哇小妹夫
浅谈重金属检测传感器技术的应用论文
摘要: 随着经济的迅猛发展和社会的日新月异, 人们对重金属的开采及加工越来越频繁, 这使得不少重金属存在于大气水以及土壤中, 在很大程度上加重了环境污染, 科学技术的迅猛发展为重金属检测传感器技术的研究提供了很好的途径。针对上述背景下, 对重金属检测传感器技术研究与应用进行合理性阐述, 以促进重金属检测传感器技术的进一步发展。
关键词: 重金属检测; 传感器技术; 环境污染;
重金属污染是环境污染的一个重要组成部分, 重金属在自然界中广泛存在, 随着人类的开采、冶炼、加工活动而使得重金属转变成化学状态或化学形态广泛分布于大气、水、土壤中, 随着时间的积累而不断留存、迁移, 从而引发严重的环境污染问题;重金属甚至还会随着废水的排出而流入海洋中, 对鱼和贝类造成严重的危害;重金属还会附着在人类的鼻腔和食物上, 造成人类呼吸道感染和重金属中毒[1]。重金属具有沉积性和不可降解性, 是一种非常危险的污染源, 因此对于重金属的研究与检测是十分关键的。通过调查与研究, 发现重金属检测传感器技术主要分为离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术四个方面, 本文通过对这四种传感器技术在重金属检测中的研究与应用作简要分析, 以推动重金属检测传感器技术的发展。
1 离子选择性电极传感器技术。
离子选择性电极传感器技术是一种操作简单、性价比高、准确有效的重金属检测传感器技术。离子选择性电极传感器技术因为不需要提前对样品进行操作而被广泛应用于重金属的在线检测中。目前, 国内外学者对离子选择性电极传感器技术进行了大量的研究, 发现选择性高、经济简单的离子选择性电极主要分为基于聚氯乙烯膜的离子选择性电极和基于流系玻璃膜的离子选择性电极两种[2]。
基于聚氯乙烯膜的离子选择性电极。
目前在对基于聚氯乙烯膜的离子选择性电极的研究中, 主要是对离子选择性电极的重金属离子的识别以及聚氯乙烯膜的结构和性能进行研究, 同时, 对不同的载体和膜增塑剂对离子选择性电极性能的影响作简要分析, 从而提高对重金属的识别能力。
基于流系玻璃膜的离子选择性电极。
基于硫系玻璃膜的离子选择性电极良好的红外线透过性是其他离子选择性电极无法相提并论的。许多发达国家都通过购买硫系玻璃膜的离子选择性电极来用于重金属检测工作。
2 光纤化学传感器技术。
对于光纤化学传感器技术的研究比离子选择性电极传感器技术的研究还要早, 光纤化学传感器技术的研究始于美国研究所, 从那以后, 许多国家都在实验室中对光纤化学传感器技术进行研究, 并应用到重金属检测中。陈雷等人对基于聚氯乙烯膜的光纤传感器进行研究并应用到铜离子的检测中, 取得了良好的效果[3]。李学强等人将注册分析法和激光激发荧光光谱技术应用到对金属离子传感器的研制中, 使我国饮用水中的重金属检测工作取得了很大的进展。
3 生物传感器技术。
第一个生物传感器始于Red String仪器公司。之后, 又在多个公司相继推出, 这些生物传感器主要是对人类血糖和尿糖中的重金属物质进行检测。重金属物质在人体中的留存和迁移会对人体的健康造成极大的威胁, 生物传感器可以与人体生物识别因素相互影响, 以达到对人体中的重金属含量进行检测, 从而预防重金属中毒的目的。通过研究发现, 生物传感器主要分为蛋白质为基础的'生物传感器以及整个细胞为基础的重金属传感器两种。
蛋白质为基础的生物传感器。
生物识别因素主要是促进消化的酶、防止病毒入侵的抗体、增强体质的金属键键合蛋白以及脱辅基酶蛋白质。以这几种生物识别因素为基础制作蛋白质为基础的生物传感器, 用来检测铜离子、锌离子、汞离子以及铅离子等金属离子。传统的生物传感器存在灵敏度低、选择性差等一系列缺点, 因此必须研制出选择性高的新型传感器来实现对重金属离子的检测, 这种新型传感器被称为蛋白质为基础的生物传感器。
整个细胞为基础的重金属传感器。
整个细胞为基础的重金属传感器可以实现对微型有机体生物标识的检测, 它具有所受干扰因素少、反应速度快等一系列优点, 可以实现对苔藓、海藻、酵母等海洋生物中的重金属的检测。随着生物医学和环境工程的蓬勃发展, 可以通过改进主传感器的途径来解决重金属检测过程中的干扰问题, 即在基因层次上设计细胞器。
4 结语。
综上所述, 本文通过对重金属检测传感器技术研究与应用进行分析, 主要从离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术这四个方面作简要分析, 为传感器检测技术在重金属中的研究与应用提供理论支持, 以减少重金属污染现象的发生。
参考文献
[1]张涛, 苏倡, 刘艳, 等.泥蚶 (Tegillarca granosa) 重组铁蛋白富集重金属离子的特性及化学传感器的研究[J].海洋与湖沼, 2017, 48 (4) :870-876.
[2]吕攀攀, 肖芳兰, 严锡娟, 等.构建一种基于双启动子模型的特异性检测镉离子的大肠杆菌传感器[J].生物工程学报, 2015, 31 (11) :1601-1611.
[3]贾朔.边超, 佟建华, 等.基于纳米金Core-satellites等离子体耦合增强效应的汞离子光纤传感器的研究[J].分析化学, 2017, 45 (6) :785-790.
漩海灵猫
参考下: 进入21世纪后,特别在我国加入WTO后,国内产品面临巨大挑战。各行业特别是传统产业都急切需要应用电子技术、自动控制技术进行改造和提升。例如纺织行业,温湿度是影响纺织品质量的重要因素,但纺织企业对温湿度的测控手段仍很粗糙,十分落后,绝大多数仍在使用干湿球湿度计,采用人工观测,人工调节阀门、风机的方法,其控制效果可想而知。制药行业里也基本如此。而在食品行业里,则基本上凭经验,很少有人使用湿度传感器。值得一提的是,随着农业向产业化发展,许多农民意识到必需摆脱落后的传统耕作、养殖方式,采用现代科学技术来应付进口农产品的挑战,并打进国外市场。各地建立了越来越多的新型温室大棚,种植反季节蔬菜,花卉;养殖业对环境的测控也日感迫切;调温冷库的大量兴建都给温湿度测控技术提供了广阔的市场。我国已引进荷兰、以色列等国家较先进的大型温室四十多座,自动化程度较高,成本也高。国内正在逐步消化吸收有关技术,一般先搞调温、调光照,控通风;第二步搞温湿度自动控制及CO2测控。此外,国家粮食储备工程的大量兴建,对温湿度测控技术提也提出了要求。 但目前,在湿度测试领域大部分湿敏元件性能还只能使用在通常温度环境下。在需要特殊环境下测湿的应用场合大部分国内包括许多国外湿度传感器都会“皱起眉头”!例如在上面提到纺织印染行业,食品行业,耐高温材料行业等,都需要在高温情况下测量湿度。一般情况下,印染行业在纱锭烘干中,温度能达到120摄氏度或更高温度;在食品行业中,食物的烘烤温度能达到80-200摄氏度左右;耐高温材料,如陶瓷过滤器的烘干等能达到200摄氏度以上。在这些情况下,普通的湿度传感器是很难测量的。 高分子电容式湿度传感器通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度传感器的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数ε及所吸附水分子的介电常数ε受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论的观点,液体的介电常数ε是一个与温度和频率有关的无量纲常数。水分子的ε在T=5℃时为,在T=20℃时为。有机物ε与温度的关系因材料而异,且不完全遵从正比关系。在某些温区ε随T呈上升趋势,某些温区ε随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为一。而水分子介电常数是高分子ε的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于ε的变 化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均热线胀系数可达到 的量级。例如硝酸纤维素的平均热线胀系数为108x10-5/℃。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度传感器的温度系数并非常数,而是个变量。所以通常传感器生产厂家能在-10-60摄氏度范围内是传感器线性化减小温度对湿敏元件的影响。 国外厂家比较优质的产品主要使用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极.湿敏元件的电容值与相对湿度成正比关系,线性度约±2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。 陶瓷湿敏传感器是近年来大力发展的一种新型传感器。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏传感器迫切解决的问题。 当前在湿敏元件的开发和研究中,电阻式湿度传感器应当最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强。 氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。 氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂聚乙烯醇涂覆为主要成份的感湿液和制作金质电极是氯化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿传感器其特有的长期稳定性是其它感湿材料不可替代的,也是湿度传感器最重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关键。 在国内九纯健科技依托于国家计量科学研究院、中科院自动化研究所、化工研究院等大型科研单位从事温湿度传感器产品的研制、生产。选用氯化锂感湿材料作为主攻方向,生产氯化锂湿敏传感器及相关变送器,自动化仪表等产品,在吸取了国内外此项技术的成功经验的同时,努力克服传统产品存在的各项弱点,取得实质性进展。产品选用了Al2O3及SiO2陶瓷基片为衬底,基片面积大大缩小,采用特殊的工艺处理,耐湿性和粘覆性均大大提高。使用烧结工艺,在衬底集片上烧结5个9的工业纯金制成的梳妆电极,氯化锂感湿混合液使用新产品添加剂和固有成份混合经过特殊的老化和涂覆工艺后,湿敏基片的使用寿命和长期稳定性大大提高,特别是耐温性达到了-40℃-120℃,以多片湿敏元件组合的独特工艺,是传感器感湿范围为1%RH-98%RH,具备了15%RH范围以下的测量性能,漂移曲线和感湿曲线均实现了较好的线性化水平,使湿度补偿得以方便实施并较容易地保证了宽温区的测湿精度。采用循环降温装置封闭系统,先对对被测气体采样,然后降温检测并确保绝对湿度的恒定,使探头耐温范围提高到600℃左右,大大增强了高温下测湿的功能。成功解决了“高温湿度测量”这一湿度测量领域难题。现在,不采用任何装置直接测量150度以内环境中的湿度的分体式高温型温湿度传感器JCJ200W已成功应用在木材烘干,高低温试验箱等系统中。同时,JCJ200Y产品能耐温高达600度,也已成功应用在印染行业纱锭自动烘干系统、食品自动烘烤系统、特殊陶瓷材料的自动烘干系统、出口大型烘干机械等方面,并表现出良好的效果,为国内自动化控制域填补了高温湿度测量的空白,为我国工业化进程奠定了一定基础。传感器论文: 低温下压阻式压力传感器性能的实验研究 Experimental Study On Performance Of Pressure Transducer At Low Temperature .... 灌区水位测量记录设备及安装技术 摘要:水位测量施测简单直观,易于为广大用水户所接受而且便于自动观测,因而在灌区水量计量乃至在整个灌区信息化建设中都占有十分重要的地位。目前我国灌区中水位监测采用的传感器依据输出量的不同主要分为模拟传感.... 主成分分析在空调系统传感器故障检测与诊断中的应用研究 摘要 本文阐述了用主成分分析法进行系统测量数据建模和传感器故障检测、故障诊断、故障重构及确定最优主成分数的原理。用主成分分析法对空调监测系统中的四类传感器故障进行检测方法。结果表明:主成.... 透光脉动传感器的影响因素研究 摘要:通过试验研究和总结生产应用经验,对透光脉动传感器的影响因素进行了分析,并提出了其最优工作参数。光源宜选择波长为860nm的激光二极管;传感器的管径根据使用目的确定,试验研究一般选用1~3mm,生.... 生物传感器的研究现状及应用 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料.... 方向盘转角传感器接口 汽车环境对电子产品而言是非常苛刻的:任何连接到12V电源上的电路都必须工作在9V至16V的标称电压范围内,其它需要迫切应对的问题包括负载突降、冷车发动、电池反向、双电池助推、尖峰信号、噪声和极宽的温度.... 用于电容传感器接口的模拟前端元件 因为采用了传统机械开关,用户使用电容传感器接口的方式直接与各种工作条件下(可靠性)接触传感器的响应度(员敏度)梧关。本文将介绍一些通用电容传感器模拟前端测量方法 灵敏度 电容传感器的灵敏度是由其物理结.... 智能传感器与现代汽车电子 现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。 一、汽车电子操控和安全系统谈起 近几年来我国汽车工业增长迅速,发展.... 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其工作原理, 产品特性及其典型应用。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件 和 霍尔开关器件 。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 一 霍尔器件的工作原理 在磁场作用下,通有电流的金属片上产生一横向电位差如图1所示: 这个电压和磁场及控制电流成正比: VH=K╳|H╳IC| 式中VH为霍尔电压,H为磁场,IC为控制电流,K为霍尔系数。 在半导体中霍尔效应比金属中显著,故一般霍尔器件是采用半导体材料制作的。 用霍尔器件,可以进行非接触式电流测量,众所周知,当电流通过一根长的直导线时,在导线周围产生磁场,磁场的大小与流过导线的电流成正比,这一磁场可以通过软磁材料来聚集,然后用霍尔器件进行检测,由于磁场与霍尔器件的输出有良好的线性关系,因此可利用霍尔器件测得的讯号大小,直接反应出电流的大小,即: I∞B∞VH 其中I为通过导线的电流,B为导线通电流后产生的磁场,VH为霍尔器件在磁场B中产生的霍尔电压、当选用适当比例系数时,可以表示为等式。霍尔传感器就是根据这种工作原理制成的。 二 霍尔传感器的应用 1 霍尔接近传感器和接近开关 在霍尔器件背后偏置一块永久磁体,并将它们和相应的处理电路装在一个壳体内,做成一个探头,将霍尔器件的输入引线和处理电路的输出引线用电缆连接起来,构成如图1所示的接近传感器。它们的功能框见图19。(a)为霍尔线性接近传感器,(b)为霍尔接近开关。 图1 霍尔接近传感器的外形图 a)霍尔线性接近传感器 (b)霍尔接近开关 图2 霍尔接近传感器的功能框图 霍尔线性接近传感器主要用于黑色金属的自控计数,黑色金属的厚度检测、距离检测、齿轮数齿、转速检测、测速调速、缺口传感、张力检测、棉条均匀检测、电磁量检测、角度检测等。 霍尔接近开关主要用于各种自动控制装置,完成所需的位置控制,加工尺寸控制、自动计数、各种计数、各种流程的自动衔接、液位控制、转速检测等等。霍尔翼片开关 霍尔翼片开关就是利用遮断工作方式的一种产品,它的外形如图20所示,其内部结构及工作原理示于图21。 图3 霍尔翼片开关的外形图 2 霍尔齿轮传感器 如图4所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图23所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足°曲轴角的要求,不需采用相位补偿。 (2)可满足度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。 图4 霍尔速度传感器的内部结构 1. 车轮速度传感器2.压力调节器3.电子控制器 2. 图4 ABS气制动系统的工作原理示意图 3 旋转传感器 按图5所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。 (a)径向磁极(b)轴向磁极(c)遮断式 图5 旋转传感器磁体设置 由此,可对转动物体实施转数、转速、角度、角速度等物理量的检测。在转轴上固定一个叶轮和磁体,用流体(气体、液体)去推动叶轮转动,便可构成流速、流量传感器。在车轮转轴上装上磁体,在靠近磁体的位置上装上霍尔开关电路,可制成车速表,里程表等等,这些应用的实例如图25所示。 图6的壳体内装有一个带磁体的叶轮,磁体旁装有霍尔开关电路,被测流体从管道一端通入,推动叶轮带动与之相连的磁体转动,经过霍尔器件时,电路输出脉冲电压,由脉冲的数目,可以得到流体的流速。若知管道的内径,可由流速和管径求得流量。霍尔电路由电缆35来供电和输出。 图6 霍尔流量计 由图7可见,经过简单的信号转换,便可得到数字显示的车速。 利用锁定型霍尔电路,不仅可检测转速,还可辨别旋转方向,如图27所示。 曲线1对应结构图(a),曲线2对应结构图(b),曲线3对应结构图(c)。 图7 霍尔车速表的框图 图8 利用霍尔开关锁定器进行方向和转速测定 4 在大电流检测中的应用 在冶金、化工、超导体的应用以及高能物理(例如可控核聚变)试验装置中都有许多超大型电流用电设备。用多霍尔探头制成的电流传感器来进行大电流的测量和控制,既可满足测量准确的要求,又不引入插入损耗,还免除了像使用罗果勘斯基线圈法中需用的昂贵的测试装置。图9示出一种用于DⅢ-D托卡马克中的霍尔电流传感器装置。采用这种霍尔电流传感器,可检测高达到300kA的电流。 图9(a)为G-10安装结构,中心为电流汇流排,(b)为电缆型多霍尔探头,(c)为霍尔电压放大电路。 (a)G�10安装结构(b)电缆型多霍尔探头(c)霍尔电压放大电路 图9 多霍尔探头大电流传感器 图10霍尔钳形数字电流表线路示意图 图11霍尔功率计原理图 (a)霍尔控制电路 (b)霍尔磁场电路 图12霍尔三相功率变送器中的霍尔乘法器 图13霍尔电度表功能框图 图14霍尔隔离放大器的功能框图 5 霍尔位移传感器 若令霍尔元件的工作电流保持不变,而使其在一个均匀梯度磁场中移动,它输出的霍尔电压VH值只由它在该磁场中的位移量Z来决定。图15示出3种产生梯度磁场的磁系统及其与霍尔器件组成的位移传感器的输出特性曲线,将它们固定在被测系统上,可构成霍尔微位移传感器。从曲线可见,结构(b)在Z<2mm时,VH与Z有良好的线性关系,且分辨力可达1μm,结构(C)的灵敏度高,但工作距离较小。 图15 几种产生梯度磁场的磁系统和几种霍尔位移传感器的静态特性 用霍尔元件测量位移的优点很多:惯性小、频响快、工作可靠、寿命长。 以微位移检测为基础,可以构成压力、应力、应变、机械振动、加速度、重量、称重等霍尔传感器。 6 霍尔压力传感器 霍尔压力传感器由弹性元件,磁系统和霍尔元件等部分组成,如图16所示。在图16中,(a)的弹性元件为膜盒,(b)为弹簧片,(c)为波纹管。磁系统最好用能构成均匀梯度磁场的复合系统,如图29中的(a)、(b),也可采用单一磁体,如(c)。加上压力后,使磁系统和霍尔元件间产生相对位移,改变作用到霍尔元件上的磁场,从而改变它的输出电压VH。由事先校准的p~f(VH)曲线即可得到被测压力p的值。 图16 几种霍尔压力传感器的构成原理 7 霍尔加速度传感器 图17示出霍尔加速度传感器的结构原理和静态特性曲线。在盒体的O点上固定均质弹簧片S,片S的中部U处装一惯性块M,片S的末端b处固定测量位移的霍尔元件H,H的上下方装上一对永磁体,它们同极性相对安装。盒体固定在被测对象上,当它们与被测对象一起作垂直向上的加速运动时,惯性块在惯性力的作用下使霍尔元件H产生一个相对盒体的位移,产生霍尔电压VH的变化。可从VH与加速度的关系曲线上求得加速度。 图17 霍尔加速度传感器的结构及其静态特性 三 小结 目前霍尔传感器已从分立元件发展到了集成电路的阶段,正越来越受到人们的重视,应用日益广泛。
月野小兔纸
土壤重金属污染治理的策略与技术论文
在学习、工作生活中,大家都不可避免地会接触到论文吧,论文是学术界进行成果交流的工具。相信许多人会觉得论文很难写吧,以下是我为大家收集的土壤重金属污染治理的策略与技术论文,欢迎大家分享。
摘要:
在我国社会经济快速发展的背景下,土壤污染问题十分严重,严重影响了人民群众的生命健康安全。为此在新时期要高度重视土壤重金属污染的有效治理,避免土壤结构被大量破坏造成土壤中的矿物质流失。通过对土壤重金属污染治理的原因和问题进行分析,制定科学高效的应对措施,保证土壤重金属污染治理的整体水平全面提高,确保土壤重金属污染治理的效率大幅度提高,保护土壤生态,为社会经济可持续发展做出重要贡献。
关键词:
士壤重金属污染;治理问题:对策
引言:
土壤作为社会发展重要基础,必须要高度重视对土壤生态环境的妥善保护与科学处理。重金属作为土壤环境最重要的指标,由于受到工业农业的快速发展,土壤中的重金属物质含量显着超标,对于整个土壤的破坏十分明显,严重影响了土壤安全,在新时期需要重点关注土壤重金属物质,并采取有效的处理措施,减少土壤重金属造成的破坏与损伤,确保土壤重金属得到有效控制。
1、土壤重金属危害
重金属是指通过自然环境难以有效降解的各种物质。包括铅汞等,这些重金属物质如果进入到人体会引发重金属中毒,对人体造成明显损伤,而在土壤和水源中会大量淤积,也会导致水生动物和植物的生长发育受限,不利于生态环境土壤污染的农田,如果种植农作物也会造成大量的重金属进入农作物内部,植物中含有大量重金属就会通过饮食进入人体而导致食品安全问题[1]。土壤重金属污染越来越严重,对人们的生活造成巨大的威胁。为此要有效处理重金属污染,降低土壤中重金属含量。
2、土壤重金属污染主要成因
目前对于土壤重金属污染的成因主要包括自然因素和人为因素两方面,其中自然因素是指在自然环境中发生的火山爆发和土壤自身形成的因素,而人为因素则涉及工业农业交通等多个领域,也是造成土壤重金属污染的关键因素。例如在干旱地区为了提高农作物的产量解决缺水问题,往往会采取大面积灌溉的方式造成土壤养分流失,或者在灌溉中所使用的水资源受到污染,导致金属含量超标等,必然会使土壤出现金属污染问题,此外在工业领域不断发展的背景下,金属冶炼对社会发展具有十分重要的作用,但在冶炼过程中也会产生大量的重金属废水,如果没有对重金属进行妥善无害化处理,而直接排放到自然环境中,会造成土壤的重金属污染[2]。在城市发展中人们的生活水平日益提高,汽车保有量显着增多,而车辆也会生成大量汽车尾气,这些汽车尾气会直接污染大气,经过雨水冲刷会导致重金属污染物渗入到土壤内部。
还有部分有机肥料来自城市建筑垃圾、河道淤泥等,这些原材料本身富含大量重金属元素。在进入到土壤后也会造成土壤重金属含量显着升高,对土壤结构造成破坏。我国地形复杂,面积范围广大,土壤种类丰富,这也使得土壤污染问题存在明显的区域性差异,在农业发达的西北地区具有良好的土壤环境,而在中南地区由于工业密集,所以土壤污染问题严重。在发达地区为了提高农作物,往往会使用大量的化肥农药,这样就会造成农业用地日积月累受到严重的污染,致使蔬菜粮食存在农药残留,而且农业用地污染问题大部分都以有机或无机复合为主,造成土壤无法复原。当土壤受到重金属污染以后,基本无法恢复,土壤之中也会富含大量的胶体致使重金属物质不断富集,长此以往重金属污染也会日益严重,在人类正常的生活与工作中,耕地的酸碱值会发生明显变化,而且化学反应也会使重金属的离子价态和形态会发生明显的变化,而且大多数的土壤重金属污染,无法通过人类的感官进行准确识别,往往需要经过长时间的沉淀以后才能发现,这样也就造成土壤重金属污染难治理难度不断增加。
3、土壤重金属污染的主要治理策略
目前在土壤污染防治中,需要高度重视对土壤环境的妥善监测,通过对土壤中的重金属指标进行快速准确监测,能够判断土壤内部重金属富集的具体情况,为此有关部门要高度重视。建设土壤监测监管机制,采取相应的设备,对土壤的组成成分进行全面分析,提高土壤检测数据的科学性,例如成立土壤监测部门,按照专业的监管机制,安排专业人员对土壤相关数据进行全方面检测,确保土壤环境得到妥善处理,在土壤数据监测完毕后,还要将有关数据上传至监管部门,明确各个地区土壤的重金属含量,确保土壤重金属污染得到有效控制,一旦发现异常超标情况,则需要采取科学的解决,确保土壤重金属物质处理的效率全面提升,满足土壤重金属污染监测的实际需求。由于我国对土壤污染防治工作开展的时间比较晚,为此在新时期要积极加强土壤污染的有效预防,制定高效目标,坚持以预防为主,保护优先,树立完善的风险监管意识,从而确保土壤污染治理的.整体水平全面提升[3]。
要主动采取分级风险管控措施探索土壤重金属污染治理的全新方案,提高控制管理的水平,同时要做好技术调查,在全国范围内对土壤污染的具体状况进行准确的排查,保证土壤污染问题得到清晰有效的控制与解决,建立土壤重金属污染相关信息化平台(表1),实现资源共享,通过设立全国规模的土壤污染监测管理网络,保证对土壤污染监测点覆盖到市县级,做到监管数据实时更新。确保土壤管理的效率全面提升。要逐步建立污染土地目录或者土地使用污染目录,严格控制土壤的实际使用途径。加强监管存量,对源头严格防控,有效提高农业污染的监督管理力度。要坚决从源头加强土壤保护,避免土地随意滥用。
表1基于GIS系统土壤环境风险控制管理体系
4、土壤重金属污染治理的主要技术
、生物治理
当前的土壤生物治理可以通过植物微生物等手段减少土壤重金属含量或降低其毒性。在植物治理中,需要积极培育能够吸附重金属物质的植物,有效去除土壤中的大量重金属物质。这种方案成本低廉,技艺简单,具有大范围推广应用的实际意义。另外可以通过微生物对土壤进行改良,但这种技术对微生物要求比较高,而且治理周期比较长,还会存在一定的风险问题[4]。
、化学防治
化学防治可以通过重金属改良剂,根据不同的金属特点采取相应的化学反应,确保对重金属进行有效抑制,使这些潜藏在土壤中的重金属能够快速凝聚,减轻土壤对重金属吸收,避免造成恶劣影响。还可以直接使用金属拮抗剂,因为金属之间存在许多的相互作用,金属的特性也并不会对人体造成明显的伤害,通过化学防治可以通过有益金属对重金属相互作用产生拮抗性,减轻重金属的活跃度[5]。
、生态修复技术
在农业生态修复中通过农艺修复或生态修复等不同的方法,可以保证土壤中的水分含量,耕作制度得到有效控制,技术人员可以通过对土壤中的水分进行控制,有效改善土壤的pH,而且有部分重金属在氧化还原下会不断迁移发生变化,此外造成土壤氧化还原的主要因素在于水含量增多,所以在修复的过程中要加强对水含量的有效调控,增强氧化还原整体效能,避免重金属的快速迁移,促进土壤修复的整体质量水平全面提高。生态修复能够对土壤的水分肥力进行快速还原,改善当地的环境气候条件,有效控制重金属污染物所处的环境介质。在土壤重金属污染治理时,生态修复技术的效率比较缓慢,在短时间内并不能看到显着的效果。
、工程治理技术
工程治理技术能够通过工程机械理论,加强对污染土地治理。目前常用工程治理技术包括换土法、克土法以及深耕翻土法等,是指被污染的土壤中增加干净土壤,并且快速将被污染土壤与外界隔离,减少土壤中的重金属污染物浓度。换土法则是直接将被污染的土壤快速挖掘,并搬运别处进行妥善处置,换上干净土壤。深耕翻地法是利用机械,使上部重金属污染物迅速向下部翻转,保证表土表面重金属污染浓度降低。在运用工程治理技术中,需要根据不同的技术要求选择科学的治理方法,通常污染程度比较轻的土地可以采用深耕翻土法,污染程度比较重的则需要采用换土法以及克土法,需要注意的是,在采用换土法时对被挖出的污染土壤要及时进行处理,避免对环境造成二次污染。
、联合修复技术
由于土壤重金属污染物的成分多样化,不同地区的污染类型,污染程度也各不相同,凭借单一的技术很难达到预期的修复效果,为此要积极针对土壤重金属污染的具体情况,采取联合修复的方式,通过对植物和微生物联合物理和化学联合等多样化的修复手段,能够促进土壤恢复效果,减轻土壤受污染的程度[6]。
、改良剂改性修复
改良剂改性修复,主要是在重金属污染土壤中加入固定配方的改良剂,使改良剂与重金属之间出现明显的吸附作用、抗结作用以及氧化还原作用,但这样的技术最终造成土壤重金属污染物活性显着下降。石灰石、碳酸钙、硅酸盐等各种改良剂相互作用还能够促进土壤的养分得到显着变化。
5、结束语
我国目前土壤重金属污染问题十分严重,而且防治工作起步晚、技术落后,给土壤重金属污染防控造成严峻挑战。针对污染物有效防治采取相应的措施加以治理,确保土壤重金属污染物的改良效果全面提高,促进我国土壤资源的安全。
参考文献
[1]赵瑞芬,程滨,滑小赞,等忻州市灌区土壤重金属污染评价及分布特征分析[J].北方园艺,2021(6):81-88.
[2]马叶,赵国梁,王晓凤,等添加螯合剂诱导栽培红叶荞菜(.)修复铅和镉污染土壤效果的研究[J].土壤通报,2021(2):416-424.
[3]薄录吉,李冰,张荣全,等.金乡县大蒜产区土壤重金属特征及潜在生态风险评价[J].土壤通报,2021(2):434-442.
[4]张启,吴明洲.某疑似污染农用地地块土壤调查布点及评价方法[J].安徽农业科学,2018(20)117-119.
[5]王海东,方凤满,谢宏芳,等芜湖市区土壤重金属污染评价及来源分析[J]2010(4):36-40.
[6]张仕军土壤中重金属污染治理存在的问题及对策研究[J]资源节约与环保,2020(9):93-94.
重金属指的是密度在5以上的金属,如金、银、铜、铅、锌、镍、钴、镉、铬和汞等45种。从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬以及类金属砷等生物毒性
化验员个人简历范文 个人信息 姓 名:化验员个人 简历 性 别:男 生源地: 广东省梅州市 政治面貌: 中共党员 学历 :本科 专业 : 应用化学 联系方式:
Cu与NH3·H2O的反应也是大学要求的高中只要掌握1、铜离子在溶液中为蓝色2、加入碱产生天蓝色的沉淀3、遇到有机物中的多羟基化合物会产生绛蓝色溶液
去淘宝的《翰林书店》店铺,店主能帮你下载这类论文的,可以去看看
石墨炉原子吸收