• 回答数

    5

  • 浏览数

    205

yuyu88yuyu
首页 > 学术期刊 > 全息照相技术专业论文范文

5个回答 默认排序
  • 默认排序
  • 按时间排序

Lisa艳艳

已采纳

小学生科技小论文

星期天,看见爸爸那双满是灰尘的皮鞋忍不住叹气,唉,看来又是我做‘苦力的时间了’我拿起爸爸那双满是灰尘的皮鞋涂上鞋油仔细的擦了一遍皮鞋又重现‘青春’这是为什么呢?我不经疑惑。

于是我找到另一双新鞋和旧鞋进行比对我先用手触摸两双皮鞋的鞋面发现新皮鞋比旧皮鞋的表面要光滑。旧皮鞋涂上鞋油后,仔细观察,虽然亮了很多但仍无法跟新皮鞋比。皮鞋亮度是否与皮鞋光滑度有关?

我去取一双旧皮鞋,在放大镜下皮鞋显得凹凸不平。然后我再皮鞋都比较粗糙的1区和2区涂上鞋油仔细擦拭,2区不涂做空白对照。我发现1区擦拭后,表面明显光滑很多,放在用阳光下也比2区有光泽为什么两者有这样的差别呢?

于是我就去问爸爸得知:皮鞋表面原本就不是绝对光滑的,如果是旧皮鞋就更加不平了这样它就不能使光线在一定方向上产生反射,看上去没什么光泽。但鞋油中的一些小颗粒正好填补在皮鞋的'凹坑中,如果用布擦一擦,让鞋油涂得更平均,就使皮鞋表面更光滑,平整光线反射更强。

通过实验,我终于知道了皮鞋越擦越亮的秘密。

281 评论

miumiu大酱

分光计的调节及其棱镜折射率的测定研究与分析杨贵宏(08物理2班 200802050253)引言:我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要: 分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。关键词:分光计、棱镜、折射率Abstract: The spectrometer can accurately measure the angle of refraction is a typical optical instruments, often used to measure the material's refractive index, dispersion rate, wavelength, and spectral observations. As the more sophisticated devices, control components and operation are more complex, and therefore must be used strictly in accordance with certain rules and procedures to adjust to get the high precision measurement : spectrometer, prism, the refractive index二、实验目的: 1、了解分光计结构,学会正解调节和使用分光计的方法; 2、用分光计测量三棱镜的顶角; 3、学会用最小偏向角法测量三棱镜的折射率。三、实验仪器:分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。 图 1分光计基本结构示意图表1 分光计各调节装置的名称和作用代号 名称 作用1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度2 狭缝装置 3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。4 平行光管 产生平行光5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。6 夹持待测物簧片 夹持载物台上的光学元件7 载物台调节螺丝(3只) 调节载物台台面水平8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动9 望远镜 观测经光学元件作用后的光线10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动15 望远镜支架 16 游标盘 盘上对称设置两游标17 游标 分成30小格,每一小格对应角度 1’18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动23 分光计电源插座 24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上25 平行光管支架 26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角四、实验原理:三棱镜如图1 所示,AB和AC是透光的光学表面,又称折射面,其夹角 称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。图2三棱镜示意图 1.反射法测三棱镜顶角 如图2 所示,一束平行光入射于三棱镜,经过AB面和AC面反射的光线分别沿 和 方位射出, 和 方向的夹角记为 ,由几何学关系可知: 图3反射法测顶角2.最小偏向角法测三棱镜玻璃的折射率假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角 称为偏向角,如图3所示。 图4最小偏向角的测定转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率 与顶角 及最小偏向角的关系式为 实验中,利用分光镜测出三棱镜的顶角 及最小偏向角 ,即可由上式算出棱镜材料的折射率 。实验内容与步骤:1.分光计的调整(分光计结构如右图所示) 在进行调整前,应先熟悉所使用的分光计中下列螺丝的位置: ①目镜调焦(看清分划板准线)手轮; ②望远镜调焦(看清物体)调节手轮(或螺丝);③调节望远镜高低倾斜度的螺丝;④控制望远镜(连同刻度盘)转动的制动螺丝;⑤调整载物台水平状态的螺丝;⑥控制载物台转动的制动螺丝;⑦调整平行光管上狭缝宽度的螺丝;⑧调整平行光管高低倾斜度的螺丝; 图5 ⑨平行光管调焦的狭缝套筒制动螺丝。(1)目测粗调。将望远镜、载物台、平行光管用目测粗调成水平,并与中心轴垂直(粗调是后面进行细调的前提和细调成功的保证)。(2)用自准法调整望远镜,使其聚焦于无穷远。①调节目镜调焦手轮,直到能够清楚地看到分划板"准线"为止。 ②接上照明小灯电源,打开开关,可在目镜视场中看到如图4所示的“准线”和带有绿色小十字的窗口。 图6目镜视场 ③将双面镜按图5所示方位放置在载物台上。这样放置是出于这样的考虑:若要调节平面镜的俯仰,只需要调节载物台下的螺丝a1或a2即可,而螺丝a3的调节与平面镜的俯仰无关。图7平面镜的放置  ④沿望远镜外侧观察可看到平面镜内有一亮十字,轻缓地转动载物台,亮十字也随之转动。但若用望远镜对着平面镜看,往往看不到此亮十字,这说明从望远镜射出的光没有被平面镜反射到望远镜中。我们仍将望远镜对准载物台上的平面镜,调节镜面的俯仰,并转动载物台让反射光返回望远镜中,使由透明十字发出的光经过物镜后(此时从物镜出来的光还不一定是平行光),再经平面镜反射,由物镜再次聚焦,于是在分划板上形成模糊的像斑(注意:调节是否顺利,以上步骤是关键)。然后先调物镜与分划板间的距离,再调分划板与目镜的距离使从目镜中既能看清准线,又能看清亮十字的反射像。注意使准线与亮十字的反射像之间无视差,如有视差,则需反复调节,予以消除。如果没有视差,说明望远镜已聚焦于无穷远。 (3)调整望远镜光轴,使之与分光计的中心轴垂直。 平行光管与望远镜的光轴各代表入射光和出射光的方向。为了测准角度,必须分别使它们的光轴与刻度盘平行。刻度盘在制造时已垂直于分光计的中心轴。因此,当望远镜与分光计的中心轴垂直时,就达到了与刻度盘平行的要求。具体调整方法为:平面镜仍竖直置于载物台上,使望远镜分别对准平面镜前后两镜面,利用自准法可以分别观察到两个亮十字的反射像。如果望远镜的光轴与分光计的中心轴相垂直,而且平面镜反射面又与中心轴平行,则转动载物台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字像与分划板准线的上部十字线完全重合,如图6(c)所示。若望远镜光轴与分光计中心轴不垂直,平面镜反射面也不与中心轴相平行,则转动载物台时,从望远镜中观察到的两个亮十字反射像必然不会同时与分划板准线的上部十字线重合,而是一个偏低,一个偏高,甚至只能看到一个。这时需要认真分析,确定调节措施,切不可盲目乱调。重要的是必须先粗调:即先从望远镜外面目测,调节到从望远镜外侧能观察到两个亮十字像;然后再细调:从望远镜视场中观察,当无论以平面镜的哪一个反射面对准望远镜,均能观察到亮十字时,如从望远镜中看到准线与亮十字像不重合,它们的交点在高低方面相差一段距离如图6(a)所示。此时调整望远镜高低倾斜螺丝使差距减小为h/2,如图6(b)所示。再调节载物台下的水平调节螺丝,消除另一半距离,使准线的上部十字线与亮十字线重合,如图6(c)所示。之后,再将载物台旋转180o ,使望远镜对着平面镜的另一面,采用同样的方法调节。如此反复调整,直至转动载物台时,从平面镜前后两表面反射回来的亮十字像都能与分划板准线的上部十字线重合为止。这时望远镜光轴和分光计的中心轴相垂直,常称这种方法为逐次逼近各半调整法。图8亮十字像与分划板准线的位置关系 (4)调整平行光管 用前面已经调整好的望远镜调节平行光管。当平行光管射出平行光时,则狭缝成像于望远镜物镜的焦平面上,在望远镜中就能清楚地看到狭缝像,并与准线无视差。 ①调整平行光管产生平行光。取下载物台上的平面镜,关掉望远镜中的照明小灯,用钠灯照亮狭缝,从望远镜中观察来自平行光管的狭缝像,同时调节平行光管狭缝与透镜间的距离,直至能在望远镜中看到清晰的狭缝像为止,然后调节缝宽使望远镜视场中的缝宽约为1mm。 ②调节平行光管的光轴与分光计中心轴相垂直。望远镜中看到清晰的狭缝像后,转动狭缝(但不能前后移动)至水平状态,调节平行光管倾斜螺丝,使狭缝水平像被分划板的中央十字线上、下平分,如图7(a)所示。这时平行光管的光轴已与分光计中心轴相垂直。再把狭缝转至铅直位置,并需保持狭缝像最清晰而且无视差,位置如图7(b)所示。图9狭缝像与分划板位置 至此分光计已全部调整好,使用时必须注意分光计上除刻度圆盘制动螺丝及其微调螺丝外,其它螺丝不能任意转动,否则将破坏分光计的工作条件,需要重新调节。 2. 测量 在正式测量之前,请先弄清你所使用的分光计中下列各螺丝的位置:①控制望远镜(连同刻度盘)转动的制动螺丝;②控制望远镜微动的螺丝。(1)用反射法测三棱镜的顶角  如图2 所示,使三棱镜的顶角对准平行光管,开启钠光灯,使平行光照射在三棱镜的AC、AB面上,旋紧游标盘制动螺丝,固定游标盘位置,放松望远镜制动螺丝,转动望远镜(连同刻度盘)寻找AB面反射的狭缝像,使分划板上竖直线与狭缝像基本对准后,旋紧望远镜螺丝,用望远镜微调螺丝使竖直线与狭缝完全重合,记下此时两对称游标上指示的读数 、 。转动望远镜至AC面进行同样的测量得 、 。可得 三棱镜的顶角 为 重复测量三次取平均。(2) 棱镜玻璃折射率的测定 分别放松游标盘和望远镜的制动螺丝,转动游标盘(连同三棱镜)使平行光射入三棱镜的AC面,如图3 所示。转动望远镜在AB面处寻找平行光管中狭缝的像。然后向一个方向缓慢地转动游标盘(连同三棱镜)在望远镜中观察狭缝像的移动情况,当随着游标盘转动而向某个方向移动的狭缝像,正要开始向相反方向移动时,固定游标盘。轻轻地转动望远镜,使分划板上竖直线与狭缝像对准,记下两游标指示的读数,记为 、 ;然后取下三棱镜,转动望远镜使它直接对准平行光管,并使分划板上竖直线与狭缝像对准,记下对称的两游标指示的读数,记为 、 ,可得 重复测量三次求平均。用上式求出棱镜的折射。五、实验注意事项:1.望远镜、平行光管上的镜头,三棱镜、平面镜的镜面不能用手摸、揩。如发现有尘埃时,应该用镜头纸轻轻揩擦。三棱镜、平面镜不准磕碰或跌落,以免损坏。 2.分光计是较精密的光学仪器,要加倍爱护,不应在制动螺丝锁紧时强行转动望远镜,也不要随意拧动狭缝。 3.在测量数据前务须检查分光计的几个制动螺丝是否锁紧,若未锁紧,取得的数据会不可靠。 4.测量中应正确使用望远镜转动的微调螺丝,以便提高工作效率和测量准确度。 5.在游标读数过程中,由于望远镜可能位于任何方位,故应注意望远镜转动过程中是否过了刻度的零点。 6.调整时应调整好一个方向,这时已调好部分的螺丝不能再随便拧动,否则会造成前功尽弃。 7.望远镜的调整是一个重点。首先转动目镜手轮看清分划板上的十字线,而后伸缩目镜筒看清亮十字。 六、思考题:1. 分光计的调整有哪些要求?其检察的标准?答:①几何要求:“三垂直”。即载物小平台的平面,望远镜的主光轴、平行光管的主光轴均必须与分光计的中心轴垂直。②物理要求:“三聚焦”。即叉丝对目镜聚焦,望远镜对无穷远聚焦,狭缝对平行光管物镜聚焦。③检验三垂直的标准:“四平行”。即载物小平台平面、望远镜的主光轴、平行光管的主光轴和读数刻度盘四者相互平行。④检验三聚焦的标准:“三清晰”。即目镜中观察叉丝清晰,亮十字反回的像(绿十字)清晰,在望远镜中看到狭缝清晰。2. 即是重点又是难点内容的望远镜系统如何调整? 答:①目测粗调②打开小灯调节目镜,看清叉丝。③在载物台上放双平面镜(位置如胶片图所示,为什么?),调节物镜(仰俯角和伸缩)和载物台(螺钉),使双平面镜两面有绿十字像并清晰、无视差,此时望远镜已聚焦无穷远。④调整望远镜的光轴与分光计转轴垂直。使双平面镜两面有绿十字像。再用“减半逐步逼近法”使望远镜的光轴与分光计的中心轴垂直(对照胶片讲解,必要时示范讲解),即叉丝的像与调整叉丝完全重合。3. 平行光管如何调整?答:①用已调节好的望远镜作基准,调节平行光管下部仰俯螺钉,使其出射平行光。②调节平行光管的狭缝宽度(强调:不要损坏刀口!)③使平行光管光轴与分光计转轴垂直。使目镜中看到的水平和竖直的狭缝像均居中。 七、误差分析:在测量三棱镜折射率实验中,当调节分光计的平行光管光轴与望远镜光轴垂直于中心转轴后,由实验可知载物台平面的倾斜程度对最小偏向角的测量没影响,但顶角的测量随着载物台平面的倾斜程度不同,有着不同程度的影响。八、实验心得:1、提高了我们综合分析的能力,当面对一个问题时,首先要考虑怎样解决,既而开始考虑解决的具体方法,在实验前必须提前预习,把整个实验的原理,流程和注意的事项掌握清楚,这才能保证你实验既快又好的完成.在预习时要有目的,心中明白哪里里是实验的重点,哪里是必须注意的问题.设计实验步骤,并预测实验中可能出现的问题。对实验的每一个细节进行分析,尽可能的减小实验误差。这些都使我们初步培养了实验的素质和能力。 2、培养了实验中科学严谨的态度,尊重客观事实,对待任何实验都客观认真仔细。实验正式开始前,应该先清点下实验仪器和材料,并对其进行检查,以确保实验顺利进行.在动手前先将心中的实验知识对照一起过一遍再开始动手。实验过程更始需要很精细的态度和求实的态度。对每个步骤,每个细节都要留心。 3、养成了我们做事认真细致有耐心的习惯。在实验中,你必须有耐心,因为实验中每个变化都可能是细微的,必须集中精神才能去发现它,不可以急于求成。如果实验数据与正确数据相差过大时,应该把整个实验过程回想一下,对照每一步骤寻求问题所在,重新做一次。 4、悉了很多仪器的使用方法,在光学实验室良好的环境和设备的情况下,我们得到了很好的锻炼,对很多仪器的调试、测量,以及如何减小实验误差等,都有了很明确的认识。我想,这在我们以后的实验过程中会非常有用。 5、实验老师们的耐心讲解和对工作的认真态度给我留下了很深刻的印象。辅导我们实验的每一位老师,对工作都极其认真,在实验前,老师通常会给大家讲解下实验的注意事项,对于我们实验中出现的问题都给予耐心的讲解,而且,在我们实验进行中和实验结束后,老师们都启发我们思考实验的一些外延内容,这对我们将实验所进行的内容跟课本密切联系起来,将知识更充分地掌握。九、试验总结:首先:光学试验的仪器测量都十分精密,实验中一个很小的环节都有可能导致试验的失败,以“应用全反射临界角法测定三棱镜的折射率”为例,在实验过程中要注意分光仪在进行本次实验时已做过校正,因此时在测量时就应该注意,只能调节载物台倾斜度调节螺丝,而对于像平行光管倾斜度调节螺丝、望远镜倾斜度调节螺丝等就不应该再进行调节,否则将会导致实验失败。 第二:对于数据的处理,光学实验也有较高的要求,数据不但要求准确度高,精确度也要高,而且通常要记录多组数据,最后取平均。 第三:光学实验的测量仪器在进行测量时,通常要求一个稳定的实验环境,当有光源时,通常要在实验开始前先打开光源,这样在进行实验时,光源已经达到稳定。对于“全息照相”,对环境的稳定性要求更高,实验仪器都放在防震台上,在仪器排好光路后,要用手轻敲台面,看光路是否改变,在进行曝光前,更是要求室内实验人员不得大声说话,因为声波震动而引起的空气密度变化都有可能导致实验失败,在装片后还必须有一个使台面上各元件自然稳定的时间,即使干涉条纹稳定下来了,时间也不得少于3分钟。可以说这是我做过的六次实验中对稳定性要求最高的实验 第四:我始终认为做好实验预习是最重要的,在作实验前,通过预习,我们可以了解要做实验的原理及要使用的仪器的使用方法,这样在实验之前就已对试验有了大概的了解,然后在课堂上通过老师的讲解,可以迅速掌握仪器的使用方法,这样做起实验来才会得心应手,同时也可以减少因不了解实验仪器的使用方法而导致的实验失败,甚至是对仪器造成损坏,可以说做好实验预习是一举多得的事情。九、参考文献:[1]、普通物理实验3光学部分 高等教育出版社 杨述武、赵立竹等编 2008年版;[2]、大学物理实验 章世恒 主编 西南交通大学出版社 2009 年1月 ;[3]、大学物理实验教程(第2版) 何春娟 主编 西北工业大学出版社 2009年4月。

128 评论

30岁男人的世界

引言 光全息学是在现代激光的发现之后才迅速发展起来的,本文将就光全息学的一些主要的研究课题进行探讨,并针对一些应用课题进行研究。现代光全息学的起源,发展和人物,新型应用,本文将告诉你. 利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,这样记录下来的干涉条纹图样称为“全息图”,而当用光波照射全息图时,由于衍射原理能重现出原始物光波,从而形成与原物体逼真的三维象,这个波前记录和重现过程称为“全息术”或“全息照相” 光束全息照相由盖伯于1948年提出的,而当时没有足够强的相干辐射源全息研究处于萌芽时期。当时的全息照相采用汞灯为光源,且是同轴全息图,它的+/-1级衍射波是分不开的,即存在所谓的“孪生像”问题,不能获得很好的全息像。这是第一代全息图。1960年激光的出现,1962年美国科学家利思和乌帕特尼克斯将通信理论中的射频概念推广到空域中,提出离轴全息术,他用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光,第一代全息图的两大难题因此得以解决,产生了激光记录,激光再现的第二代全息图。当代光全息学发展主要课题有:1. 球面透镜光学系统2. 光源和光学技术3. 平面全息图分析4. 体积全息图衍射5. 脉冲激光全息学6. 非线性记录,散斑和底片颗粒噪声7. 信息储存8. 彩色全息学9. 合成全息图10. 计算机产生全息图11. 复制,电视传输和非相干光全息图而伴随光全息学的发展也产生一些光全息技术应用,比如高分辨率成像,漫射介质成像,空间滤波,特征识别,信息储存与编码,精密干涉测量,振动分析,等高线测量,三维图象显示等方面的用途。本论文将就当代光全息学的研究与应用两大课题进行学术研究一. 当代光全息学研究 球面透镜不仅能形成光振幅分布的影象,而且易形成该分布的傅立叶变换图形。因此,用一个简单透镜可使物光在全息平面上成为某原始图形的傅立叶变换。存储在全息图中的变换所具有的特性,在光学图形识别中有重要的应用。透镜,作为形成影象的器件,可以在全息术中用来构成像面全息图。一个透镜可以形成:a.傅立叶变换和b.输入复振幅分布的影象 由于利用激光光源来制作全息图片,使得全息学开始成为一门实用的学科。对形成全息图所用光源提出的要求取决于由于物体和必要的光学部件的安排所决定的参数。从单一光源取得物波和参考波有如下图所示两种普通方法:A. 分波前法B. 分振幅法 在光源与全息图之间(通过物表面或参考镜的反射)传播的光线的最大光程差必须小于相干长度。激光的相干性与激光器的振荡模式有关,就全息术而论,它要求在任一个横模振荡的激光器的空间相干的辐射,由于高介模的振荡较不稳定,并有以两个或者多个模式同时振荡的倾向,因此最好的振荡模式是最底阶的模式。激光束的输出功率必须分成物体照明波和参考波。若物体要求从不止一个角度(以消除阴影),就需要将激光束分成好几束,一般采用分振幅法,因分振幅法能产生较均匀的照明,而且对光束的展宽要求小,既可以在分配前也可以在分配后展宽。平面全息图分析用非散射光记录的共线全息图上的条纹间隔与感光乳剂的厚度相比为较宽的。照明这张全息图的波前中的一条光线在通过全息图前只和一条记录条纹相互作用。因此全息图的响应近似于一个有聚焦特性的平面衍射光栅。加伯在分析这些特性时是把这样的全息图严格地当作二维的。用对二维模型分析的结果也很符合实验观察。在应用利思与乌帕尼克首先采用的离轴技术所得到的全息图上,其条纹频率则超过共线全息图,超过了量正比于物光束与参考光束之间的夹角。条纹间隔的典型值可以考虑由两平面波的干涉得到。正弦强度分布的周期d可以由下式决定:2dsinθ=λ, θ为波法线与干涉条纹间的夹角,波长λ,条纹间隔d式中当θ=15°,λ=微米(绿光)时,则d=1微米。记录离轴全息图的感光乳剂的厚度通常为15微米,实际上,在这样的乳剂中记录的全息图已不能当作是二维的了。因此重要的是要记录住平面全息图的分析结果只能准确地应用于使用相当薄的介质所形成的全息图。体积全息图衍射基本的体积全息图对相干照明的响应可以用偶合波理论来描述。假设有两个在yz平面传播的并具有单位振幅的平面波,其进入记录介质并进行干涉的情况,按折射定律,有sin /sin =sin /sin =nn为记录介质的折射率; 及 分别表示两个波在空气中与z轴的夹角; 及 则为两个波在介质中与z轴的夹角。布拉格定律可以用空气中的波长 ,全息片介质折射率 写成如下形式: 2dsinθ= / 体积全息图的特性由布拉格定律确定,因此对照明显示出选择响应。 二.光全息学典型应用高分辨率成像当一张全息图用与制作全息图参考光束共轭的光束照明时,在理论上能再现没有像差没有畸变的物波,其投影实象的分辨率仅受全息图边界衍射的限制。由于分辨率将随全息图尺寸的增加而增加。由于全息图可以做的很大,因此可以指望在现场大到5×5厘米时空间频率高到1000线/毫米。显然此种情况下放大率为1,但1:1的高分辨率投影成像,在集成电路的光刻工艺中有重要的潜在应用。将光刻掩模精密成象在半导体薄片上的工作,目前是用接触印象法来完成的。但这方法很快就会使模板损坏。用投影方法将影象转移到薄片上是一理想的可供选择的方法,但要非常优良和非常昂贵的镜头才能使投影的掩模象达到要求的分辨率和视场。当用相干光源照明制作全息图时,摄影乳剂的收缩,表面变形,非线性及洽谈噪声源的影响就更大了。它们可使图象产生斑纹,衬度降低和边缘模糊,这些缺陷又是用光刻法制作集成电路所不允许的。新的,更稳定的材料可能是这些问题的解答。特征识别由空间调制参考波形成的傅立叶变换全息图的许多特性,曾被范德鲁等人用于特征识别。他们采用全息法作成的空间滤波器完成了“匹配滤波”在特征识别中的应用。匹配滤波与概念,形成与应用可由下图说明 当要把形成的空间滤波器作为特征识别时,在输入平面内z轴上方部分是一个由平面波透明的,在不透明背景上包含M个透明字符的透明片。我们将这一组字符阵列的透过率表示为 这里所有字符均围绕 点对称分布, 是阵列中的一个典型字符,其中心在 点。另外,在输入平面内 处,有一光强度为 δ 的明亮的点光源,并在空间频率面εη面上形成一张傅立叶变换全息图。这一全息图可以看作是t 与δ函数形成的平面波干涉的记录。但是当全息图完成识别功能时,仅由透过t的一小部分,即通过入射平面内的一个或几个字符的光所照明,我们将会看到,在输出平面上我们所关心的再现,是表示识别结果的一个明亮的象点。信息储存与编码全息图既可以存储二维信息也可以存储三维信息。信息可以是彩色的或者编码的,图象的或者字母数字的;可以存储在全息图的表面,或存储在整个体积中;可以为空间上分离的,或者重叠的;可以是永久记录或者是可以消象的。记录的内容可以是彼此无关的或者相互成对的;可以是可辨认的影象或似乎是无意义的图形。现代光全息学的发展前景十分广阔,而其实用技术必然会实现普及,有识之士当携手共同研究以促进社会进步.

291 评论

艾米莉郡主

科学技术是人类社会实践的历史产物,是人类在认识自然和改造自然的长期实践中创造和积累起来的智慧,是人类社会发展的动力源泉,在一定角度上讲,科学技术是社会形态变革的根据,是人类社会等其他领域的先导,也是人类自身发展的决定因素。人类社会是由政治、经济、文化三个系统构成, 政治、经济、文化的发展也促进了科学技术的进步.因此说科学技术与人类社会是相互联系、相互作用、相互渗透的。以下本文具体探讨了科学技术与人类社会在政治、经济、文化方面的互动关系。

85 评论

舜井街的猫

全息摄影简介 全息摄影亦称:“全息照相”,一种利用波的干涉记录被摄物体反射(或透射)光波中信息(振幅、相位)的照相技术。全息摄影是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。全息摄影不仅记录被摄物体反射光波的振幅(强度),而且还记录反射光波的相对相位。 为了满足产生光的干涉条件,通常要用相干性好的激光作光源,而且光和照射物体的光是从同一束激光分离出来的。感光片显影后成为全息图。全息图并不直接显示物体的图象。用一束激光或单色光在接近参考光的方向入射,可以在适当的角度上观察到原物的像。这是因为激光束在全息图的干涉条纹上衍射而重现原物的光波。再现的像具有三维立体感。 在摄制全息图时感光片上,每一点都接收到整个物体反射的光,因此,全息图的一小部分就可再现整个物体。用感光乳胶厚度等于几个光波波长的感光片,可在乳胶内形成干涉层,制成的全息图可用白光再现。如果用红、绿和蓝三种颜色的激光分别对同一物体用厚乳胶感光片上摄制全息照片,经适当的显影处理后,可得到能在白光(太阳光或灯光)下观察的有立体感和丰富色彩的彩色全息图。 (详见二级标题“原理”) 全息摄影在信号记录、形变计量、计算机存储、生物学和医学研究、军事技术等领域得到广泛的应用。 80年代初,法国全息摄影展在世界各地展览,人们欣赏到了神奇莫测的全息摄影。墙头上,看来明明伸出了一只水龙头,举手前去拧一下,结果是抓了个空;一只镜框,里面没有什么图象,可是当一束光射过来,框里就出现一位美丽的姑娘,她缓慢地摘下眼镜,正向人微笑致意;一只玻璃罩,里面空无一物,可是,在光的照射下,罩里马上现出维纳斯像;在镜框上,玻璃罩内,图象还在不断地变换。[编辑本段]历史 凡是见过法国肖维岩洞(Chauvet Cave)中的那些史前绘画的人,无不为那细微的明暗变化、运用自如的透视法和优雅流畅的线条所折服。这些原始人用赭石绘制于32000年前的犀牛、狮子和熊,虽经岁月侵蚀,却依然能够给人带来极大的视觉撼动。但是,并不是所有人都像让-马林·肖维和他的两位朋友那么运气:当他们在1994年12月18日于偶然之中发现了这个岩洞的时候,所有的岩洞都为他们敞开大门,所有的绘画都无条件展现在他们简陋的探照灯下。然而,当这一发现被公之于众,并作为当年最伟大的考古和艺术发现之一被法国政府斥巨资加以研究保护之后,肖维岩洞的大门却对公众关闭了。连从事相关研究的专家,在入洞考察之前,都不但要经过繁琐的审批过程,还要披挂齐全,做足保护功夫,并且保证不能接触洞壁。普通人就更无缘一睹真容,只能望着杂志上平板的图片凭空摹想了。 不过,居住在古老的葡萄酒之乡波尔多城郊小镇上的伊夫·根特及其兄弟菲力普·根特却可能用他们的全息照片将这一切变为历史。 一个世纪以前,当电报的发明人塞缪尔·摩尔斯第一次见到使用银版照相术拍摄下来的照片时,曾惊讶地认为,如此逼真的图象决不应当被称作大自然的复制品,它们就是自然本身的一部分。在如今见多识广的人们眼中,摩尔斯的反应未免有些大惊小怪。在这个数码相机能充分展现其魅力的时代中,没人会像当初圣彼得堡中初见照片的人们那样,害怕照片中的人会对自己眨眼睛,看出自己的想法。但是,当南巴黎大学的化学物理学家和胶片感光专家杰奎琳·贝洛妮(Jacqueline Belloni)在一次学术会议上将伊夫·根特制作的一幅蝴蝶的全息照片展示给大家时,一位恰巧同时也是蝴蝶标本收集爱好者的物理学家却非常费解地问她,到底为什么要在作学术报告时候展示这种鳞翅类昆虫的标本盒子。那位物理学家无论如何都不肯相信这只不过是一幅全息照片。 其实,那位物理学家的惊疑也在情理之中,尽管全息摄影术对大多数人而言早就不是一个新鲜概念。早在激光出现以前,1948年伽伯为了提高电子显微镜的分辨本领而提出了全息的概念,并开始全息照相的研究工作。1960年以后出现了激光,为全息照相提供了一个高亮度高度相干的光源,从此以后全息照相技术进入一个崭新的阶段。相继出现了多种全息的方法,不断开辟全息应用的新领域。伽伯也因全息照相的研究获得1971年的诺贝尔物理学奖金。 无论是全息摄影,还是最早的银版照相术,它们的奥秘都在对光的记录。所有的光都拥有三种属性,它们分别是光的明暗强弱、光的颜色以及光的方向。早期的银版照相和黑白照片只能记录下光的明暗变化,而彩色照片在此之外,还能通过记录光的波长变化,反应出它的颜色。全息摄影是唯一能同时捕捉到光的三种属性的一种摄影术,通过激光技术,它能记录下光射到物体上再折射出来的方向,逼真地再现物体在三维空间中的真实景象。 然而,一直到根特兄弟的作品问世之前,所谓的真实再现一直都不过是理论上的。或许是因为好的全息图象罕见而且难于生成,或许因为全息摄影的科学原理过于深奥,在全息摄影发明了半个世纪之后,它却仍然是一项充满了神秘色彩的技术。 在一些媒体对伊夫·根特及其兄弟成就的报道中,有人将他们描述为“唯一真正实现了全息摄影的再现自然功能的人”,还有人说,他们的作品就像摩尔斯所说那样,是“大自然的一部分”。这些评论可能有些言过其辞,因为实际上,全世界也有许多其他人在从事着全息摄影的研究,国际全息图象制造者联合会(International Hologram Manufacturers Association)就是一个聚集了全球全息摄影专家和爱好者的组织。但伊夫·根特毫无疑问是这些专家中的翘楚,在2001年冬季,这个联合会将“本年度最佳全息摄影作品”和“最新全息摄影技术”这两项最有分量的大奖颁发给了伊夫,就是最好的说明。一次在奥地利召开的全息摄影学术会议上,当根特兄弟发言并展示自己的作品时,“140多位经验丰富的全息摄影高手都充满钦佩之情地深吸了一口气”。菲力普在回忆当时的场景时不无得意,他说,“当人们涌上来观看我们制作的全息图片的时候,整个屋子都为之一空。”当时在场的所有专家都被那些几可乱真的图片迷住了,他们忍不住伸手去触摸作品中身着老挝传统舞蹈服装的小木偶衣服上的精美花纹,还有人想要拭去挂在正在吃小甜饼的小姑娘嘴边的饼干碎屑——当然,他们摸到的,同那位物理学家一样,只不过是一层薄薄的玻璃而已。 现在,伊夫的工作得到了业界承认和赞许,可是,当他在1992年因为所在的实验室倒闭而被解雇,回到家乡小镇上以一个自由职业者的身份开始自己的全息摄影技术研究时,情况却完全不同。他花了两年左右时间研究出所有必需设备,包括一台最重要的便携全息肖像照相机。但当这一切就绪之时,唯一一家生产他所需要的胶片的制造商——爱克发公司(Agfa)——却突然决定停止生产此种胶片。在发明了“牛”之后,伊夫还必须教会自己制造出“草”来。 在随后的几年中,伊夫·根特就在自己简陋的实验室中自学相关的化学原理,并反复实践。菲力普的加入给了他很大帮助。后来,他们终于发明出名为“终极”(Ultimate)的感光乳剂。同其他的感光乳剂一样,“终极”的主要成分也是感光性极好的溴化银颗粒,但“终极”中的溴化银颗粒直径只有10纳米,是普通胶片上感光颗粒的1/10到1/100。正是这些微小的颗粒使“终极”能记录下细至纤毫的每一个细节,并在同一个感光层上同时记录下红、绿、蓝三色。 伊夫找到了被他称为“30年来所有人都在寻找的感光乳剂”,但他却还有很长的路要走。他做出了复制肖维岩洞壁画的整个方案,却因为找不到政府的权威人士而求告无门。他还建议为巴黎的迪斯尼乐园建立一个来访名人的全息摄影肖像馆,谈判却一拖再拖。所有见过他作品的人,都承认那是完美的全息图象,但法国的投资者过于谨慎,他们不仅要下金蛋的鹅,还要一群这样的鹅能够工业化、大规模下出金蛋,才肯从自己的口袋里掏钱。为了寻求投资人,根特兄弟及其父亲甚至想过要移民到魁北克。 转机出现在一位美国合伙人的加入之后。他所拥有的机器能将“终极”母版上的全息图象复制到杜邦公司制造的某种聚合体材料上。尽管这些图象还达不到“终极”胶片上的图象水准,但却远比从前的聚合体材料上的全息图象好多了。伴随着这种杜邦材料上的全息图象的大规模生产,使用“终极”胶片的工业化生产也是指日可待。此外,国际全息图象制造者联合会的首肯也为根特兄弟的工作增添了分量。虽然伊夫所应用的技术目前还没有一项是受专利保护,但在不久的将来,它们有望作为专门技术(Know-How)为他带来巨大的财富。[编辑本段]原理 全息摄影是指一种记录被摄物体反射波的振幅和位相等全部信息的新型摄影技术。 普通摄影是记录物体面上的光强分布,它不能记录物体反射光的位相信息,因而失去了立体感。 全息摄影采用激光作为照明光源,并将光源发出的光分为两束,一束直接射向感光片,另一束经被摄物的反射后再射向感光片。两束光在感光片上叠加产生干涉,感光底片上各点的感光程度不仅随强度也随两束光的位相关系而不同。所以全息摄影不仅记录了物体上的反光强度,也记录了位相信息。人眼直接去看这种感光的底片,只能看到像指纹一样的干涉条纹,但如果用激光去照射它,人眼透过底片就能看到原来被拍摄物体完全相同的三维立体像。一张全息摄影图片即使只剩下一小部分,依然可以重现全部景物。 全息摄影可应用于工业上进行无损探伤,超声全息,全息显微镜,全息摄影存储器,全息电影和电视等许多方面。产生全息图的原理可以追溯到300年前,也有人用较差的相干光源做过试验,但直到1960 年发明了激光器——这是最好的相干光源——全息摄影才得到较快的发展。 激光全息摄影是一门崭新的技术,它被人们誉为20世纪的一个奇迹。它的原理于1947年由匈牙利籍的英国物理学家丹尼斯·加博尔发现,它和普通的摄影原理完全不同。直到10多年后,美国物理学家雷夫和于帕特倪克斯发明了激光后,全息摄影才得到实际应用。可以说,全息摄影是信息储存和激光技术结合的产物。 激光全息摄影包括两步:记录和再现。 1.全息记录过程是:把激光束分成两束;一束激光直接投射在感光底片上,称为参考光束;另一束激光投射在物体上,经物体反射或者透射,就携带有物体的有关信息,称为物光束.物光束经过处理也投射在感光底片的同一区域上.在感光底片上,物光束与参考光束发生相干叠加,形成干涉条纹,这就完成了一张全息图。 2.全息再现的方法是:用一束激光照射全息图,这束激光的频率和传输方向应该与参考光束完全一样,于是就可以再现物体的立体图象。人从不同角度看,可看到物体不同的侧面,就好像看到真实的物体一样,只是摸不到真实的物体。 全息成像是尖端科技,全息照相和常规照相不同,在底片上记录的不是三维物体的平面图象,而是光场本身。常规照相只记录了反映被拍物体表面光强的变化,即只记录光的振幅,全息照相则记录光波的全部信息,除振幅外还记录了光波的图相。即把三维物体光波场的全部信息都贮存在记录介质中。 全息原理是“一个系统原则上可以由它的边界上的一些自由度完全描述”,是基于黑洞的量子性质提出的一个新的基本原理。其实这个基本原理是联系量子元和量子位结合的量子论的。其数学证明是,时空有多少维,就有多少量子元;有多少量子元,就有多少量子位。它们一起组成类似矩阵的时空有限集,即它们的排列组合集。全息不全,是说选排列数,选空集与选全排列,有对偶性。即一定维数时空的全息性完全等价于少一个量子位的排列数全息性;这类似“量子避错编码原理”,从根本上解决了量子计算中的编码错误造成的系统计算误差问题。而时空的量子计算,类似生物DNA的双螺旋结构的双共轭编码,它是把实与虚、正与负双共轭编码组织在一起的量子计算机。这可叫做“生物时空学”,这其中的“熵”,也类似“宏观的熵”,不但指混乱程度,也指一个范围。时间指不指一个范围?从“源于生活”来说,应该指。因此,所有的位置和时间都是范围。位置“熵”为面积“熵”,时间“熵”为热力学箭头“熵”。其次,类似N数量子元和N数量子位的二元排列,与N数行和N数列的行列式或矩阵类似的二元排列,其中有一个不相同,是行列式或矩阵比N数量子元和N数量子位的二元排列少了一个量子位,这是否类似全息原理,N数量子元和N数量子位的二元排列是一个可积系统,它的任何动力学都可以用低一个量子位类似N数行和N数列的行列式或矩阵的场论来描述呢?数学上也许是可以证明或探究的。 1、反德西特空间,即为点、线、面内空间,是可积的,因为点、线、面内空间与点、线、面外空间交接处趋于“超零”或“零点能”零,到这里是一个可积系统,它的任何动力学都可以有一个低一维的场论来实现。也就是说,由于反德西特空间的对称性,点、线、面内空间场论中的对称性,要大于原来点、线、面外空间的洛仑兹对称性,这个比较大一些的对称群叫做共形对称群。当然这能通过改变反德西特空间内部的几何来消除这个对称性,从而使得等价的场论没有共形对称性。这可叫新共形共形。如果把马德西纳空间看作“点外空间”,一般“点外空间”或“点内空间”也可看作类似球体空间。反德西特空间,即“点内空间”是场论中的一种特殊的极限。“点内空间”的经典引力与量子涨落效应,其弦论的计算很复杂,计算只能在一个极限下作出。例如上面类似反德西特空间的宇宙质量轨道圆的暴涨速率,是光速的倍,就是在一个极限下作出的。在这类极限下,“点内空间”过渡到一个新的时空,或叫做pp波背景,可精确地计算宇宙弦的多个态的谱,反映到对偶的场论中,我们可获得物质族质量谱计算中一些算子的反常标度指数。 2、这个技巧是,弦并不是由有限个球量子微单元组成的。要得到通常意义下的弦,必须取环量子弦论极限,在这个极限下,长度不趋于零,每条由线旋耦合成环量子的弦可分到微单元10的-33次方厘米,而使微单元的数目不是趋于无限大,从而使得弦本身对应的物理量如能量动量是有限的。在场论的算子构造中,如果要得到pp波背景下的弦态,我们恰好需要取这个极限。这样,微单元模型是一个普适的构造,也清楚了。在pp波这个特殊的背景之下,对应的场论描述也是一个可积系统。[编辑本段]全息摄影和普通摄影的区别 在普通摄影中,照相机拍摄的景物,只记录了景物的反射光的强弱,也就是反射光的振幅信息,而不能记录景物的立体信息。而全息摄影技术,能够记录景物反射光的振幅和相位。在全息影像拍摄时,记录下光波本身以及二束光相对的位相,位相是由实物与参考光线之间位置差异造成的。 从全息照片上的干涉条纹上我们看不到物体的成像,必须使用具有凝聚力的激光来准确瞄准目标照射全息片,从而再现出物光的全部信息。一个叫班顿的人后来又发现了更为简便使用白光还原影像的方法,从而使这项技术逐渐走向实用阶段。[编辑本段]全息照相的拍摄要求 � 为了拍出一张满意的全息照片,拍摄系统必须具备以下要求:� (1) 光源必须是相干光源� 通过前面分析知道,全息照相是根据光的干涉原理,所以要求光源必须具有很好的相干性。激光的出现,为全息照相提供了一个理想的光源。这是因为激光具有很好的空间相干性和时间相干性,实验中采用He-Ne激光器,用其拍摄较小的漫散物体,可获得良好的全息图。 (2) 全息照相系统要具有稳定性� 由于全息底片上记录的是干涉条纹,而且是又细又密的干涉条纹,所以在照相过程中极小的干扰都会引起干涉条纹的模糊,甚至使干涉条纹无法记录。比如,拍摄过程中若底片位移一个微米,则条纹就分辨不清,为此,要求全息实验台是防震的。全息台上的所有光学器件都用磁性材料牢固地吸在工作台面钢板上。另外,气流通过光路,声波干扰以及温度变化都会引起周围空气密度的变化。因此,在曝光时应该禁止大声喧哗,不能随意走动,保证整个实验室绝对安静。我们的经验是,各组都调好光路后,同学们离开实验台,稳定一分钟后,再在同一时间内爆光,得到较好的效果。� (3) 物光与参考光应满足� 物光和参考光的光程差应尽量小,两束光的光程相等最好,最多不能超过2cm,调光路时用细绳量好;两速光之间的夹角要在30°~60°之间,最好在45°左右,因为夹角小,干涉条纹就稀,这样对系统的稳定性和感光材料分辨率的要求较低;两束光的光强比要适当,一般要求在1∶1~1∶10之间都可以,光强比用硅光电池测出。 (4) 使用高分辨率的全息底片� 因为全息照相底片上记录的是又细又密的干涉条纹,所以需要高分辨率的感光材料。普通照相用的感光底片由于银化物的颗粒较粗,每毫米只能记录50~100个条纹,天津感光胶片厂生产的I型全息干板,其分辨率可达每毫米3?000条,能满足全息照相的要求。 (5) 全息照片的冲洗过程� 冲洗过程也是很关键的。我们按照配方要求配药,配出显影液、停影液、定影液和漂白液。上述几种药方都要求用蒸馏水配制,但实验证明,用纯净的自来水配制,也获得成功。冲洗过程要在暗室进行,药液千万不能见光,保持在室温20℃在右进行冲洗,配制一次药液保管得当可使用一个月左右。[编辑本段]特点和优势 其显著的特点和优势有如下几点 1、 再造出来的立体影像有利于保存珍贵的艺术品资料进行收藏。 2、 拍摄时每一点都记录在全息片的任何一点上,一旦照片损坏也关系不大。 3、 全息照片的景物立体感强,形象逼真,借助激光器可以在各种展览会上进行展示,会得到非常好的效果。[编辑本段]全息摄影的应用 在我们的生活中,当然也常常能看到全息摄影技术的运用。比如,在一些信用卡和纸币上,就有运用了俄国物理学家尤里·丹尼苏克(Yuri Denisyuk)在20世纪60年代发明的全彩全息图象技术制作出的聚酯软胶片上的“彩虹”全息图象。但这些全息图象更多只是作为一种复杂的印刷技术来实现防伪目的,它们的感光度低,色彩也不够逼真,远不到乱真的境界。研究人员还试着使用重铬酸盐胶作为感光乳剂,用来制作全息识别设备。在一些战斗机上配备有此种设备,它们可以使驾驶员将注意力集中在敌人身上。 把一些珍贵的文物用这项技术拍摄下来,展出时可以真实地立体再现文物,供参观者欣赏,而原物妥善保存,防失窃,大型全息图既可展示轿车、卫星以及各种三维广告,亦可采用脉冲全息术再现人物肖像、结婚纪念照。小型全息图可以戴在颈项上形成美丽装饰,它可再现人们喜爱的动物,多彩的花朵与蝴蝶。迅猛发展的模压彩虹全息图,既可成为生动的卡通片、贺卡、立体邮票,也可以作为防伪标识出现在商标、证件卡、银行信用卡,甚至钞票上。装饰在书籍中的全息立体照片,以及礼品包装上闪耀的全息彩虹,使人们体会到21世纪印刷技术与包装技术的新飞跃。 模压全息标识由于它的三维层次感,并随观察角度而变化的彩虹效应,以及千变万化的防伪标记,再加上与其他高科技防伪手段的紧密结合,把新世纪的防伪技术推向了新的辉煌顶点。 综上所述,全息照相是一种不用普通光学成象系统的录象方法,是六十年代发展起来的一种立体摄影和波阵面再现的新技术。由于全息照相能够把物体表面发出的全部信息(即光波的振幅和相位)记录下来,并能完全再现被摄物体光波的全部信息,因此,全息技术在生产实践和科学研究领域中有着广泛的应用。例如:全息电影和全息电视,全息储存、全息显示及全息防伪商标等。 除光学全息外,还发展了红外、微波和超声全息技术,这些全息技术在军事侦察和监视上有重要意义。我们知道,一般的雷达只能探测到目标方位、距离等,而全息照相则能给出目标的立体形象,这对于及时识别飞机、舰艇等有很大作用。因此,备受人们的重视。但是由于可见光在大气或水中传播时衰减很快,在不良的气候下甚至于无法进行工作。为克服这个困难发展出红外、微波及超声全息技术,即用相干的红外光、微波及超声波拍摄全息照片,然后用可见光再现物象,这种全息技术与普通全息技术的原理相同。技术的关键是寻找灵敏记录的介质及合适的再现方法。� 超声全息照相能再现潜伏于水下物体的三维图样,因此可用来进行水下侦察和监视。由于对可见光不透明的物体,往往对超声波透明,因此超声全息可用于水下的军事行动,也可用于医疗透视以及工业无损检测测等。 除用光波产生全息图外,已发展到可用计算机产生全息图。全息图用途很广,可作成各种薄膜型光学元件,如各种透镜、光栅、滤波器等,可在空间重叠,十分紧凑、轻巧,适合于宇宙飞行使用。使用全息图贮存资料,具有容量大、易提取、抗污损等优点。 全息照相的方法从光学领域推广到其他领域。如微波全息、声全息等得到很大发展,成功地应用在工业医疗等方面。地震波、电子波、X射线等方面的全息也正在深入研究中。全息图有极其广泛的应用。如用于研究火箭飞行的冲击波、飞机机翼蜂窝结构的无损检验等。现在不仅有激光全息,而且研究成功白光全息、彩虹全息,以及全景彩虹全息,使人们能看到景物的各个侧面。全息三维立体显示正在向全息彩色立体电视和电影的方向发展。[编辑本段]全息照相技术 随着人们对数码相机逐渐认可和接受,数码相机的市场也在一天一天的扩大,为了切分这块大蛋糕,各数码相机厂商也在不断开发新技术或将已经存在的技术迅速应用到数码相机领域,以保持和提升在数码相机领域里的地位。索尼在DSC-F707的对焦模式使用了全息摄影激光自动对焦辅助,也可以说,全息技术已经应用到了摄影领域,那么到底什么是全息技术呢?全息摄影和传统的摄影又有什么区别呢? 全息图(Hologram)是盖伯(Gabor)在1948年为改善电子显微镜像质所提出的,其意义在于完整的记录。盖伯的实验解决了全息术发明中的基本问题,即波前的记录和再现,但由于当时缺乏明亮的相干光源(激光器),全息图的成像质量很差。1962年随着激光器的问世,利思和乌帕特尼克斯(Leith and Upatnieks)在盖伯全息术的基础上引入载频的概念发明了离轴全息术,有效地克服了当时全息图成像质量差的主要问题---孪生像,三维物体显示成为当时全息术研究的热点,但这种成像科学远远超过了当时经济的发展,制作和观察这种全息图的代价是很昂贵的,全息术基本成了以高昂的经费来维持不切实际的幻想的代名词。1969年本顿(Benton)发明了彩虹全息术,掀起以白光显示为特征的全息三维显示新高潮。彩虹全息图是一种能实现白光显示的平面全息图,与丹尼苏克(Denisyuk)的反射全息图相比,除了能在普通白炽灯下观察到明亮的立体像外,还具有全息图处理工艺简单、易于复制等优点。 全息技术应用到照相领域要远远优越于普通的照相,普通照相是根据透镜成像原理,把立体景物“投影”到平面感光底板上,形成光强分布,记录下来的照片没有立体感,因为从各个视角看照片得到的像完全相同。全息照相再现的是一个精确复制的物光波,当我们“看”这个物光波时,可以从各个视角观察到再现立体像的不同侧面,犹如看到逼真物体一样,具有景深和视差。如果拍摄并排的两辆“奔驰”汽车模型,那么当我们改变观察方向时,后一辆车被遮盖部分就会露出来。难怪人们在展览会会为一张“奔驰”汽车拍摄的全息图而兴奋不已:“看见汽车的再现像,好像一拉车门就可以就坐上‘奔驰’,太精彩了!” 一张全息图相当于从多角度拍摄、聚焦成的许多普通照片,在这个意义一张全息的信息量相当100张或1000张普通照片。用高倍显微镜观看全息图表面,看到的是复杂的条纹,丝毫看不到物体的形象,这些条纹是利用激光照明的物体所发出的物光波与标准光波(参考光波)干涉,在平面感光底板上被记录形成的,即用编码方法把物光波“冻结”起来。一旦遇到类似于参考光波的照明光波照射,就会衍射出成像光波,它好像原物光波重新释放出来一样。所以全息照相的原理可用八个字来表述:“干涉记录,衍射再现”。 了解了这项技术,我们就可以把全息照相技术用于广泛的领域,把一些珍贵的文物用这项技术拍摄下来,展出时可以真实地立体再现文物,供参观者欣赏,而原物妥善保存,防失窃,大型全息图既可展示轿车、卫星以及各种三维广告,亦可采用脉冲全息术再现人物肖像、结婚纪念照。小型全息图可以戴在颈项上形成美丽装饰,它可再现人们喜爱的动物,多彩的花朵与蝴蝶。 迅猛发展的模压彩虹全息图,既可成为生动的卡通片、贺卡、立体邮票,也可以作为防伪标识出现在商标、证件卡、银行信用卡,甚至钞票上。装饰在书籍中的全息立体照片,以及礼品包装上闪耀的全息彩虹,使人们体会到21世纪印刷技术与包装技术的新飞跃。模压全息标识,由于它的三维层次感,并随观察角度而变化的彩虹效应,以及千变万化的防伪标记,再加上与其他高科技防伪手段的紧密结合,把新世纪的防伪技术推向了新的辉煌顶点。

345 评论

相关问答

  • 全息摄影技术论文范文

    vr技术2000字论文篇二 【摘 要】VR技术是现今计算机技术领域中一项包含多种学科的一门综合科学技术,该技术已经被应用在现实中许多的领域中。

    囡囡宝贝妞 2人参与回答 2023-12-08
  • 信息安全与信息技术论文题目

    信息安全论文 学号: 信息安全论文 企业信息系统运行与操作安全解决方案 姓 名: 学 校: 班 级: 作业时间: 2 010 年 5 月 共 10 页 第1页

    小超人0606 3人参与回答 2023-12-12
  • 网络信息安全与技术论文

    楼上的不是明摆着会被他老师一搜就搜到了吗?穿帮了。需要就Q我。

    爱家酒店 4人参与回答 2023-12-08
  • 信息技术安全类论文题目

    专科还是本科

    新雨初晴水星 5人参与回答 2023-12-10
  • 网络与信息安全技术论文

    论电子商务中网络隐私安全的保护 [摘 要] 随着电子商务技术的发展,网络交易安全成为了电子商务发展的核心和关键问题,对网络隐私数据(网络隐私权)安 全的有效保护

    飞天之梦想 4人参与回答 2023-12-10