• 回答数

    6

  • 浏览数

    298

疯中之子
首页 > 学术期刊 > 世界聚烯烃市场研究论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

快乐之光

已采纳

金融风暴席卷全球后,中国企业感到了逼人的寒气。据有关资料显示,广东省去年前9个月关闭的企业达到7148家,其中也有部分化肥企业。春耕时节,记者在江苏、广东、山东、河北等省看到,面对这场寒流,中国的化肥企业不等不靠,而是“危”中寻“机”,谋求发展。 ——通过发挥企业自身优势来稳定产品市场占有率,是广东肥料企业应对危机的做法。东莞大众农科销售总监邬金华认为,深圳芭田依靠企业上市后资金与品牌的优势,通过不断推出新产品来保持自己在复合肥高端市场的份额。福利龙肥业集团发挥企业资本市场优势,在稳定南方市场的同时,重点发挥北方生产基地的作用,扩大产品与品牌市场占有率。澳特农化着眼于循环经济,把发展有机肥作为企业的主攻方向。拉多美依托物流、资金流方面的优势,重点占领终端消费市场。东莞大众农科则以调节南方酸性土壤的钙镁肥掌控低端用户…… ——从简单卖产品向经营品牌、从追求市场占有率向追求利润及联盟合作转变。无锡保利化肥有限公司经理袁群伟认为,在市场繁荣的时候,企业只需要生产产品,把产品卖到终端或贴牌给别人就行了,不注重对品牌的投入和管理,结果市场对企业或企业产品知晓率不高。由于金融危机的影响,各企业都把品牌的建设放到第一位。在部分企业中,通过价值链联合、竞争对手联合和异业之间联合来提高综合竞争能力,表现得更加明显。 昆山华德尔复合肥有限公司总经理黄仕强认为,受出口高关税的影响,原来很多做国际市场的企业也会把重点转移到国内,这样使得市场开发难度逐渐加大,开发成本升高,结果投入很大却无功而返。因此,这时企业应该避免由于追求市场占有率造成“杀敌一千,自损八百”的结果,将经营重点转移到对己有利尤其是成熟市场的精耕细作上,提高单个客户、单个单子的成功率和利润率,降低经营风险。 ——进行资源与新技术的合作,提高企业综合竞争能力。山东明水大化集团副董事长孙洪海表示,通过与山西晋煤合作,让明水大化找到了一个坚强的后盾,有煤的资源优势,明水大化的竞争能力明显增强。他认为,宜化集团则依托管理和资金优势,对产业链大规模展开收购,这是化肥生产企业与上游资源企业联盟、重组的集中表现。明水大化去年与加拿大汉枫缓释肥料有限公司签署了合作协议,双方共同投资建设10万吨/年硫包衣项目,今年又与北京中农瑞利源高科技发展有限公司进行尿素升级技术合作,在尿素生产中加入瑞利源金属蛋白酶生产多肽尿素,提高了氮肥附加值,降低了农民在农业生产上的投入,让农业增产农民增收。 ——从追求利润向追求现金流转变。现金流就是企业的“血液”,这在金融危机中显得尤为明显。金融危机本身就是信贷体系崩溃造成的,为尽可能降低因硫磺“跳水”带来磷铵价格下跌造成的损失,国内磷铵生产企业将自己的库存产品以最优惠的价格销给复合肥生产企业以消化库存。记者在南京云台山集团、广东拉多美化肥、河北冀衡磷肥等企业看到,上游原料供应企业正将磷铵整车(或整列)发往复合肥生产企业。 业内专家认为,危机常在,而巧渡危机的智慧并不是每个企业和经营者都具有的。在目前情况下,面对逐渐蔓延的金融危机,企业必须正确判断形势,充分估计困难,多管齐下,有效化解,在危机中寻求商机。如果一味地等待政府的宏观调控,势必会失去商机。全球金融危机对中国石油和化学工业的影响与对策 当前世界金融危机正在对全球石油和化工业产生重大影响。由美国信贷危机引发的金融危机现已席卷世界经济使之进入下行通道,从汽车到化学品再到零售商品,需求快速回落。 这场全球金融危机是自上世纪80年代初以来最为严重的,亚洲化学工业在2009年将会受到重大影响,并且可能会影响到后十年的发展。随着全球消费品需求萎缩以及中东石化能力投产而扩大其所占的市场份额,2009年亚洲石化生产商面临的形势仍较严峻。一批新建石化装置将要投运,这将使化学品价格呈继续下降趋势,预计在短期内需求也不会提升。2009年的形势将可能比2008年更为严峻。 化学品生产和出口双双下挫 全球金融危机对我国出口的影响比预期大。次贷危机发生后,美国等西方国家消费能力下降,我国出口贸易受到很大影响,许多中小制造业经营形势严峻,面临关停或减产。统计显示,我国2008年上半年倒闭企业万家,产值同比下降15%。在此背景下,石油石化下游制品行业开工率大幅降低,由85%下降到55%左右。 受全球金融危机向实体经济转移的影响,目前全球石化产品价格急剧下挫,市场持续低迷,特别是聚烯烃行业跌入几年来的最低谷。综观全球,聚烯烃价格都处于暴跌之中,韩国、中东、日本、美国、泰国、新加坡、马来西亚、印度、加拿大等国家和地区生产商,从8月份起聚烯烃报价急剧下降,跌幅深达50%以上,此举进一步加深了全球聚烯烃市场的迅速下探。 据中国石油和化学工业协会报告,2008年10月份,全国石油和化工行业生产继续下滑,尤以化工行业最为严重。当月石化行业总产值增长,增速比上月减缓个百分点,为2008年以来新低。其中化工行业增幅仅为,比上月大幅回落个百分点。而合成树脂更是以10月份产量下降11%成为石化工业的重灾区之一,其中聚烯烃受价格暴跌的影响,10月份开工率下降了30%。 国家统计局、海关总署相继公布了2008年11月经济运行和进出口统计数据。统计数据显示,石油和化工行业经济正经受外部冲击和国内调整的双重压力。11月份,国内顺丁橡胶、聚苯乙烯、涤纶长丝等产品出厂价格出现较大幅度下降;我国化肥、塑料制品、合成橡胶等商品进出口量大幅滑坡。工业品出厂价格同比上涨2%,增速大大低于10月份的,创近31个月来的新低。顺丁橡胶价格同比下降,聚苯乙烯下降,涤纶长丝下降。同期,我国商品进出口总额亿美元,同比下降9%。其中,出口亿美元,下降;进口749亿美元,下降。原油出口同比减少,塑料制品出口减少;在进口方面,化肥同比下降,合成树脂下降,合成橡胶下降,合成纤维下降,聚酯切片下降,丙烯腈—丁二烯—苯乙烯共聚物下降。而天然橡胶、农药等产品进口增幅回落较大。金融危机同时还重创汽车业,轮胎消费量大幅下降,从而影响了顺丁橡胶产业。进入11月份,轮胎业开工率下降幅度较大,有的大型企业已降至50%。9月份之前,国内橡胶行业整体增长还在8%以上,但10月份的轮胎总产量环比下降。业内人士表示,当前产品销售价格压力、居高不下的成本压力依然存在;产品出口严重受阻,产成品库存大幅增加,企业资金短缺,周转不畅。按11月份出口数量,全年出口约下降,化学品生产量约下降。 需求不振已显而易见。仅在几个月前,没有人会预料2008年我国聚乙烯和聚丙烯的需求增长率将会是零或甚至是负数。而相对比较,2007年我国聚乙烯需求增长率曾为、聚丙烯需求增长率为。事实已表明,我国出口加工部门因运往美国和欧洲产品的下降已遭受到损害。 我国是全球主要的聚烯烃进口国之一,为了维护全球聚烯烃市场的稳定,保证聚烯烃产业安全,使其能健康、持续发展,中国石油和化学工业协会拟联系国内主要聚烯烃厂商和包括日本、韩国、中东等地的国外主要聚烯烃厂商,以及国内外重要聚烯烃消费企业,就当前全球聚烯烃市场的状况和未来走势进行探讨和分析,以应对当前聚烯烃行业出现的危机,防止危机进一步恶化从而影响全行业安全。同时为了维护全球聚烯烃市场的健康和促进其可持续发展,将由石化协会牵头建立国内外厂商、上下游企业的长效对话机制,以达到信息共享、互赢共利的目的。 因全球经济萧条,我国石化产品产量2008年11月大多下降,已有几家公司减产。中国石油和化工协会提供的数据表明,几乎所有产品产量均有下降,其中己内酰胺下降最大,11月产量仅1万吨。 业内分析人士指出,化学品市场的下游需求直至2009年一季度仍会处于停滞不前状态。 石化装置建设和扩能延期,部分装置停产或限产 国际金融市场动荡加剧,全球经济增长明显放缓,市场需求持续走弱,我国石化工业的发展面临极大的困难。 石化工业发展具有周期性特点,受宏观经济、原材料、产业政策等因素影响,乙烯行业有步入周期性下降趋势的预期和潜在风险。 2008年7月15日,国际油价在触及147美元桶历史高位后下跌,化工行业也同时开启“寒冬”之旅。由于上游原油、三苯、三烯等价格大幅下跌,加之下游需求疲软的蔓延和持续,几乎所有的化工产品失去支撑,出现了较大的普跌行情。 在宏观经济尤其是固定投资增速较高的状况下,化工行业的扩张速度和利润增长速度均是可喜的,但是一旦宏观经济增速放缓,外加环保以及原材料上涨等压力,可能依然在扩张中的该行业已经开始步入周期性下降趋势中。 化工行业将面临一到两年的寒冬,而作为化工行业的龙头,乙烯行业也不可能独善其身。2009~2010年,国内五套新建乙烯将新增聚烯烃产能560万吨年,增长幅度38%,在发生国际金融危机的大背景下,供大于求的局面已不可能改变。全球金融危机和经济发展放慢将使中国发展减速,预计我国2009年的乙烯需求增长率将为近年水平的一半。 自2008年10月起,整个亚洲的石化产品需求回落,价格也下跌,这是必需面对的严峻挑战。在目前全球经济发展放慢和出现金融危机的背景下,我国石化企业在建的一些乙烯项目推迟投产。据预计,石化循环期将会在2010~2011年,在2008~2009年中东大量低成本、以乙烷为原料的乙烯生产能力投产后,届时供应将超过需求。我国乙烯生产能力约98%以石脑油为原料,石化生产商必须最大限度地减小操作成本,与炼油进行较多的一体化联合,以应对来自中东的挑战。因为对我国制造的出口商品需求的下降,这一经济减速正在抑制我国石化产品的消费。 因为亚洲需求疲软,台塑集团11月上旬也表示,将关闭其位于我国台湾麦寮的3号裂解装置。该装置原停工检修45天,于10月19日重新开启,但后来开工推迟到10月25日。因为需求疲软,乙烯和丙烯的库存增大,该装置将无限期关闭,该装置总能力为120万吨年乙烯和60万吨年丙烯。 受全球汽车工业发展减慢的影响,对丁苯橡胶和其他合成橡胶的需求明显减少。南通申华化学工业公司丁苯橡胶开工率在2008年12月初处于30%,并且无提高开工率计划。该公司17万吨年的丁苯橡胶装置在9月底停工检修后再开工时就在30%开工率水平,此前开工率为85%。2008年上半年我国氯丁橡胶市场情况很好,但8月份以后需求大幅下降,到9月份企业就不得不减负荷生产。正常情况下,重庆长寿化工有限责任公司每月氯丁橡胶产量在2600~2700吨,现只能生产1000~1100吨。另一家氯丁橡胶生产商山西合成橡胶集团有限责任公司的情况也大致如此。从2008年9月份开始市场形势急转直下,该公司被迫大幅降低生产负荷,到年底开工率仅在40%左右,月产量只有800~900吨,2008年产量只有万吨,目前库存也有2000多吨。随着国内拉动内需政策的实施,2008年11~12月份,下游企业生产回暖,需求开始有所上升,但国内两家氯丁橡胶生产企业的状况却每况愈下,濒临停产。 把握发展机遇,及时调整求发展 在全球金融危机的影响下,我国石油和化工企业也面临着大部分产品市场萎缩、价格大幅下跌、资金压力增大、经营决策困难等问题,面对这些问题,应以“冷静分析、积极调控、增强信心、转危为机”的态度去应对,以产业结构调整和转型为契机,以扩大内需和拓宽市场为突破口,使我国石油和化工企业增强抗风险能力,步入健康、安全而持续发展的大道。 金融危机给中国石油和化工的生产经营带来巨大困难,但同时也孕育着重大机遇。目前,金融危机快速蔓延已经造成世界经济增长明显减速,石油石化行业要注重从变化的形势中捕捉和把握难得的发展机遇,从国际国内的相互转化中利用好发展机遇,在困难中发现和培育有利因素,抓住关键,突出重点,以保增长为核心,充分利用国际国内两个市场、两种资源,依靠技术创新,加快发展方式转变和结构调整。 我国经济社会发展有很多有利条件,具有较强的抵御风险的能力和保持经济平稳较快增长的活力,我国经济绝不会因为这场金融危机而发生逆转。金融危机为我国进行各项重大改革提供了新的推动力和必要的压力,也为我国石油和化工产业加快推进结构优化调整和转变发展方式提供强大的压力和动力。石油和化工产业应该抓住当前机遇,克服困难,战胜挑战。 (信息来源:中商情报网)

124 评论

lindadoncry

关键词:超高分子 量聚乙烯 工程塑料1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 特殊加工技术 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。UHMWPE纤维是当今世界上第三代特种纤维,强度高达,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。 润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。(1)自润滑挤出(注射)UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。(2)共润滑挤出(注射)UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见)。如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。3 UHMWPE的改性 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。(3)辐射交联在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 加工性能的改进UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是中介绍的润滑挤出(注射)。 共混改性共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。(1)与低、中分子量PE共混UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。(2)共混形态UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。(3)共混物的力学强度对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂改性流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(~)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 液晶高分子原位复合材料液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 聚合填充型复合材料高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 UHMWPE的自增强〔27、28〕在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。4 UHMWPE的合金化UHMWPE除可与塑料形成合金来改善其加工性能外(见和),还可获得其它性能。其中,以PP/UHMWPE合金最为突出。通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。5 UHMWPE的复合化UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。参考文献:〔1〕 钟玉荣,卢鑫华.塑料〔J〕,1991,20(1):30〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1〔3〕 杨年慈.合成纤维工业〔J〕,1991,14(2):48〔4〕 JP 63,161,075〔P〕〔5〕 .〔J〕,1981,27(1):8

331 评论

考小拉考小花

UHMWPE辐照交联,添加助剂改性

201 评论

汤汤小朋友

聚乙烯纳米材料的发展前景及现状。这个,您的,任务书可以给我,/吧

261 评论

别做慈善家

随着社会主义现代化建设的不断发展,环境保护作为我国的一项基本国策已越来越受到人们的关心与重视。发达国家曾经走过一条先污染后治理的弯路,并为此付出了高昂的代价。我们作为发展中国家,现代化建设刚刚起步,理应吸取发达国家的经验教训,在进行现代化建设的同时,尽量减少污染,走一条发展与治理同步、以预防为主的环保工作新道路。为此,必须大力普及环境科学知识,提高人们的环境意识。 一、培养学生环境意识的必要性与紧迫性 我国的环境状况并不容乐观。大气污染、水污染等已经给人们的生产、生活带来灾害性影响。曾经风景如画的南京十里秦淮,如今已是垃圾充溢臭气熏天的“龙须沟”,淮河水无法饮用,大运河鱼虾绝迹,九七年的黄河断流,九八年的长江洪水,去年的沙尘暴等等,其后果已是触目惊心。至于城市的酸雨、近海的赤潮、湖水的干涸等,早已不再是新闻。因此,提高全民族的环境保护意识,已经摆上了国民教育的重要议事议程。而中学生正处于世界观与人生观形成的关键时期,环保意识一旦形成,对其一生的社会行为乃至对整个中国的经济发展与环境保护,无疑将产生巨大的影响作用。培养学生的环境保护意识,是一件事关未来、影响深远的大事情。 二、化学教育在培养学生环境意识中的重要地位 化 学 学 科 的特点,决定了化学教育在培养学生环境意识中占有重要地位。它同物理、生物等都是对学生进行环境教育的主要学科。许多污染物的成分、特性、形成过程、对人类生产生活的危害以及如何防治等,都与化学教学内容有着密切的联系。初中、高中化学教学大纲中也明确提出,化学教育应培养学生关心自然、关心社会的情感,对学生进行环境保护意识的教育。 三、化学教育如何培养学生的环境意识 在化学教育中,化学教师应有意识的对学生进行环境教育,概括起来,主要有以下几个途径: 1、在化学课堂教学中,渗透环境教育 在中学化学教材中,包含许多与环境保护有关的内容,例如作为大气污染物中的头两号“杀手”so2和co,在初中课本和高中一年级课本中都做过初步和系统地学习。教师在讲授该节内容时,就应给学生讲清so2、co的产生、特性及对人类的危害,并可根据学生的实际情况,讲解如何避免so2、co的产生及so2、co中毒后如何处理等。并由so2的特性讲解“酸雨”这种污染物的形成及危害。对于大气污染中的另一“杀手”——光化学烟雾,在高中第二册(试验本)教材中也介绍过,教师可结合1942年的美国洛杉矶光化学烟雾事件,给学生讲清其形成过程及危害,从而提高学生对环境污染的重视程度。 2、在化学试验过程中,进行环境教育 化学试验作为化学教学的重要组成部分,同样担负着对学生进行环境教育的重要职责,并且较之课堂教学更具有直观性。一方面,教师可以以环境污染物为试验样品,进行观察分析与研究。例如测定大气飘尘的浓度、测定雨水的ph值、用so2形成硫酸、硝酸的过程等等。另一方面,化学教师在自己做或指导学生做实验时,也可以切身实地的进行环境教育。例如在做有有毒性气体(如so2、co等)放出的试验时,可增加尾气处理装置,以减少有毒气体排放。对实验结束后的试验废液、废物应放入指定地点,这样既可减少污染物污染,也教育学生环境保护要身体力行,从自身做起,只有这样,才能形成良好的环保习惯。 3、在化学课外活动中,加强环境教育 一方面,可以通过化学课外兴趣小组,开展环境保护活动。例如组织学生测定大气污染物浓度、测定附近河、湖水的酸碱度,到附近工厂进行污水排放观察及污水处理参观,利用节假日到野外收集废电池等等,让学生亲身体验环境污染的程度及其危害性,增强环境观念。另一方面,要教育学生在日常生活中,从自身做起,从一点一滴的小事做起,时刻牢记环保使命,充分利用节约能源(如节水、节电、充分燃烧煤气、石油液化气等),合理分类存放生活垃圾(如电池回收、不乱到污水等),不使用污染环境的物品(如含p洗衣粉、喷发胶等),敢于同浪费资源、污染环境的行为作斗争,努力将环境污染降低到最低程度,保护好我们的家园。 总之,利用化学教学培养学生的环境意识,有着其他学科所不具备的优越条件。广大中学教师应充分利用这一优越性,为保护好我们的生活环境,使我国的现代化建设在未

232 评论

小白兔256

TbCl3-CdCl2-HCl-H2O()的相平衡 学 生: 指导老师: 年级: 专业: 班级:摘 要 测定了四元体系TbCl3-CdCl2-HCl-H2O()的相平衡溶度数据,绘制了相应的溶度图。该四元体系是复杂体系且有1个新物相化合物4CdCl2· TbCl3·14H2O生成。关键词 四元体系,相平衡,TbCl3 ,CdCl2 一 前 言稀土卤化物与稀碱卤化物所形成的化合物具有特殊的光学性质。文献[1-3]研究了稀土卤化物与稀碱金属卤化物在盐酸介质中的相平衡关系,且发现新化合物CsEuCl8·14H2O、Cs2EuCl5·4H2O、3CsCl·CeCl3·3H2O、CsCl·CeCl3·4H2O具有上转换发光性能。文献[4-6]分别研究了DyCl3-CdCl2- H2O和DyCl3-CdCl2-HCl-H2O()的相平衡,YCl3-CdCl2-H2O和YCl3-CdCl2 -HCl-H2O()的相平衡,在时CeCl3-CdCl2-H2O和CeCl3- CdCl2-HCl-H2O的相平衡,均发现了新的化合物,并且也具有上转换发光性能和较强的荧光性能。为比较过渡元素/稀土氯化物与稀碱金属/稀土氯化物盐水体系中相关系间的差异,丰富盐水相化学,和为合成新的化合物寻找可能的途径,本文在前述研究的基础上研究了在时四元体系TbCl3-CdCl2-HCl-H2O的相平衡关系,发现了1个未见文献报道新物相化合物。 二 实验部分1、试剂及仪器配制TbCl3·6H2O试剂:(1)称取适量Tb2O3固体,放在小烧杯中,加少量水。(2)量取适量浓度为35%的盐酸溶液,缓慢加入到盛有Tb2O3试剂的小烧杯中,搅拌。(3)加热至溶解成无色透明的液体,将其自然冷却。(4)过滤。将滤液加热至产生结晶膜后,自然冷却。(5)抽滤,晶体放入干燥器中自然干燥[1]。化学反应方程式: Tb2O3+6HCl=2TbCl3+3H2O。CdCl2、EDTA、AgNO3、六次甲基四胺、甲基红、二氯荧光黄、二甲酚橙、邻二氮菲均为分析纯试剂。使用蒸馏水。使用仪器:恒温搅拌装置(自制)。2、实验及分析方法设定一系列递变点,按四元体系斜截面布点配样,密封于塑料管中,在的恒温条件下进行搅拌。五天后调整试样的酸度,调节酸度,使各试样酸度一致。将调节过酸度的各试样封闭,继续恒温搅拌。待平衡后,取样,分析液体与湿渣组成。分析方法如下:以甲基红为指示剂,用标准氢氧化钠溶液滴定试样中盐酸的含量;用邻二氮菲掩蔽Cd2+后,以二甲酚橙为指示剂,六次甲基四胺为缓冲溶液,用标准EDTA溶液滴定试样中的三氯化铽的含量;以二氯荧光黄为指示剂,加稍过量碳酸钙固体中和盐酸,加糊精,用标准硝酸银溶液滴定氯离子;用差减法可求得试样中二氯化镉的含量。 三 结果与讨论1、四元体系TbCl3-CdCl2-HCl-H2O的溶度图表1为四元体系TbCl3-CdCl2-HCl-H2O在时的溶度数据及其在底面三角形TbCl3-CdCl2-H2O上的投影数据。图1为相应的溶度图。 由图一知,该体系的溶度曲线由三段构成,分别对应化合物CdCl2·H2O、4CdCl2·TbCl3·14H2O(4:1型)和TbCl3·6H2O。其中4:1 型化合物是固液同成分溶解的化合物,可从体系中直接得到,是未见文献报道表1 四元体系TbCl3-CdCl2-HCl-H2O在时的溶度数据及其在底面三角形TbCl3-CdCl2-H2O上的投影数据液相(%) 湿固相(%)四面体 三角形 四面体 三角形序号 HCl CdCl2 TbCl3 CdCl2 TbCl3 HCl CdCl2 TbCl3 CdCl2 TbCl3 平衡固相平均酸度 = 0 0 --- --- --- --- --- A 2 A 3 A 4 A+B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B+C 13 B+C 14 B+C 15 C 16 C 17 C 18 C 19 C 20 0 0 --- --- --- --- --- C 双饱点组成(平均值):E1: , ; E2: , ·H2O ; B: 4CdCl2·TbCl3·14H2O; C:TbCl3·6H2O图1 四元体系TbCl3-CdCl2-HCl-H2O在三角底面TbCl3-CdCl2-H2O的溶度图的新物相化合物。2、四元体系RECl3-CdCl2-HCl-H2O(RE=La、Ce、Nd、Dy、Tb)间的比较轻稀土元素之间或重稀土元素之间,其相化学行为具有相似性及相异性。如轻稀土元素均有4:1型化合物和9:1型化合物。而重稀土元素有9:2型化合物。本文研究的铽属中稀土元素,其新化合物的类型却为4:1型,说明中稀土元素与轻稀土相比,具有相似性也具有相异性,而与重稀土元素具有相异性。这充分说明稀土元素具有“分组效应”。 四 结论研究了氯化铽与氯化镉在盐酸介质中相关系,绘制了相应的溶度图,在体系中发现和得到了新化合物4CdCl2·TbCl3·14H2O。本文的研究结果为合成新化合物提供了相关系依据。参考文献[1]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Study on phase diagram of (cesium chloride+europium trichloride+hydrogen chloride+ water)quaternary system at T= and the fluorescence spectra of its compounds. J. , 2002,34,1495~1506[2]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Study on phase diagram of (CsCl-CeCl3-HCl-H2O system and the propertier of the Journal of Chemistry,2002,20(9):904-908[3]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Phase equilibrium system of CsCl-YCl3-HCl-H2O at T= and its Journal of chemistry,2004,22(10):1128-1132[4]乔占平,卓立宏,王惠.三元体系YCl3-CdCl2-H2O和四元体系YCl3-CdCl2-HCl-H2O()的相平衡及其固相新化合物的研究[J].无机化学学报,2004,20(8):929-932[5] 乔占平,卓立宏,王惠.四元体系LaCl3-ZnCl2-HCl(7%)-H2O()和三元体系ZnCl2-HCl-H2O()相平衡的研究[J].无机化学学报,2003,19(3):303-306[6] 卓立宏,乔占平,郭应臣,王惠. CeCl3-CdCl2-H2O和CeCl3-CdCl2-HCl-H2O的相平衡.物理化学学报,2005,21(2):128-131Phase Equilibrium of the System TbCl3-CdCl2-HCl-H2O at : The equilibrium solubilities of the quaternary system TbCl3-CdCl2-HCl-H2O was determined at and the corresponding equilibrium diagram was systems is complicated with one new compounds 4CdCl2· TbCl3·14H2O. Keywords: quanternary system, phase equilibrium, cadmium chloride, terbium chloride

326 评论

相关问答

  • 世界经济与世界经济研究期刊

    您好,经济学相关的顶级期刊一般都是外文的文献。你其实如果在比较好的大学的话,一般是会有对应翻译过来的文献,你可以去看。

    小肥羊洋阳 6人参与回答 2023-12-08
  • 世界地理研究论文

    最快捷的办法不就是在网上找嘛~~看看(地理科学研究)~~当然,一定要记住,自己写~~

    Nightwish阳光 5人参与回答 2023-12-10
  • 聚氯乙烯毕业论文

    这个丰富~~

    小柚子好啊 4人参与回答 2023-12-09
  • 北纬34度世界城市文化研究论文

    文/宝木笑 最近,《长安十二时辰》热播,除了故事好看等因素外,人们更被剧中对大唐长安和当时国风的精妙还原所震撼,原来中华民族曾经是以那样一种状态和精神在生活

    蛋蛋妹妹 3人参与回答 2023-12-05
  • 我的世界市场营销论文

    营销——企业的灵魂和未来 进入21世纪,尤其是加入WT0之后,中国企业将面临着国

    欧阳安Muse 2人参与回答 2023-12-10