• 回答数

    4

  • 浏览数

    155

C罗C梅西梅
首页 > 学术期刊 > 关于社会网络研究的论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

始终不遇

已采纳

这个应该是属于心理学范畴的论文了~你要是想找这样的论文的话~你可以看下(心理学进展 )吧~上面的论文是都可以免费下载的

238 评论

娃娃哇娃娃呀

社会网络分析理论: 在社会网络[63]由人类学家Barnes最早提出的概念,他在社会网络的分析基础上统地研究挪威一个小渔村的跨亲缘与阶级的关系。在社会网络分析中,存在一些经典的理论。这些理论主要包括:六度分割理论、弱关系理论、150法则、小世界网络理论、马太效应等。基于社会网络有关的研究方向和内容,在不同的领域着发挥着各自的作用,例如,社会影响力分析,社区发现,信息传播模型,链接预测,基于社会网络的推荐。 150法则是指一个人能保持稳定社交关系的人数上限通常为150人。1929年由英国罗宾•邓巴教授(Robin Dunbar)提出了经典的”150定律”理论,该定律同时也被称为“邓巴数字”[64]。这个定律在我们的实际日常生活中的应用是相当普遍的,SIM卡中只能存储150个联系人的电话,微软的MSN中也只可以最多把150位联系人的信息添加到自己的名单中[64]等等。 小世界网络是一种具有特殊结构的复杂网络,在这种网络中大部份的节点是不相邻的,但绝大部份节点之间是连通的且距离很短。六度分割理论也是小世界网络理论的一种体现。在多数现实世界的社会网络中,尽管网络中的节点数量巨大,网络中相邻的节点相对较少,但每两个节点间往往只需要很短的距离便能连通。 六度分割就是指一个人与其他任何一个人之间建立起联系,最多都只需要经过六个人。所以,即便邓巴数字告诉我们,我们是能力上维持一个特别大的社交圈的,但是六度分割理论却可以告诉我们,通过我们现有的社交人脉圈以及网络可以无限扩张我们的人脉圈,在需要的时候都能够和地球中想要联系的任何人取得联系。 弱关系理论弱关系(Weak Tie)是指需要较少或不需要情感联系的人们之间的社会联系,这种联系几乎不需要耗费个人的时间或精力来维系,但这种联系却很有作用。美国社会学家Mark Granovetter在研宄人们在求职过程中如何获取工作信息时发现[65],由家人、好友等构成的强关系在获取工作信息过程中起到的作用很有限,而那些关系较疏远的同学、前同事等反而能够提供更加有用的求职信息。 马太效应可以理解为达尔文进化论中适者生存的理念。在社交网络的发展过程如同生物进化的过程,存在强者越强、弱者越弱的现象。也就是说,在社交网络中越是处于网络核心的节点很大可能会变来越核心,而那些处于社交网络中边缘地带的节点或许会越来越不重要甚至直至消失。那些在社交网络中相比其他节点拥有更大影响力的节点,其带给该网络的影响也要比那些拥有弱影响力的节点所带来的影响要强。 从不同角度探索节点影响力挖掘算法: 1.基于邻节点中心性的方法。这类方法最简单最直观,它根据节点在网络中的位置来评估节点的影响力。度中心性[13]考察网络中节点的直接邻居数目,半局部中心性[14]考察网络中节点四层邻居的信息,ClusterRank[15]同时考虑了网络中节点的度和聚类系数。 2.基于路径中心性的方法。这类方法考察了节点在控制信息流方面的能力,并刻画节点的重要性。这类方法包括子图中心性[16]、数中心性[17](一些演化算法包括:路由介数中心性[18],流介数中心性[19],连通介数中心性[20],随机游走介数中心性[21]等)及其他基于路径的挖掘方法。 3.迭代寻优排序方法。这类方法不仅考虑了网络中节点邻居的数量,并且考虑邻居质量对节点重要性的影响,包括了特征向量中心性[13],累积提名[22],PageRank算法[23]及其变种[24-32]。 4.基于节点位置的排序算法。这类方法最显著的特点是,算法并没有给出一个计算节点重要性的定义,而是通过确定节点在网络中的位置,以此来确定节点的重要程度。在网络核心位置的节点,其重要性就相对较高,相反的,若节点处于网络边缘,那么它的重要性就会比较低。基于节点位置的以及不同应用场景的推荐算法具有重要的研究意义[34-37]。 节点影响力评估方法: 在社交网络节点影响力的评估方法主要可以分为三类,基于静态统计量的评估方法、基于链接分析算法的评估方法,基于概率模型的评估方法。 众学者在静态统计量的方法上,结合不同社交网络中相关信息,借鉴链接分析法以及建立概率模型来评估节点影响力,对社交网络节点影响力可以做到更有效的评估[66]。 1)基于静态统计量度量方法 主要是通过网络中节点的一些静态属性特征来简单直接地体现节点的影响力,但面对社交网络中复杂信息以及不同平台,并不能有效地度量不同社交网络中节点影响力。如度中心性,主观认为节点的重要性取决于与其他节点连接数决定,即认为一个节点的邻居节点越多,影响力越大。在有向网络中,根据边的方向,分为入度和出度,在有权网络中,节点的度可以看作强度,即边的权重之和。度中心性刻画了节点的直接影响力,度中心性指标的特点是简单、直观、计算复杂度低,也具有一定合理性。 但针对不同平台的网络结构中,度中心性的影响力效果未必能达到目标效果,而且社交网络中用户间关系的建立具有一定的偶然性,而且不同的用户间的关系强度也不同。度中心性没有考虑了节点的最局部信息,虽然对影响力进行了直接描述,但是没有考虑周围节点处所位置以及更高阶邻居。众学者在静态统计量的方法上,结合不同社交网络中相关信息,借鉴链接分析法以及建立概率模型来评估节点影响力,对社交网络节点影响力可以做到更有效的评估[66-67]。 2)基于链接分析算法的方法 链接分析算法(Link Analysis)主要应用在万维网中用来评估网页的流行性。通过超链接,万维网中的网页连接成一个网络,同时这个网络也具备了小世界网络的特征,且微博平台中的关注和粉丝关系与网页的链入与链出十分相似,因此链接分析法的思想也被应用在了微博社交网络中节点影响力的评估中。经典的算法是PageRank[68]和HITS算法[69](Hyperlink-Induced Topic Search)。 PageRank算法模型,是Google在搜索引擎结果中对网站排名的核心算法,核心思想通过计算页面链接的数量和质量,来确定网站的重要性的粗略估计,即节点的得分取决于指向它的节点的数量和这些节点的本身得分。即有越多的优质节点指向某节点时它的得分越高。 HITS算法是由Jon Kleinberg于1997年提出的。HITS算法模型中,有两类节点,权威(Authority)节点,和枢纽(Hub)节点。权威节点在网络中具有高权威性,枢纽节点具有很个指向边的节点。通过计算网络中每个节点的Authority权威值和Hub枢纽值来寻找高权威性的节点。即求值过程是在迭代中计算Authority和Hub值,直到收敛状态。Hub值和Authority值计算公式。 通过多数研究者发现,将链接分析法结合社交网络特性可以更好的对用户影响力进行评估,由于技术的快速发展,社交网络的多变性,因此如何将社交网络中的复杂数据和用户行为与相关算法进行结合,仍是需要我们继续研究的方向。 3)基于概率模型的方法 主要是建立概率模型对节点影响力进行预测。这么多学者将用户影响力作为参数对社交网络中的节点用户行为建立概率模型,并根据社交网络中已有的用户数据求解概率模型,得出用户影响力。 文献[70]认为用户间影响力越大、被影响用户的活跃度和转发意愿越高,则其转发另一个用户的信息的概率越大,所以利用用户影响力、转发意愿和活跃度等构建转发概率模型。通过用户发布的tweet数量、转发的tweet数和用户的历史转发行为数据,计算出用户活跃度、转发意愿和转发概率,进而社交网络中用户影响力。 文献[71]在度量影响力时融合了用户发布信息的主题生成过程,认为兴趣相似或经常联系的用户间影响力较强,用户的行为受其朋友的影响也受其个人兴趣的影响。基于这些假设,结合文本信息和网络结构对LDA模型进行扩展,在用户发布信息的基础上建立模型,通过解模型计算得出用户间基于主题的影响力。 文献[72]认为转发概率同样可以体现用户间的影响力,根据用户间的关注关系。历史转发记录,利用贝叶斯模型预测用户间的转发概率。 文献[73]考虑了用户建立关注关系的原因,用户被关注可能是与关注者兴趣投,也可能受用户的影响力影响。将基于用户的主题建模和基于主题的影响力评估相结合,并在同一个生成模型中进行计算,提出基于LDA算法模型的扩展算法模型FLDA模型(Followship-LDA)。[13] P. Bonacich. Factoring and weighting approaches to status scores and clique identification[J]. Journal of Mathematical Sociology, 1972, 2(1): 113-120 [14]ü,[J]. Physica A, 2012, 391(4): 1777-1787 [15] D. B. Chen, H. Gao, L. Lü, et al. Identifying influential nodes in large-scale directed networks: The role of clustering[J]. PLoS One, 2013, 8(10): e77455 [16], . [J].Physical Review E, 2005, 71(5): 122-133 [17][J].Sociometry,1977, 40(1): 35-41 [18] S. Dolev, Y. Elovici, R. Puzis. Routing betweenness centrality[J].Journal of the ACM, 2010, 57(4): 710-710 [19] Y. Gang,, H. Bo,etal. Efficientroutingoncomplexnetworks[J].PhysicalReviewE, 2005, 73(4): 46108 [20] E. Estrada, D. J. Higham, N. Hatano. Communicability betweenness in complex networks[J]. Physica A, 2009, 388(5): 764-774 [21][J].Social networks, 2005, 27(1): 39-54 [22] networks[J]. Social networks, 2000, 22(3): 187-200 [23] B. S. Brin, L. Page. The anatomy of a large scale hypertextual Web search engine[J]. Computer Networks & ISDN Systems, 1998, 30: 107-117 [24] P. Jomsri, S. Sanguansintukul, W. Choochaiwattana. CiteRank: combination similarity and static ranking with research paper searching[J]. International Journal of Internet Technology & Secured Transactions, 2011, 3(2): 161-177 [13][25][D].California: University of California. 2012 [26] J. Weng, E. P. Lim, J. Jiang, et al. Twitterrank: finding topic-sensitive influential twitterers[C]. Third International Conference on Web Search & Web Data Mining, ACM, 2010, 261-270 [27]: distinguishingbetweenprestigeandpopularity[J].NewJournalofPhysics,2012,14(14): 33033-33049 [28] J. Xuan, H. Jiang, , et al. Developer prioritization in bug repositories[C]. International Conference on Software Engineering, 2012, 25-35 [29]ü,[J]. Physica A, 2013, 404(24)47-55 [30] L. Lü, Y. C. Zhang, C H Yeung, et in social networks, the delicious case[J]. PLoS One, 2011, 6(6): e21202 [31][J].Authoritative sources in a hyperlinked environmen, 1999, 46(5): 604-632 [32](SALSA)andthe TKC effect[J]. Computer Networks, 2000, 33(2): 387-401 [33][J].Physical Review E, 2014, 90(5): 052808 [34] A. Banerjee, A. G. Chandrasekhar, E. Duflo, et al. Gossip: Identifying central individuals in a social network[R]. National Bureau of Economic Research, 2014. [35] percolation in social networks[J]. arXiv preprint arXiv:, 2015. [36] S. Y. Tan, J. Wu, L. Lü, et al. Efficient network disintegration under incomplete information: the comic effect of link prediction[J]. Scientific Reports, 2016, 6. [37]任晓龙,吕琳媛.网络重要节点排序方法综述[J].科学通报, 2014,59(13): 1175-1197 [63]贝克,晓冬.社会资本制胜:如何挖掘个人与企业网络中的隐性资源[M].上海交通大学出版社,2002. [64]天涯.六度分隔理论和150法则[EB/OL].|.[2010-07-14]. [65]Granovetter M Strength of Weak Ties[J]. American journal of sociology, 1973: 1360-1380. [66]王梓.社交网络中节点影响力评估算法研究[D].北京邮电大学, 2014. [67] Meeyoung Cha, Hamed Haddadi,Fabricio Benevenutoets. Measuring User Influence in Twitter: The Million Follower Fallacy[C]. Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM),2010:10-17 [3][68]  Page, Lawrence, Brin, et al. The PageRank citation ranking[C]// BringingOrder to the Web. Stanford InfoLab. 1998: 1-14. [4][69]Kleinberg J M. Authoritative sources in a hyperlinked environment[J]. Journal of the ACM, 1999, 46(5): 604-632. [70]Zibin Yin, Ya Zhang. Measuring Pair-Wise Social Influence inMicroblog[C], 2012 ASE/IEEE International Conference on SocialComputing and 2012 ASE/IEEE International Conference on Privacy,Security, Risk and Trust, 2012: 502-507. [71]Lu Liu, Jie Tang, Jiawei Han, Meng Jiang, Shiqiang Yang. Mining topic-level influence in heterogeneous networks[C]. Proceedings of the 19th ACMinternational conference on information and knowledge management, 2010: 199-208. [72] Qianni Deng, Yunjing Dai. How Your Friends Influence You: Quantifying Pairwise Influences on Twitter[C], International Conference on Cloud and Service Computing, 2012:185-192. [73] Bi, Bin, et al. Scalable Topic-Specific Influence Analysis on Microblogs[C], Proceedings of the 7th ACM international conference on Web search and data mining,2014: 513-522.

192 评论

美丽心情day006

网络文化对大学生的负面影响及其对策 收费毕业论文 [2010-07-06 03:23] 18 摘要:随着网络的普及和发展,它已经渗透到社会生活的各个领域。网络在给大学生带来积极影响的同时,也不可避免的造成了一些负面效应,并且严重地冲击着大学生的世界观、人生观、价值观和道德观。 关键词:网络文化;大学生;负面影响;对策 网络时代所构建的新的生存方式和生 摘要:随着网络的普及和发展,它已经渗透到社会生活的各个领域。网络在给大学生带来积极影响的同时,也不可避免的造成了一些负面效应,并且严重地冲击着大学生的世界观、人生观、价值观和道德观。 关键词:网络文化;大学生;负面影响;对策 网络时代所构建的新的生存方式和生活方式,广泛而深刻的影响着大学生的思想政治观念、价值取向、道德判断、文化理念等诸多方面。网络文化的兴起与发展,正加速改变着大学生的思想状态,影响着他们的认知、情感和行为。网络文化的负面影响越来越受到社会的普遍关注。因此,我们要充分利用网络资源对网络时代大学生行为的教育和管理提出几点建议,以期达到正确引导的目的,从而使大学生能够健康成长。 一、网络文化对大学生的负面影响 网络是一个开放的世界,网上的信息良莠不齐,特别是在目前网络立法监督还不够完善的情况下,网上反动、色情的信息随处可见。大学生正处在世界观、价值观和人生观形成的关键时期,如果不能给他们提供一个健康积极安全的网络环境,就会很容易导致他们缺乏是非辨别能力、自我控制能力和选择能力,进而使得他们难以抵御网上的各种不良信息的侵蚀,很容易在不知不觉中受到不良影响,网络的不文明现象,甚至网络犯罪也就显现出来了。 一是网络的多元化,使得各种思想、各种价值观都出现在网络之中 网络能够超地域无障碍的交流,它既是信息的集散地,又是信息的垃圾场,各种合法信息与非法信息、有益信息与垃圾信息都混杂其中,从而产生网络“信息污染”现象。在多种观念相互激荡、多种意识形态相互影响、多种文化相互融合的网络时代,大学生网民的思想观念面临着西方意识形态的全面渗透和前所未有的冲击。以美国为首的西方发达国家基本掌握着网络信息的关键技术,网络正在成为灌输西方价值观的一个基本工具。我国作为技术上的“后起国”,在网络信息中,维护教育主权和马克思主义在意识形态领域的指导地位,防止敌对势力对我进行“西化”、“分化”的图谋,其任务是十分紧迫和艰巨的。[1]网络中的垃圾文化的传播会导致大学生价值冲突,使其价值取向多元化,进而大学生的道德意识逐渐弱化。 二是网络的开放性,易忽视现实的规则约束 网络是一个失去了某些强制“他律”因素的自由空间,是一个虚拟社会,在网络环境中缺少社会舆论的监督和现实的规范约束,使“他律”作用下降,容易诱发道德行为的失控。网络世界里没有相同于现实世界的规则约束,它的开放性容易使他们忽视现实生活中的社会规范和道德约束力,违规行为便频频出现了。很多的网络不文明现象在不断增多,有个别大学生网络道德自律性差,在网上匿名肆意泄露并宣扬他人隐私,攻击侮辱他人人格,给他人造成严重的精神伤害,对他人声誉造成不良的影响。网络黑客行为不仅对网络信息和网络安全构成巨大威胁,而且还严重干扰了网络社会的正常秩序,甚至危害到现实社会。 三是网络的虚拟性,影响了大学生的身心健康 网络引发了大学生的虚拟社会交往行为。网络的虚拟性使得相当一部分大学生更愿意选择与网友交往,但是大学生在虚拟世界扩大社会交往范围的同时,在现实世界里又缩小了交往的范围。他们整天坐在电脑前,漫游在网上世界里,与真实社会慢慢脱离,变得日益孤僻,加深了与同学,老师和亲友间的感情隔阂。[2]从而使得他们极力回避现实的人际关系,变得与现实社会相隔离,不利于培养合作意识和团队精神,导致自主创造能力和社会实践能力的逐渐削弱;不少大学生沉溺于虚拟世界、与符号化的对象交往而不能自拔,以致孤独感、抑郁感增强,形成自我封闭的心理,导致心理扭曲,不利于大学生的健康成长。 二、应对网络文化负面影响的措施 当代大学生是时代的弄潮儿,是祖国未来的承载者,作为网络影响最普遍的一个群体,越来越扮演着网络文化先锋的角色。网络文化对大学生思想的影响是多层次、多角度和多方面的。我们必须直面挑战、积极应对、主动介入,采取有效对策控制网络文化对大学生的负面影响,营造良好的网络文化氛围。 第一,加强网络的法律法规和道德规范建设 要加强网络立法,迅速提高司法人员在计算机网络管理与执法方面的能力。到目前为止,我国已颁布的有关网络的法律法规有《中华人民共和国计算机信息网络国际互联网管理暂行办法》、《中国互联网域名注册实施细则》、《计算机信息网络国际互联网安全保护管理办法》。我国有关部门还应该注意借鉴国外网络道德规范建设的经验,结合我国的《公民道德建设实施纲要》的精神,制定出更具科学性、操作性的网络道德规范要求,以便使高校开展大学生网络道德教育有章可依,能正确地引导大学生的网络行为。 第二,加强大学生网络道德教育 加强大学生网络道德教育,要针对大学生网络道德的现状,要施行以辨识为主、辨识与灌输相统一的道德教育方法。[3]把管理和教育结合起来,自律和他律结合起来,使大学生的网络自由与自律、责任与道义相互统一。加强伦理道德教育、法律意识和安全意识教育,树立和宣传良好的网络道德榜样,培养学生健全的人格和高尚的道德情感。使他们能够提高分析辨别能力和“免疫力”,增强政治敏锐性和鉴别力,自觉地防止和抵制网络不良因素的影响。 第三,加强“慎独”教育,培养自律精神 网络社会所要求的道德,是一种以“慎独”为特征的自律性的道德。它强调在个人独处之际,没有任何的外在监督和控制,也能遵从道德规范,恪守道德准则。马克思曾指出:“道德的基础是人类精神的自律。” [4]充分体现出道德自律的重要性。由于网络行为的隐蔽性特征,它对人们的自律性有了更高的要求,要求人们具有更高的道德境界。网络空间又是一个自由、开放的空间,大学生畅游在丰富多彩而又复杂的网络文化中,更需要大学生自觉强化自律精神和责任意识,自觉主动地增强网络道德意识。因此,自主、自律性的道德规范教育就显得更为重要了。 第四,加强自我修养教育 自我修养是道德内化为良心和品质的内在要素。网络信息的开放、快捷、隐秘、广泛、虚拟等特征,使网络信息污染成为不可避免的一个严重问题。作为新时期的大学生,要确立自己远大的人生目标,合理安排作息时间,健全人格,提高个人的交际能力,矫正不良的上网习惯。从自身的层面来说,大学生要加强自我修养教育,提高自我心理调适能力。应培养自己的意志品质,增强自我约束能力,保持健康的情绪,从而增强抵御网络环境负面影响的能力。

325 评论

小袅袅09

1、        点:行动者、节点(actors, nodes)

即为社会网络中的一个功能个体(包括个人、单位、团体(看成一个整体)),在虚拟网络中表现为一个注册用户,ID等。

在社会网络研究领域,任何一个社会单位、社会实体或功能个体都可以看成是“节点”,或者行动者。

一个图中: 节点集合N={n1,n2,、、、n3}

2、        线,关系(relationship):

用来刻画关系数据,关于接触、联络、关联、群体依附和聚会等方面的数据,这类数据把一个能动者与另外一个能动者联系在一起,因而不能还原为单个行动者本身的属性。如上图表示的线arc。

一般称由一条线连着的点是相互“邻接的(adjacent)”,邻接是对由两个点代表的两个行动者之间直接相关这个事实的图论表达。

一般有无向线、有向线、多值线、有向多值线。

由线构成的图无向图、有向图、有向多值、无向多值图。

3、        邻域(neighborhood):

与某个特定点相邻的那些点成为该点的“邻域”。

4、        度数(degree):

邻域中的总点数成为度数。(严格的说应该是“关联度”,(degree of connection)),一个点的度数就是对其“邻域”规模大小的一种数值侧度。

一个点(无向图)的度数,在邻接矩阵中,一个点的度数用该点所对应的行或者列的各项中的非0值总数来表示。如果是二值(有项)的,那么一个点的度数就是该点所在行和所在列的总合。

在有向图中,“度数”包括两个不同方面,表达社会关系的线的方向。分别称为“点入度(in-degree)”:直接指向该点的点数总合;和“点出度(out-degree)”:该点所直接指向的其它点的总数。因此,对应在有向图的矩阵上,点的入度:对应该点所在列的地总和上。出度:该点所在行的总和上。

所有点的度数总合:无向图的总度数查线(关系)即可,有项图的总度数查线的2倍。

5、        线路(walk):

各个点可以通过一条线直接相连,也可以通过一系列线间接相连,在一个图中的这一系列线叫做一条“线路”。

6、        途经(path):

线路中每个点和每条线都各不相同,则称该线路为“途经”,“途经”的“长度”,用构成该途经的线的条数来测量。

7、        距离(distance):

一个重要的概念,指连接两个点的最短路径(即捷径,geodesic)的长度。在图论中一般称作最短路经。要与“途经”的概念相区分。

8、        方向

主要是看有向图的方向问题。

9、        密度(density)

描述了一个图中各个点之间关联的紧密程度。一个“完备(complete)图”(在图论中称完全图)指的是一个所有点之间都相互邻接的图。这种完备性即使在小网络中也积极少见。密度这个概念试图对线的总分布进行汇总,以便测量图在多大程度上具有这种完备性。密度依赖于另外两个网络结构参数:图的内含度和图中各点的度数总和。密度指的是一个图的凝聚力的总体水平。

“密度”和“中心势”这两个概念代表的是一个图的总体“紧凑性(compactness)”的不同方面。

图的内含度(inclusiveness):图中各类关联部分包含的总点数,也可表述为图的总点数减去孤立点的数。不同的图进行比较常用的侧度为: 关联点数/总点数 15/20=75%

各点度数总和:

密度计算公式: 图中实际拥有的连线数与最多可能拥有的线数之比,其表达式为2l/n(n-1)。  有向图的表达式为:l/n(n-1)

多值图的密度:需要估值多重度问题,显然多重度高的线对于网络密度的贡献要比多重度低的线的贡献大。比较有争议的一种测度。

巴恩斯(Barnes,1974)比较了两类社会网络分析:

10、        个体中心(ego-centric) 网研究

围绕特定的参考点而展开的社会网,密度分析关注的是围绕着某些特定行动者的关系的密度。计算个体中心网密度的时候,通常不考虑核心成员及与该成员有直接关系的接触者,而是只关注在这些接触者之间存在的各种联系(links)。

11、        社会中心(socio-centric)网研究

关注的是作为一个整体的网络关联模式,这是对社会网络分析的另外一类贡献,从这一角度出发,密度则不再是局部行动者的“个体网”密度,而是整个网络的密度。密度计算上文已经提到。

12、        点度中心度(point centrality)

一个图中各个点的相对中心度

13、        图的中心度(graph centrality) 即为中心势的概念

14、        整体中心度(global centrality)   (弗里曼Freeman 1979,1980)

整体中心度指的是该点在总体网络中的战略重要性。根据各个点之间的接近性(closeness),根据不同点之间的距离。可以计算出图中某点与其他各个点之间的最短距离之和。

无向图:可以通过软件计算出来一个无向图中各个点之间的距离矩阵,那么一个点的“距离和”比较低的点与其他很多点都“接近”。接近性和距离和呈反向关系。

有向图:“内接近性(in-closeness)”和“外接近性(out-closeness)”来计算

15、        局部中心点

一个点在七紧邻的环境中与很多点有关联,如果一个点有许多直接相关的“邻点”,我们便说该点是局部中心点。

16、        整体中心点

如果一个点在网络的总体结构上占据战略上的重要地位,我们就说该点是整体中心点。

17、        局部中心度(local centrality)

局部某点对其邻点而言的相对重要性。测量仅仅根据与该点直接相连的点数,忽略间接相连的点数。在有向图中有内中心度(in-centrality)和外中心度(out-centrality)。也可以自定义距离为1或2进行测度,如果定义为4(大多数点的距离为4),就毫无意义,也没有信息。

18、        局部中心度的相对测度

点的实际度数与可能联络得最多度数之,注意要去掉该点本身。

19、        中心势(centralization) 弗里曼(freeman,1979)

指的不是点的相对重要性,而是整个图的总体凝聚力或整合度。很少有人试图界定一个图的结构中心思想。中心势描述的则是这种内聚性能够在多大程度上围绕某些特定点组织起来。因此,中心势和密度是两个重要的、彼此相互补充的量度。

核心点的中心度和其它点的中心度之差。因此得出概念:实际的差值总和和与最大可能的差值总和相比。

322 评论

相关问答

  • 关于社会变迁的研究论文

    以鸦片战争为转折点,中国被迫放弃了“闭关自守”的政策,开始受到西方物质文明和思想文化的影响。1840年,已经完成工业革命的英国,为满足资本主义生产发展的需要,谋

    小小小文er 5人参与回答 2023-12-11
  • 有关于社会研究的论文

    谈社会科学研究中的价值论文 从小学、初中、高中到大学乃至工作,大家都经常接触到论文吧,论文是对某些学术问题进行研究的手段。你写论文时总是无从下笔?下面是我为大家

    lukylukycat 3人参与回答 2023-12-10
  • 关于网络安全的研究论文

    【校园网安全防护的几点建议】 随着国家网络信息化建设的飞速发展,有越来越多的学校建立起自己的校园网络进行教学和管理,同时,通过 Internet的远程教育网

    小白胖了 3人参与回答 2023-12-09
  • 社会关系网络研究的毕业论文

    网络对沟通行为的影响多少字呢能帮你完成的

    inesthreebears 3人参与回答 2023-12-07
  • 关于网络营销研究的论文

    中小企业实施网络营销手段具有广阔的发展前景,有着其得天独厚的优势,但发展尚未成熟,中小企业应当致力于完善营销策略,把握商机,以此来推动企业的进步。下面是我给大家

    你自己觉得 3人参与回答 2023-12-10