我们要首先感受并体会到数学学习中的美。数学美不同于其它的美,这种美是独特的、内在的。这种美,正如英国著名哲学家、数理逻辑学家罗素所说:“数学,如果正确地看它,不但拥有真理,而且也具有至高无上的美,正象雕刻的美,是一种冷而严肃的美。这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐那样华丽的服饰,它可以纯净到崇高的地步,能够达到严格的只有伟大的艺术能显示的那种完满的境界。”课堂上老师经常给我们讲数学美,通过高等数学的学习,我渐渐地领略到数学美的真正含义,这种感觉是奇异的、微妙的,是可以神会而难以言传的,数学,对我来说,是那样的富有魅力……在生活中只要我们善于观察,善于思考,将所学的知识与生活结合起来将会感到数学的乐趣。生活中处处都应用着数学的知识。
生活中的数学有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身
我家住在丹徒新区的永安新城小区,小区里可美啦!吃过晚饭,我和妈妈到小区里散步,发现院子里有很多好玩好看的东西。楼下,有3个健身器材,再往前走,就是一个儿童乐园,
八年级下数学教学总结5篇 生产和生活实际是数学的渊源和归宿,其间大量的素材可以成为数学课堂中学生应用的材料,数学是一切科学之母”,它是一门研究数与形的科学,它不
三年级数学小论文写法要点如下:1、科学选择题目:写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,选择好题目就等于完成小论文的一半,可见小论文选题的重
生活中的数学 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少