dp73242962
论文的标准格式模板要包含题目、论文摘要及关键词、目录、引言或序言、正文、结论、参考文献和注释、附录这八个部分的内容。题目应概括整个论文最重要的内容,一般不宜超过20字。论文摘要应当阐述学位论文的主要观点,说明本论文的研究目的、方法、成果及结论,尽可能保留论文的基本信息,关键词需要反映论文主旨。
目录是论文的提纲和每一部分的标题,要将相应的页码标注清楚。引言或序言应该包括论文研究领域的国内外现状,论文要解决的问题及研究工作在经济建设、科技进步和社会发展等方面的理论意义和实用价值。正文是论文的主体,需要内容详实,论证有据。结论要求明确完整,要阐述自己的创造性成果、新见解。
参考文献是期刊时,书写格式为:[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码;参考文献是图书时,书写格式为:[编号]、作者、书名、出版单位、年份、版次、页码。注释要按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前,图表或数据必须注明来源和出处。
参考文献
参考文献的规范及其作用,为了反映文章的科学依据、作者尊重他人研究成果的严肃态度以及向读者提供有关信息的出处,正文之后一般应列出参考文献表。引文应以原始文献和第一手资料为原则,
所有引用别人的观点或文字,无论曾否发表,无论是纸质或电子版,都必须注明出处或加以注释,凡转引文献资料,应如实说明。对已有学术成果的介绍、评论、引用和注释,应力求客观、公允、准确,伪注、伪造、篡改文献和数据等,均属学术不端行为。
致谢,一项科研成果或技术创新,往往不是独自一人可以完成的,还需要各方面的人力,财力,物力的支持和帮助。因此,在许多论文的末尾都列有"致谢"。主要对论文完成期间得到的帮助表示感谢,这是学术界谦逊和有礼貌的一种表现。
贰格格的爹
生物信息学推荐系统设计关键词:推荐系统;生物信息学推荐系统(RecommenderSystem)[1]是个性化信息服务的主要技术之一,它实现的是“信息找人,按需服务”;通过对用户信息需要、兴趣爱好和访问历史等的收集分析,建立用户模型,并将用户模型应用于网上信息的过滤和排序,从而为用户提供感兴趣的资源和信息。生物信息学(Bioinformatics)[2,3]是由生物学、应用数学和计算机科学相互交叉所形成的一门新型学科;其实质是利用信息科学的方法和技术来解决生物学问题。20世纪末生物信息学迅速发展,在信息的数量和质量上都极大地丰富了生物科学的数据资源,而数据资源的急剧膨胀需要寻求一种科学而有力的工具来组织它们,基于生物信息学的二次数据库[4]能比较好地规范生物数据的分类与组织,但是用户无法从大量的生物数据中寻求自己感兴趣的部分(著名的生物信息学网站NCBI(美国国立生物技术信息中心),仅仅是小孢子虫(Microsporidia)的DNA序列就达3399种),因此在生物二次数据库上建立个性化推荐系统,能使用户快速找到自己感兴趣的生物信息。特别是在当前生物信息数据量急剧增长的情况下,生物信息学推荐系统将发挥强大的优势。1推荐系统的工作流程应用在不同领域的推荐系统,其体系结构也不完全相同。一般而言,推荐系统的工作流程[5]如图1所示。(1)信息获取。推荐系统工作的基础是用户信息。用户信息包括用户输入的关键词、项目的有关属性、用户对项目的文本评价或等级评价及用户的行为特征等,所有这些信息均可以作为形成推荐的依据。信息获取有两种类型[6],即显式获取(Explicit)和隐式获取(Implicit),由于用户的很多行为都能暗示用户的喜好,因此隐式获取信息的准确性比显式高一些。(2)信息处理。信息获取阶段所获得的用户信息,一般根据推荐技术的不同对信息进行相应的处理。用户信息的存储格式中用得最多的是基于数值的矩阵格式,最常用的是用m×n维的用户—项目矩阵R来表示,矩阵中的每个元素Rij=第i个用户对第j个项目的评价,可以当做数值处理,矩阵R被称为用户—项目矩阵。(3)个性化推荐。根据形成推荐的方法的不同可以分为三种,即基于规则的系统、基于内容过滤的系统和协同过滤系统。基于规则的推荐系统和基于内容过滤的推荐系统均只能为用户推荐过去喜欢的项目和相似的项目,并不能推荐用户潜在感兴趣的项目。而协同过滤系统能推荐出用户近邻所喜欢的项目,通过用户与近邻之间的“交流”,发现用户潜在的兴趣。因此本文所用的算法是基于协同过滤的推荐算法。(4)推荐结果。显示的任务是把推荐算法生成的推荐显示给用户,完成对用户的推荐。目前最常用的推荐可视化方法是Top-N列表[7],按照从大到小顺序把推荐分值最高的N个事物或者最权威的N条评价以列表的形式显示给用户。2生物信息学推荐系统的设计综合各种推荐技术的性能与优缺点,本文构造的生物信息学推荐系统的总体结构如图2所示。生物信息学推荐系统实现的主要功能是在用户登录生物信息学网站时,所留下的登录信息通过网站传递到推荐算法部分;推荐算法根据该用户的用户名从数据库提取出推荐列表,并返回到网站的用户界面;用户访问的记录返回到数据库,系统定时调用推荐算法,对数据库中用户访问信息的数据进行分析计算,形成推荐列表。本系统采用基于近邻的协同过滤推荐算法,其结构可以进一步细化为如图3所示。算法分为邻居形成和推荐形成两大部分,两部分可以独立进行。这是该推荐系统有别于其他系统的优势之一。由于信息获取后的用户—项目矩阵维数较大,使得系统的可扩展性降低。本系统采用SVD矩阵降维方法,减少用户—项目矩阵的维数,在计算用户相似度时大大降低了运算的次数,提高了推荐算法的效率。(1)信息获取。用户对项目的评价是基于用户对某一个项目(为表示简单,以下提及的项目均指网站上的生物物种)的点击次数来衡量的。当一个用户注册并填写好个人情况以后,系统会自动为该用户创建一个“信息矩阵”,该矩阵保存了所有项目的ID号以及相应的用户评价,保存的格式为:S+编号+用户评价,S用于标记项目,每个项目编号及其评价都以“S”相隔开;编号是唯一的,占5位;用户评价是用户点击该项目的次数,规定其范围是0~100,系统设定当增加到100时不再变化。这样做可防止形成矩阵时矩阵评价相差值过大而使推荐结果不准确。(2)信息处理。信息处理是将所有用户的信息矩阵转换为用户—项目矩阵,使用户信息矩阵数值化,假设系统中有M个用户和N个项目,信息处理的目的就是创建一个M×N的矩阵R,R[I][J]代表用户I对项目J的评价。(3)矩阵处理。协同过滤技术的用户—项目矩阵的数据表述方法所带来的稀疏性严重制约了推荐效果,而且在系统较大的情况下,它既不能精确地产生推荐集,又忽视了数据之间潜在的关系,发现不了用户潜在的兴趣,而且庞大的矩阵增加了计算的复杂度,因此有必要对该矩阵的表述方式做优化,进行矩阵处理。维数简化是一种较好的方法,本文提出的算法应用单值分解(SingularValueDecomposition,SVD)技术[8],对用户—项目矩阵进行维数简化。(4)相似度计算。得到降维以后的用户矩阵US,就可以寻找每个用户的近邻。近邻的确定是通过两个用户的相似度来度量的。本文采用Pearson相关度因子[9]求相似度。(5)计算用户邻居。该方法有两种[10],即基于中心的邻居(Center-BasedNeighbor)和集合邻居(AggregateNeighbor)。本系统采用了第一种方法,直接找出与用户相似度最高的前N个用户作为邻居,邻居个数N由系统设定,比如规定N=5。(6)推荐形成。推荐形成的前提是把当前用户的邻居ID号及其与当前用户的相似度保存到数据库中,而在前面的工作中已找出各用户的邻居以及与用户的相似度,推荐形成部分只需要对当前登录用户进行计算。推荐策略是:对当前用户已经访问过的项目不再进行推荐,推荐的范围是用户没有访问的项目,其目的是推荐用户潜在感兴趣的项目;考虑到系统的项目比较多,用户交互项目的数量很大,所以只筛选出推荐度最大的N个项目,形成Top-N推荐集,设定N=5。3生物信息学推荐系统的实现生物信息学推荐系统的实现可以用图4来表示。数据库部分主要存储用户信息和项目信息,用SQLServer2000实现。数据访问层实现了与用户交互必需的存储过程以及触发器,也使用SQLServer2000,主要完成以下功能:初始化新用户信息矩阵;插入新项目时更新所有用户的信息矩阵;用户点击项目时更新该用户对项目的评价;删除项目时更新所有用户的信息矩阵。用户访问层主要涉及网页与用户的交互和调用数据访问层的存储过程,在这里不做详细的介绍。推荐算法完成整个个性化推荐的任务,用Java实现。(1)数据连接类DataCon。该类完成与SQLServer2000数据库的连接,在连接之前必须要下载三个与SQLServer连接相关的包,即、和。(2)数据操作类DataControl。该类负责推荐算法与数据库的数据交换,静态成员Con调用()获得数据库连接,然后对数据库进行各种操作。把所有方法编写成静态,便于推荐算法中不创建对象就可以直接调用。(3)RecmmendSource与CurrentUserNeighbor。这两个类作为FCRecommand类的内部类,RecmmendSource用于保存当前用户的推荐列表,包括推荐项目号和推荐度;CurrentUserNeighbor用于保存邻居信息,包括邻居ID号、相似度及其访问信息。(4)协同过滤推荐算法FCRecommand。该类实现了整个推荐算法,主要分为邻居形成方法FCArithmetic和推荐形成方法GenerateRecommend。下面给出方法FCArithmetic的关键代码:Matrixuser_item=();//获取用户—项目矩阵user_item=(user_item);//调用SVD降维方法Vectorc_uservector=newVector();//当前用户向量Vectoro_uservector=newVector();//其他用户向量Vectorc_user_correlate_vector=newVector();//当前用户与其他用户之间相似度向量for(inti=0;ifor(intj=0;((i,j));//1.获得当前用户向量for(intk=0;();for(intl=0;((k,l));//2.获得其他用户的向量//3.计算当前用户与其他用户的相似度usercorrelativity=(c_uservector,o_uservector);(usercorrelativity);}//4.根据当前用户与其他用户的相似度,计算其邻居(i,c_user_correlate_vector);}根据邻居形成方法FCArithmetic,可以得到每个用户的邻居。作为测试用例,图6显示用户Jack与系统中一部分用户的相似度,可以看出它与自己的相似度必定最高;并且它与用户Sugx访问了相同的项目,它们之间的相似度也为1,具有极高的相似度。4结束语在传统推荐系统的基础上,结合当前生物信息学网站的特点,提出一个基于生物信息平台的推荐系统,解决了传统生物信息网站平台信息迷茫的缺点,为用户推荐其感兴趣物种的DNA或蛋白质序列。优点在于协同过滤的推荐算法能发现用户潜在的兴趣,能促进生物学家之间的交流;推荐算法的邻居形成与推荐形成两部分可以单独运行,减少了系统的开销。进一步的工作是分析生物数据的特点及生物数据之间的关系,增加用户和项目数量,更好地发挥推荐系统的优势。参考文献:[1]PAULR,[J].CommunicationsoftheACM,1997,40(3):56-58.[2]陈新.生物信息学简介[EB/OL].(2001)..[3]林毅申,林丕源.基于WebServices的生物信息解决方案[J].计算机应用研究,2005,22(6):157-158,164.[4]邢仲璟,林丕源,林毅申.基于Bioperl的生物二次数据库建立及应用[J].计算机系统应用,2004(11):58-60.
LovefamiliesBB
fasta 是一种 基于文本 用于表示 核酸序列 或 多肽序列 的格式。其中核酸或氨基酸均以单个字母来表示,且允许在序列前添加序列名及注释。
特征:2部分-- id行 和 序列行 。 > id行以“>”开头, 后跟序列名称&序列描述。有时候会包含注释信息 > 序列行一个字母表示一个 碱基/氨基酸 (A、T、C、G、N (N表示不知道是什么)/20种常见氨基酸)。序列中允许空格,换行,空行,直到下一个“>”,表示该序列结束。
高通量测序(如Illumina NovaSeq等测序平台)得到的原始图像数据文件,经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(Reads)的 序列信息 以及其对应的 测序质量信息 。测序样品中真实数据随机截取结果如下图:
特征: 每4行代表一个reads信息
fastq格式是由fasta (记录id和序列) 和QUAL (记录id和碱基质量) 合并而来。fastq文件第三行往往是个+,其实就是和第一行一样都是id。
第四行碱基质量值 碱基质量值(Quality Score或Q-score)是碱基识别(Base Calling)出错的概率的整数映射。通常使用的碱基质量值Q公式[1]为: Q=-10 * log10P 。其中P为碱基识别出错的概率。下表给出了碱基质量值与碱基识别出错的概率的对应关系。
碱基质量值越高表明碱基识别越可靠,准确度越高。比如,对于碱基质量值为Q20的碱基识别,100个碱基中有1个会识别出错,以此类推。
碱基质量值+33(前32个不是单个值),查表找到对应ASCII码
fastq与fasta文件转换
GFF,全称为Generic Feature Format,主要用来描述 基因的结构与功能信息 ,对基因组进行注释。记录序列中转录起始位点、基因、外显子、内含子等组成元件在染色体中的位置信息。现在用得比较多的是第3版,即gff3。gff是一个三级嵌套结构。格式文件为文本文件,分为9列,以TAB分开。控制符使用RFC 3986 Percent-Encoding 编码。比如:%20 代表着ASCII的空格。
gff文件一共有9列:
第九列的详解
GTF全称为gene transfer format,主要是用来对基因进行注释。现在用得比较多的是第2版,即gtf2。gtf文件也是分为9列,前八个字段与GFF相同(有一些小的差别),重点在第九列的不同。
两种文件差异比较:
bam文件和sam文件内容其实是一样的,只是bam是二进制的压缩文件,占内存空间更小。需要通过特定的软件来进行查看。(sam文件可以直接使用 less -S 查看;bam文件使用 samtools view -h | less -S 查看)
SAM(The Sequence Alignment / Map format)格式,即序列比对文件的格式,详细介绍文档:
SAM文件由两部分组成,头部区和主体区,都以tab分列。 头部区 :以’@'开始,体现了比对的一些总体信息。比如比对的SAM格式版本,比对的参考序列,比对使用的软件等。 主体区 :比对结果,每一个比对结果是一行,有11个主列和一个可选列。
头部区:
@HD VN: SO:unsorted (排序类型) 头部区第一行:VN是格式版本;SO表示比对排序的类型,有unknown(default),unsorted,queryname和coordinate几种。samtools软件在进行行排序后不能自动更新bam文件的SO值,而picard却可以。 @SQ SN:contig1 LN:9401 (序列ID及长度) 参考序列名,这些参考序列决定了比对结果sort的顺序,SN是参考序列名;LN是参考序列长度;每个参考序列为一行。 例如:@SQ SN: LN:195471971 @RG ID:sample01 (样品基本信息) Read Group。1个sample的测序结果为1个Read Group;该sample可以有多个library的测序结果,可以利用bwa mem -R 加上去这些信息。 例如:@RG ID:ZX1_ID SM:ZX1 LB:PE400 PU:Illumina PL:Miseq ID:样品的ID号 SM:样品名 LB:文库名 PU:测序以 PL:测序平台 这些信息可以在形成sam文件时加入,ID是必须要有的后面是否添加看分析要求 @PG ID:bowtie2 PN:bowtie2 VN: (比对所使用的软件及版本) 例如:@PG ID:bwa PN:bwa VN: CL:bwa sampe -a 400 -f -r @RG ID:ZX1_ID SM:ZX1 LB:PE400 PU:Illumina PL:Miseq …/0_Reference/ …/2_HQData/ …/2_HQData/ 这里的ID是bwa,PN是bwa,VN是版本。CL可以认为是运行程序@RG是上面RG表示的内容,后面是程序内容,这里的@GR内容是可以自己在运行程序是加入的
主体部分介绍:
主体部分有11个主列和1个可选列
FLAG详解: 例如:想要查看FLAG 99是什么意思:samtools flags 99
CIGAR详解 CIGAR string,简要比对信息表达式(Compact Idiosyncratic Gapped AlignmentReport),其以参考序列为基础,使用数字加字母表示比对结果,比如3S6M1P1I4M,前三个碱基被剪切去除了,然后6个比对上了,然后打开了一个缺口,有一个碱基插入,最后是4个比对上了,是按照顺序的,字母的含义如下
sam/bam文件查看 samtools工具: Samtools常用命令的总结:
参考: sam格式文件解读
jonathan7704
生信分析论文写法如下:
这次我们来讲解的这边文献是 2019-10-12 发表的 OTT 杂志上的一篇生信加少量实验验证的文章。实话实说,目前对于生信最最最基本的,如果没有实验验证还是不好发文章的。所以一般都会加一些实验验证的。
这个文章的主要流程是个这样的:这里我们就基于文童的材料方法来说一下具体的内容:公共数据获取:当中关于公共数据获取部分提到了这些东西。使用了 GEO 数据库来进行候选数据筛选。
这 GEO 里面找到了三个芯片,其中描述了这三个芯片的平台。差异表达分析:作者使用了 GEO2R 来进行数据的筛选。富集分析:接着作者对差异表达的基因进行了富集分析,其中包括 GO 分析和 KEGG 分析。
作者使用的富集分析的软件是 DAVID,这个软件我们也吐槽过说,更新不及时,是很好用,所以推荐是 WebSestalt 富集分析软件,或者 clusterprofiler。蛋白相互作用分析:5TCGA 数据库验证再往下作者做的其实是 TCGA 的数据库验证,但是在材料方法里面没写。我们可以在结果当中具体的过程。
对于肿瘤研究,现在如果只是用 GEO 数据集分析,不用 TCGA 再看一下的话,都觉得不好意思,所以一般的肿瘤研究可能都会用到 TCGA 的验证的。其目的也就类似于多加了一个数据集来增加结果准确性。但是对于 TCGA 有些肿瘤正常样本很少。分析的结果可能偏差更大。文章使用的 GEPIA 的数据库。这个数据库对于查询 TCGA 表达结果还是很好用的,简单上手。
核心基因甲基化相关分析:在核心基因选择之后,利用了 TCGA 的甲基化数据MEXPRESS 来查看基因的田基化水平有没有变化。由于版本的更新。现在的这个数据库的 版本的结果会比之前的更加详细一些。
我投过的只有一个没收版面费,是Journal of Bioinformatics and Computational Biology ,收算法类的文章,对英文要
新发现这个是杂志,每月一本。报刊亭应该有
生物信息学毕业论文,如果你有范文的话,格式肯定就不用找了,但是选题就不行,必须要你导师认可了才行,我是在志文网写的,我写的是生物芯片技术中的应用方面的,生物信息
这类没有自己生产的bench data的文章通常不太可能发布到最最顶尖的杂志,比如Nature或者Science的主刊。投文章时可以分为四个梯队:第一梯队:Na
1,序列比对(Sequence Alignment) 序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下