missohmygod
1、 塑料管应用现状研究 摘要:主要介绍了塑料管应用现状和生产现状。本世纪50年代以后,随着石油化学工业的飞速发展,石油深加工技术日趋完善,塑料制品种类多样化,产量迅速增长,使之逐步发展成为一种新型工程材料。塑料管和传统管材相... 类别:材料工程学 作者::佚名 日期:2008-02-07 [查看详细] 2、 试论各种塑料管道的特点及应用 摘要:简明介绍硬聚氯乙烯管(UPVC)、芯层发泡管(PSP)、硬聚氯乙烯消音管、塑料波纹管、氯化聚氯乙烯管(CPVC)、高密度取乙烯管(HDPE)、交联聚乙烯管(PEX)、钢塑复合管、铝塑复合管(PA... 类别:材料工程学 作者::王乐农 日期:2008-02-07 [查看详细] 3、 塑料光纤传光原理 摘要:塑料光纤POF之所以能传光是因为光纤具有芯皮结构,光在POF中传输是按全反射原理进行的,光在SIPOF中的传输方式为全反射式锯齿型,光在GIPOF中的传输方式为正弦曲线型;子午线就是光线的传播路...
qsfenglingbb
有两篇,你看着修改吧混凝土裂缝的预防与处理 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。 一、前言 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。 混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。很多工程的失事都是由于裂缝的不稳定发展所致。近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。钢筋混凝土规范也明确规定[1]:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 二、 凝土工程中常见裂缝及预防 1.干缩裂缝及预防 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产生。干缩裂缝多为表面性的平行线状或网状浅细裂缝,宽度多在之间,大体积混凝土中平面部位多见,较薄的梁板中多沿其短向分布。干缩裂缝通常会影响混凝土的抗渗性,引起钢筋的锈蚀影响混凝土的耐久性,在水压力的作用下会产生水力劈裂影响混凝土的承载力等等。混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。 主要预防措施:一是选用收缩量较小的水泥,一般采用中低热水泥和粉煤灰水泥,降低水泥的用量。二是混凝土的干缩受水灰比的影响较大,水灰比越大,干缩越大,因此在混凝土配合比设计中应尽量控制好水灰比的选用,同时掺加合适的减水剂。三是严格控制混凝土搅拌和施工中的配合比,混凝土的用水量绝对不能大于配合比设计所给定的用水量。四是加强混凝土的早期养护,并适当延长混凝土的养护时间。冬季施工时要适当延长混凝土保温覆盖时间,并涂刷养护剂养护。五是在混凝土结构中设置合适的收缩缝。 2.塑性收缩裂缝及预防 塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不一,互不连贯状态。较短的裂缝一般长20~30cm,较长的裂缝可达2~3m,宽1~5mm。其产生的主要原因为:混凝土在终凝前几乎没有强度或强度很小,或者混凝土刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。影响混凝土塑性收缩开裂的主要因素有水灰比、混凝土的凝结时间、环境温度、风速、相对湿度等等。主要预防措施:一是选用干缩值较小早期强度较高的硅酸盐或普通硅酸盐水泥。二是严格控制水灰比,掺加高效减水剂来增加混凝土的坍落度和和易性,减少水泥及水的用量。三是浇筑混凝土之前,将基层和模板浇水均匀湿透。四是及时覆盖塑料薄膜或者潮湿的草垫、麻片等,保持混凝土终凝前表面湿润,或者在混凝土表面喷洒养护剂等进行养护。五是在高温和大风天气要设置遮阳和挡风设施,及时养护。 3.沉陷裂缝及预防 沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致;或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致,特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。此类裂缝多为深进或贯穿性裂缝,其走向与沉陷情况有关,一般沿与地面垂直或呈30°~45°角方向发展,较大的沉陷裂缝,往往有一定的错位,裂缝宽度往往与沉降量成正比关系。裂缝宽度受温度变化的影响较小。地基变形稳定之后,沉陷裂缝也基本趋于稳定。 主要预防措施:一是对松软土、填土地基在上部结构施工前应进行必要的夯实和加固。二是保证模板有足够的强度和刚度,且支撑牢固,并使地基受力均匀。三是防止混凝土浇灌过程中地基被水浸泡。四是模板拆除的时间不能太早,且要注意拆模的先后次序。五是在冻土上搭设模板时要注意采取一定的预防措施。 4.温度裂缝及预防 温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热,(当水泥用量在350~550 kg/m3,每立方米混凝土将释放出17500~27500kJ的热量,从而使混凝土内部温度升达70℃左右甚至更高)。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,这样就形成内外的较大温差,较大的温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力(实践证明当混凝土本身温差达到25℃~26℃时,混凝土内便会产生大致在10MPa左右的拉应力)。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。在混凝土的施工中当温差变化较大,或者是混凝土受到寒潮的袭击等,会导致混凝土表面温度急剧下降,而产生收缩,表面收缩的混凝土受内部混凝土的约束,将产生很大的拉应力而产生裂缝,这种裂缝通常只在混凝土表面较浅的范围内产生。 温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接近平行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显,冬季较宽,夏季较窄。高温膨胀引起的混凝土温度裂缝是通常中间粗两端细,而冷缩裂缝的粗细变化不太明显。此种裂缝的出现会引起钢筋的锈蚀,混凝土的碳化,降低混凝土的抗冻融、抗疲劳及抗渗能力等。 主要预防措施:一是尽量选用低热或中热水泥,如矿渣水泥、粉煤灰水泥等。二是减少水泥用量,将水泥用量尽量控制在450kg/m3以下。三是降低水灰比,一般混凝土的水灰比控制在以下。四是改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。五是改善混凝土的搅拌加工工艺,在传统的三冷技术的基础上采用二次风冷新工艺,降低混凝土的浇筑温度。六是在混凝土中掺加一定量的具有减水、增塑、缓凝等作用的外加剂,改善混凝土拌合物的流动性、保水性,降低水化热,推迟热峰的出现时间。七是高温季节浇筑时可以采用搭设遮阳板等辅助措施控制混凝土的温升,降低浇筑混凝土的温度。八是大体积混凝土的温度应力与结构尺寸相关,混凝土结构尺寸越大,温度应力越大,因此要合理安排施工工序,分层、分块浇筑,以利于散热,减小约束。九是在大体积混凝土内部设置冷却管道,通冷水或者冷气冷却,减小混凝土的内外温差。十是加强混凝土温度的监控,及时采取冷却、保护措施。十一是预留温度收缩缝。十二是减小约束,浇筑混凝土前宜在基岩和老混凝土上铺设5mm左右的砂垫层或使用沥青等材料涂刷。十三是加强混凝土养护,混凝土浇筑后,及时用湿润的草帘、麻片等覆盖,并注意洒水养护,适当延长养护时间,保证混凝土表面缓慢冷却。在寒冷季节,混凝土表面应设置保温措施,以防止寒潮袭击。十四是混凝土中配置少量的钢筋或者掺入纤维材料将混凝土的温度裂缝控制在一定的范围之内。 5.化学反应引起的裂缝及预防 碱骨料反应裂缝和钢筋锈蚀引起的裂缝是钢筋混凝土结构中最常见的由于化学反应而引起的裂缝。 混凝土拌和后会产生一些碱性离子,这些离子与某些活性骨料产生化学反应并吸收周围环境中的水而体积增大,造成混凝土酥松、膨胀开裂。这种裂缝一般出现中混凝土结构使用期间,一旦出现很难补救,因此应在施工中采取有效措施进行预防。主要的预防措施:一是选用碱活性小的砂石骨料。二是选用低碱水泥和低碱或无碱的外加剂。三是选用合适的掺和料抑制碱骨料反应。 由于混凝土浇筑、振捣不良或者是钢筋保护层较薄,有害物质进入混凝土使钢筋产生锈蚀,锈蚀的钢筋体积膨胀,导致混凝土胀裂,此种类型的裂缝多为纵向裂缝,沿钢筋的位置出现。通常的预防措施有:一是保证钢筋保护层的厚度。二是混凝土级配要良好。三是混凝土浇注要振捣密实。四是钢筋表层涂刷防腐涂料。 三、裂缝处理 裂缝的出现不但会影响结构的整体性和刚度,还会引起钢筋的锈蚀、加速混凝土的碳化、降低混凝土的耐久性和抗疲劳、抗渗能力。因此根据裂缝的性质和具体情况我们要区别对待、及时处理,以保证建筑物的安全使用。 混凝土裂缝的修补措施主要有以下一些方法:表面修补法,灌浆、嵌逢封堵法,结构加固法,混凝土置换法,电化学防护法以及仿生自愈合法。 1.表面修补法 表面修补法是一种简单、常见的修补方法,它主要适用于稳定和对结构承载能力没有影响的表面裂缝以及深进裂缝的处理。通常的处理措施是在裂缝的表面涂抹水泥浆、环氧胶泥或在混凝土表面涂刷油漆、沥青等防腐材料,在防护的同时为了防止混凝土受各种作用的影响继续开裂,通常可以采用在裂缝的表面粘贴玻璃纤维布等措施。 2.灌浆、嵌逢封堵法 灌浆法主要适用于对结构整体性有影响或有防渗要求的混凝土裂缝的修补,它是利用压力设备将胶结材料压入混凝土的裂缝中,胶结材料硬化后与混凝土形成一个整体,从而起到封堵加固的目的。常用的胶结材料有水泥浆、环氧树脂、甲基丙烯酸酯、聚氨酯等化学材料。 嵌缝法是裂缝封堵中最常用的一种方法,它通常是沿裂缝凿槽,在槽中嵌填塑性或刚性止水材料,以达到封闭裂缝的目的。常用的塑性材料有聚氯乙烯胶泥、塑料油膏、丁基橡胶等等;常用的刚性止水材料为聚合物水泥砂浆。 3.结构加固法 当裂缝影响到混凝土结构的性能时,就要考虑采取加固法对混凝土结构进行处理。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。 4.混凝土置换法 混凝土置换法是处理严重损坏混凝土的一种有效方法,此方法是先将损坏的混凝土剔除,然后再置换入新的混凝土或其他材料。常用的置换材料有:普通混凝土或水泥砂浆、聚合物或改性聚合物混凝土或砂浆。 5.电化学防护法 电化学防腐是利用施加电场在介质中的电化学作用,改变混凝土或钢筋混凝土所处的环境状态,钝化钢筋,以达到防腐的目的。阴极防护法、氯盐提取法、碱性复原法是化学防护法中常用而有效的三种方法。这种方法的优点是防护方法受环境因素的影响较小,适用钢筋、混凝土的长期防腐,既可用于已裂结构也可用于新建结构。 6.仿生自愈合法 仿生自愈合法是一种新的裂缝处理方法,它模仿生物组织对受创伤部位自动分泌某种物质,而使创伤部位得到愈合的机能,在混凝土的传统组分中加入某些特殊组分(如含粘结剂的液芯纤维或胶囊),在混凝土内部形成智能型仿生自愈合神经网络系统,当混凝土出现裂缝时分泌出部分液芯纤维可使裂缝重新愈合[4]。 四、结 论 裂缝是混凝土结构中普遍存在的一种现象,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此要对混凝土裂缝进行认真研究、区别对待,采用合理的方法进行处理,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,保证建筑物和构件安全、稳定地工作。
爱谁是谁007
随着社会主义现代化建设的不断发展,环境保护作为我国的一项基本国策已越来越受到人们的关心与重视。发达国家曾经走过一条先污染后治理的弯路,并为此付出了高昂的代价。我们作为发展中国家,现代化建设刚刚起步,理应吸取发达国家的经验教训,在进行现代化建设的同时,尽量减少污染,走一条发展与治理同步、以预防为主的环保工作新道路。为此,必须大力普及环境科学知识,提高人们的环境意识。 一、培养学生环境意识的必要性与紧迫性 我国的环境状况并不容乐观。大气污染、水污染等已经给人们的生产、生活带来灾害性影响。曾经风景如画的南京十里秦淮,如今已是垃圾充溢臭气熏天的“龙须沟”,淮河水无法饮用,大运河鱼虾绝迹,九七年的黄河断流,九八年的长江洪水,去年的沙尘暴等等,其后果已是触目惊心。至于城市的酸雨、近海的赤潮、湖水的干涸等,早已不再是新闻。因此,提高全民族的环境保护意识,已经摆上了国民教育的重要议事议程。而中学生正处于世界观与人生观形成的关键时期,环保意识一旦形成,对其一生的社会行为乃至对整个中国的经济发展与环境保护,无疑将产生巨大的影响作用。培养学生的环境保护意识,是一件事关未来、影响深远的大事情。 二、化学教育在培养学生环境意识中的重要地位 化 学 学 科 的特点,决定了化学教育在培养学生环境意识中占有重要地位。它同物理、生物等都是对学生进行环境教育的主要学科。许多污染物的成分、特性、形成过程、对人类生产生活的危害以及如何防治等,都与化学教学内容有着密切的联系。初中、高中化学教学大纲中也明确提出,化学教育应培养学生关心自然、关心社会的情感,对学生进行环境保护意识的教育。 三、化学教育如何培养学生的环境意识 在化学教育中,化学教师应有意识的对学生进行环境教育,概括起来,主要有以下几个途径: 1、在化学课堂教学中,渗透环境教育 在中学化学教材中,包含许多与环境保护有关的内容,例如作为大气污染物中的头两号“杀手”so2和co,在初中课本和高中一年级课本中都做过初步和系统地学习。教师在讲授该节内容时,就应给学生讲清so2、co的产生、特性及对人类的危害,并可根据学生的实际情况,讲解如何避免so2、co的产生及so2、co中毒后如何处理等。并由so2的特性讲解“酸雨”这种污染物的形成及危害。对于大气污染中的另一“杀手”——光化学烟雾,在高中第二册(试验本)教材中也介绍过,教师可结合1942年的美国洛杉矶光化学烟雾事件,给学生讲清其形成过程及危害,从而提高学生对环境污染的重视程度。 2、在化学试验过程中,进行环境教育 化学试验作为化学教学的重要组成部分,同样担负着对学生进行环境教育的重要职责,并且较之课堂教学更具有直观性。一方面,教师可以以环境污染物为试验样品,进行观察分析与研究。例如测定大气飘尘的浓度、测定雨水的ph值、用so2形成硫酸、硝酸的过程等等。另一方面,化学教师在自己做或指导学生做实验时,也可以切身实地的进行环境教育。例如在做有有毒性气体(如so2、co等)放出的试验时,可增加尾气处理装置,以减少有毒气体排放。对实验结束后的试验废液、废物应放入指定地点,这样既可减少污染物污染,也教育学生环境保护要身体力行,从自身做起,只有这样,才能形成良好的环保习惯。 3、在化学课外活动中,加强环境教育 一方面,可以通过化学课外兴趣小组,开展环境保护活动。例如组织学生测定大气污染物浓度、测定附近河、湖水的酸碱度,到附近工厂进行污水排放观察及污水处理参观,利用节假日到野外收集废电池等等,让学生亲身体验环境污染的程度及其危害性,增强环境观念。另一方面,要教育学生在日常生活中,从自身做起,从一点一滴的小事做起,时刻牢记环保使命,充分利用节约能源(如节水、节电、充分燃烧煤气、石油液化气等),合理分类存放生活垃圾(如电池回收、不乱到污水等),不使用污染环境的物品(如含p洗衣粉、喷发胶等),敢于同浪费资源、污染环境的行为作斗争,努力将环境污染降低到最低程度,保护好我们的家园。 总之,利用化学教学培养学生的环境意识,有着其他学科所不具备的优越条件。广大中学教师应充分利用这一优越性,为保护好我们的生活环境,使我国的现代化建设在未
duduzhu1986
浅析塑料摘要:从第一个塑料产品赛璐珞诞生算起,塑料工业迄今已有120年的历史。经历了天然高分子加工阶段, 合成树脂阶段,19世纪70年代聚烯烃塑料系列成为了重中之重,同时出现了多品种高性能的工程塑料,到70年代末塑料工业趋于稳定增长阶段,生产技术更加合理完善,性能优异的材料开始问世。塑料以其优异的性能在人类的生产和生活中发挥了不可估量的作用,推动了整个世界的进步. 关键词:塑料的合成 分类 降解与节能 发展前景正文:20世纪以来,在人类生活的深刻变化中,塑料材料革命发挥了极其重要的作用。特别是近50年,各种塑料由于具有广泛的用途及良好的使用性能在农业,包装,轻工,纺织,建筑,汽车,电子电气乃至航空航天,国防军工等各个领域中,与钢铁,木材,水泥构成现代工业的四大基础材料。进入21世纪,随着信息技术等高新技术的不断渗透,合成树脂即塑料性能进一步改善,应用更加广泛,对国民经济和社会发展以及人民生活水平的提高将产生越来越重要的影响。一、塑料的合成塑料的定义:塑料是以合成或天然高分子化合物维基本成分,附加填料和各种助剂,在一定的条件下塑化成行,最终能保持形状不变的材料。原料:制造塑料的原料是树脂,而单体是构成高分子化合物即合成树脂的基本结构单元。单体的来源经历过从易到难的发展过程:动物,植物,煤,石油和天然气。至今四种单体来源同时存在,石油和天然气是目前各工业国家制造塑料的最重要原料来源。制造: :从单体到塑科制品要经过聚合和加工二大步骤。聚合的方法来说有本体、悬浮、乳掖、镕液聚合法四种。通过一定的温度、压力、催化剂使单体分子活化聚合成大分子,聚合后得到没有一定的形状和强度从而无实用性粉粒状聚合物,通过挤压、注射、压延、砍塑、压制(模压、层压)等各种加工方法变成有实用价值的塑料制品,加工之前必须根据制品的使用要求添加适当的助剂最常见的有增塑剂、稳定剂(热、光稳定剂)、抗氧剂等。 二、塑料的分类塑料的分类体系比较复杂,各种分类方法也有所交叉。以下就结构和使用性质进行简单的分类介绍。按结构分:塑料高分子的结构基本有两种类型。第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物。线型高分子制成的是热塑性塑料,加热可熔融可再造,常见的热塑性树脂有:聚乙烯、聚氯乙烯、聚苯乙烯、聚酰胺、聚甲醛、聚碳酸酯、聚苯醚、聚砜、橡胶等。其优点是加工成型简便,具有较高的机械能。缺点是耐热性和刚性较差。第二种是体型结构 ,具有这种结构的高分子化合称为体型高分子化合物,由体型高分子制成的是热固性塑料,因其形成键与键之间的不可逆共价键从而不能再熔融和流动而无法从新塑造。它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是机械性能较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 按使用特性分:1、通用塑料:一般是指产量大、用途广、成型性好、价格便宜的塑料。如聚乙烯、聚丙烯、酚醛等。2、工程塑料:一般是指能承受一定外力作用,具有良好的机械性能和耐高、低温性能,尺过稳定性较好,可以用作工程结构件的塑料。如聚酰胺、聚砜等。在工程塑料中又将其分为通用工程塑料盒特种工程塑料两大类。三、塑料的应用:国内塑料制品市场未来需求主要集中在包装、建筑、农用、工业交通及电子通讯等几个方面;体育健身器材和医疗器械行业应用将大幅增长;玩具行业有可能转为使用具有环保特性的塑料;ABS树脂在建材管材和管件、医疗器械和合金共混物等的应用上也有良好前景。工程塑料仍将是增长最快的领域。工程塑料是电子信息、交通运输、航空航天、机械制造业的上游产业,在国民经济中占据着重要的地位,其发展不仅对国家支柱产业和现代高新技术产业起着支撑的作用,同时也推动传统产业改造和产品结构的调整。近年来,随着我国制造业的快速发展,工程塑料的应用领域日趋广。评价:由其具有强烈抗腐蚀能力,重量轻且坚固,加工方便又高效,原料广而廉还可以用于制备燃料油盒燃料气从而降低的原油的消耗,用途广泛立于材料之林,但是塑料也有不足之处,这是创造一系列改性品种的动力,总起来说塑料尺寸不稳定,容易老化,可燃,必须加各种不同助剂来改善。某些塑料制品有毒性,普通塑料具有抗氧化,难腐蚀,难降解使回收利用废弃塑料时十分困难,生态环境危害极大。此外塑料是由石油炼制的产品制成的,而石油资源是有限的。 随着人类文明的进步,人们开始重视自然环境以及人类的可持续发展,这凸显了废旧塑料所带来的环境问题,白色污染”成为了一个全球性问题,而且由于石油等资源的有限性,人们开始注重资源更加有效的利用。这些都为塑料的发展即带来了挑战也带来了机遇,随着可降解塑料和废旧塑料的回收利用技术的研发,在逐渐减少对生态环境的危害的同时,塑料在材料生产与应用中,目前和将来的能耗、材料成本以及材料使用中的节能优势使其有了更大的发展空间。 四、发展方向:将来最主要的是充分利用具有多种性能和加工工艺优越性的现有材料。增强其在较高温度下使用保持较高强度,降低塑料强度和变形性能的时间和温度的依赖关系,加强研究塑料的燃烧特性,在老化影响因素下使塑料稳定。白色污染主要是由废旧塑料高分子的难降解性以及添加剂的毒害性引起的,目前,世界各国都在大力投入可降解塑料的研发和废旧塑料的回收利用技术的研发。在积极开发塑料回收利用技术的同时,研究开发生物降解塑料成为当今的研究热点。而且为了适应市场需求和高科技发展的需要,开发高性能,功能性材料也将成为热点。塑料的降解和节能1可降解塑料制品研究现状一般来说,塑料除了热降解外,在自然环境中的光降解和生物降解都比较慢。用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件的不同而有所差异,但通常都需要200~400年 为了解决这一问题,世界各国投入了大量的研发力量来开发和应用可降解塑料。可降解塑料是指一类其制品的各项性能可满足使用要求,在保存期内性能不变,而使用后在自然环境条件下能降解成对环境无害的物质的塑料,从而对环境进行保护 塑料的降解主要是高分子化学键断裂所引起的,其降解的方式和程度与环境条件有关。其主要降解方式有:水解降解、氧化降解、微生物降解和机械降解。但从实际应用的角度,一般是运用光降解、光-生物双降解和生物降解等方式 2节能:在用塑料等合成材料同样可以制造出与传统材料效用相同或相近的制品上替代使用,以求节省材料生产、加工能耗;在使用等合成材料后可以让用能过程或设备节约能源。 实例:据估算,美国1978年使用了150,000吨塑料用于创造冰箱和冶藏箱的部分绝热作用的部件,节约了60%重量的金属或玻璃。不用塑料而用玻璃或金属则需耗能23万亿英热单位,二用塑料部件耗能万亿英热单位,节约了能量万亿英热单位,相当于120万桶原油。 五、结尾:随着能源危机的时隐时现带来的压力,节能已成为主流话题,而塑料以其在生产及使用中的节能优势将必定获得更大的发展。而且各国对可降解塑料的研发和废旧塑料的回收利用技术的大力支持,白色污染的危害性逐渐减少,绿色塑料的出现指日可待。源于自然,归于自然,塑料的前景无限光明!
吃土少年Hollar
相关的主题文章:聚氯乙烯是世界上实现工业化时光最早,应用范畴最广泛的通用型热塑性塑料。纯聚氯乙烯树脂的分解和塑化温度极为靠近,当加热到130℃-140℃时,就会发生分解,放出氯化氢,所以用纯聚氯乙烯树脂是不能加工制作塑料制品的,必需加入各种助剂,改善聚氯乙烯性能,才干获得性能各异、用途广泛的各种制品。因此,聚氯乙烯配方设计是聚氯乙烯制品加工的前提和主要工序。 比拟其它塑料品种,聚氯乙烯是配方最复杂,所用助剂品种最多、数目最大的塑料。热稳定剂、增塑剂、润滑剂、填充剂、着色剂以及加工助剂和抗冲改性剂等常用助剂,铜佛像,在大多数聚氯乙烯配方中均能见到,而且针对这些助剂的作用原理和实际应用情况,许多专家和学者已给出了大批的深入阐述。这里不再重述。 为使聚氯乙烯取得更加优良的性能,适应更严格的应用环境,拓宽聚氯乙烯的应用范畴,在一些聚氯乙烯配方中有时还往往增添局部十分用助剂,如抗静电剂、阻燃剂、抗氧剂等。本文对这些助剂进行了演绎总结,盼望能为大家进行聚氯乙烯配方设计,供给有利的辅助。 一、抗氧剂 抗氧剂是一种能抑制和延缓聚合物材料氧化和降解的化学助剂,其作用机理复杂。根据抗氧剂所具有的官能团可将它们概括的分为主抗氧剂和辅助抗氧剂。它们的作用是:主抗氧剂靠约束自由基而中止链式反应;辅助抗氧剂或称防备性抗氧剂是破坏氢过氧化物的,这是产生自由基的本源。 由于大部分聚氯乙烯的降解过程是离子化过程,故只在考虑有自由基降解时,才使用主抗氧剂。因为氧能加剧聚氯乙烯的热,光降解过程,高温下增塑剂的氧化也很快,氧化后的增塑剂会使相容性降低,“挥发度”增大。所有这些破坏作用,使聚氯乙烯制品性能迅速下降,并会有气息产生。聚氯乙烯在氧化过程中一旦生成了双键,其后的氧化过程就和其余不饱和聚合物一样了。为了预防和缓解聚氯乙烯在加工和使用过程中老化,提高聚氯乙烯制品的应用质量,在某些配方中应加入一定量的抗氧剂。 聚氯乙烯反抗氧剂的要求不是很高,所以聚氯乙烯配方中大多不抗氧剂。但对于长期在户外应用的、高温环境下应用的、耐侯性要求较高的聚氯乙烯制品。特别是易发生氧化裂解和潜在降解的增塑聚氯乙烯制品,如电缆材料等。配方中一般在加入热稳定剂的同时,加入一定量的抗氧剂,以保障聚氯乙烯制品的内在稳定性和外观质量。 另外废旧聚氯乙烯制品的回收利用的再加工中,不仅应补加损失的热稳定剂,同时还应加入一定量的抗氧剂,使因老化产生的自由基的活性降低或损失。防止发生链式反应,增强新制品的稳定性,延伸其使用寿命。 可用于聚氯乙烯的抗氧剂主要有两大类,即主抗氧剂和亚磷酸酯类帮助抗氧剂,pvc给水管。主抗氧剂主要有双酚A、抗氧剂CA,抗氧剂264,抗氧剂2246 ,抗氧剂1076等。从综合机能、起源及成原来斟酌,聚氯乙烯中运用最多的是双酚A。其重要用于增塑聚氯乙烯配方中,特殊是电线电缆资料。由于它不仅对聚氯乙烯树脂有抗氧化作用,同时对避免增塑剂挥发和氧化分解也有抑制造用,普通参加量为。亚磷酸酯类抗氧剂在聚氯乙烯中普遍作螯合剂应用。特别是以金属皂作稳固剂时存在协同效果,可减少金属氯化物的伤害,阻拦金属离子对聚氯乙烯树脂的催化降解。在透明聚氯乙烯膜、片、板中应用较多。常用种类有亚磷酸三苯酯(TPP)、二苯基?异辛基亚磷酸酯(ODPP)、亚磷酸苯二异辛酯等。它们能使聚氯乙烯制品坚持其透明度,并克制色彩的变更。配方顶用量正常为。 二、光稳定剂 光稳定剂的作用机理因本身结构和品种不同而不同,有的能屏蔽紫外线或吸收紫外线并将其转化为无害的热能;有的可淬灭被紫外线激发的分子或基团的激发态,使其回复到基态;有的则捕捉因光氧化产生的自由基,抑制光氧化链式反应的进行,使高分子材料免遭紫外线的破坏。 聚氯乙烯材料是一种对紫外线不太敏感的聚合物,但聚氯乙烯中残留的感光杂质、催化剂残留物或其它光敏添加剂将会引起聚氯乙烯的降解。聚氯乙烯塑料在日光照耀下,由于受日光中290?400纳米波长紫外线的照射,吸收紫外线能量、化学键损坏,并引起链式反应,使聚氯乙烯塑料性能降落,如降低冲击强度或使制品变色等。配方中加入紫外线吸收剂便可有效地抑制光降解。因而,聚氯乙烯所用的光稳定剂,使用最广泛的是紫外线吸收剂。 聚氯乙烯硬质品在紫外线稳定方面的要求主要是在户外建材方面,如护墙板、百叶窗、窗用型材;软质品主要应用于座位外罩、花园园艺软管和草坪设施等。 光稳定剂的品种和品种很多,用于聚氯乙烯中的主要有二苯甲酮类、苯并三唑类、三嗪类和炭黑。常用品种是:UV-9(2-羟基-4-甲氧基二苯甲酮)、UV-531(2-羟基-4-正辛氧基-二苯甲酮)、UV-326[(2’-羟基-3’-叔丁基-5’-甲基苯基)-5-氯代苯并三唑]、UV-P[2-(2’-羟基-5’-甲基苯基)苯并三唑]、UV-24(2,2’-二羟基-甲氧基二苯甲酮)、三嗪-5[2,4,6-三(2’-羟基-4’-正辛氧基苯基)-1,3,5-三嗪]。 炭黑可以吸收入射光,并将其转化成热能从新释放出去而不破坏聚合物,石雕麒麟。但只能用于深色的聚氯乙烯制品。其用量还取决于制品的颜色,所以炭黑在聚氯乙烯中使用受到制约和制约。 取舍聚氯乙烯用的光稳定剂,招考虑它们与热稳定剂之间的互相影响,光稳定剂的应用需以不影响热稳定剂效果为条件。例如,二苯甲酮类光稳定剂与钡-镉热稳定剂并用时,会使软质聚氯乙烯制品泛黄,降低钡-镉稳定剂的碱性,泛黄景象得以削弱。苯并三唑类光稳定剂对于提高聚氯乙烯的光稳定性,特别是对硬质聚氯乙烯长短常有效的。然而在硬质聚氯乙烯中某些苯并三唑类光稳定剂与硫基锡热稳定剂并用时形成粉红色络合物。因此,当热稳定剂为金属皂类时,常选用UV-P,用量为。当以硫醇有机锡为热稳定剂时,常选用UV-531,用量为。在聚氯乙烯农用薄膜中,三嗪-5有凸起的防老化效果,用量为。 三、阻燃剂和抑烟剂 (一)阻燃剂 阻燃剂是进步可燃性聚合物的难燃性的一类助剂。阻燃剂的作用机理很庞杂,阻燃后果是通过各种不同门路实现的。但归纳起来,阻燃剂的作用不过乎是通过物理途径跟化学道路来到达堵截熄灭轮回的目标。有的阻燃剂有助于生成一种维护性的焦炭层,从而使未燃烧的聚合物与火焰和热源隔开;有的阻燃剂是通过转变火焰的反映机理而起作用,即在气相中禁止自在基的天生;还有的则是将其水分开释到热源上,急冷和冷却焚烧反响。依据塑料阻燃剂利用的方式,个别把阻燃剂分为增加型和反应型两大类。 聚氯乙烯树脂的含氯量为,所以本身具有自熄性,硬质品也具有阻燃性,但是聚氯乙烯软质品由于配用大量的增塑剂,增塑剂中绝大多数品种遇火燃烧,所以配方中一般增塑剂的加入量小于50份时,制品遇火燃烧,分开火能自熄;若是大于50份,将极易燃烧且不能自熄。另外聚氯乙烯配方中所加入一些改性剂,往往也是可燃的,这些组分也将提高聚氯乙烯制品的可燃性。 聚氯乙烯配方中最常用的阻燃剂有氧化锑、硼酸锌、氯化石蜡、磷酸三甲苯脂(TCP)、磷酸三(2,3-二氯丙基)酯、磷酸三(2,3-二溴丙基)酯等。作为PVC抗冲改性剂之一的氯化聚乙烯,由于能提高制品的氯含量,也能起到必定阻燃作用。 氧化锑(三氧化二锑)在单独使用时,几乎没有阻燃活性,但和卤素共用则有协同效应。聚氯乙烯是含卤树脂,所以单独使用氧化锑就能得到阻燃性。当氧化锑与氯化石蜡并用时,阻燃效果将更好。然而由于使用氧化锑后制品不透明,所以在一定水平上,限制了它的用途。氧化锑的有效用量是1-5phr,常用量为2-3phr。目前国外已开发出用于透明制品的氧化锑品种如Nyacol。 硼酸锌是一种价廉阻燃剂,阻燃效果没有氧化锑好,所以一般和氧化锑并用,减少氧化锑用量,降低成本。 磷酸酯是一种较高效的阻燃剂,最常用的是磷酸三甲苯脂。但磷酸三甲苯脂的低温性能很差,所以在须要考虑耐寒性的场合使用烷基磷酸酯更为适合。此类阻燃剂可用于透明制品。磷酸酯类阻燃剂一般加入量为5?15phr,详细用量取决于聚氯乙烯制品阻燃等级的要求。含溴的磷酸酯类阻燃效果要好于相同结构的含氯磷酸酯。由于此类阻燃剂中大多数品种对制品低温顺曲性产生不良影响,所以它们最大用量很少超过15phr。和氧化锑并用,可获得更佳的阻燃效果。 氯化石蜡是一种比较典型的阻燃剂,随着含氯量的增加,阻燃效果增强。使用70%氯化石蜡,可以弥补聚氯乙烯氯含量的丧失。50%氯化石蜡还有增塑作用,是辅助增塑剂,混合这种阻燃剂不仅能减少易燃增塑剂用量,还可减少配方中氧化锑的量,但它的应用受到低相容性和增塑效果的限度。另外氯化石蜡也对一些稳定体系产生负作用,配方设计时应注意。 (二)抑烟剂 通过对良多火灾事变实例的研讨表明:一半以上火险逝世亡事故是烟雾而不是热和燃烧引起的。聚氯乙烯是属于产生烟雾迫害的很多物种中的一种。软聚氯乙烯中所用的大多数一般阻燃剂在把持有焰燃烧上虽属有效,但却会增添烟量,甚至自身阻燃的硬聚氯乙烯也会发生明显的烟量。 当聚氯乙烯燃烧时,在材料的内部和阔别火焰端,聚合物的裂解和交联剧烈地发生竞争,而后发生二次反应,碳氢化合物和其它可燃性产物通过炭化层披发出来,并与表面的氧接触,这样有可能就燃烧。因此,使用聚氯乙烯的抑烟剂有可能以两种途径来节制这些竞争反应的均衡,而且都将导致空气中飞腾的烟灰显著地减少。 优先选用的添加剂最好能形成固态的炭化层,工业上使用的能形成炭化层的聚氯乙烯抑烟剂有:三氧化钼、无机钼的混合物(如钼酸锌或八钼酸铵)、锌镁复合物和过渡金属氧化物。在燃烧前期,这些金属氧化物与释放的氯化氢反应生成金属氯化物,催化的烷基化反应能相应减少烟气的产生。同样,这些添加剂催化聚氯乙烯脱去氯化氢,导致形成反式多烯系列,但不会环化成苯的衍生物。接着,简直同时通过交联,抑制烟气产生。广泛的交联会导致炭化层增加,并能有效地减少形成烟气或烟灰的碳的数量。现已研究发明,锌镁复合物能加速形成炭化层,并能使苯释放减少到三分之二。 其次,是使用能抑制烟气的添加剂,使烟灰微粒氧化生成气相的一氧化碳和二氧化碳。二络铁和它的衍生物就是典范的抑烟剂。当聚氯乙烯使用二络铁时,最初可能是气相反应,形成如羟基那样的高能量的基团,这些羟基使烟灰微粒氧化成一氧化碳,并导致烟气减少。二络铁的缺陷是价钱偏高,有气化压力,呈黄色,不合适用于增塑的聚氯乙烯体系中。 用作填料等级的其它抑烟剂,也可以导致减少烟气,这是由于有机成分被稀释的缘故,改善了燃烧时产生挥发物的性质和数量。研究表明:独自使用氢氧化镁与铝的三水合物效果相同,能减少聚合物释放烟雾量。然而当氢氧化镁与铝的三水合物以3:1的比例混杂使用时,根据ASTME-662丈量,可得到最大的烟雾密度降低值。 因为钼化合物非常昂贵,制约了其在聚氯乙烯配方中的应用,玻璃钢管,目前一般和其它氧化物复配,如MoO3-Cu2O, MoO3-Fe2O3,MoO3-SnO2等,这些复合物不仅能下降本钱,而且还可以应用组分间的协同效应,提高抑烟和阻燃效果。目前国外已有商品化抑烟剂能够选用。 四、抗静电剂 塑料拥有电绝缘性(导电聚合物除外),塑料与其它材料接触或摩擦会产生静电积聚,如不迭时打消,在一些场所下可能造成危险,如煤矿中使用的塑料制品,或使塑料薄膜在主动化包装线上不能畸形使用,塑料制品名义“静电吸尘”后,往往降低其使用效果。 添加抗静电剂可降低聚合物材料的带电才能,解决上述静电给塑料制品带来的问题。抗静电剂的主要功效是具有吸湿性,可在聚合物的表面接收大气中的水分而构成一层很薄的导电薄膜,从而使静电敏捷排除,抗静电剂一般都由表面活性剂组成。按结构可分为阴离子型、阳离子型、非离子型、两性离子型和高分子型等。按使用办法有外涂型和内添加型两大类。 聚氯乙烯为极性聚合物,它本身电绝缘性比聚烯烃低,所以产生的静电绝对来说较小,抗衡静电的请求低些。聚氯乙烯塑料制品有抗静电要求时,一般使用内部抗静电剂。受增塑剂影响,为达到雷同抗静电效果,软制品中抗静电剂的添加量相应地比半硬质和硬质品所需的添加量少。 软质聚氯乙烯中常用的内部抗静电剂有阳离子型的季铵盐和非离子型的酯类。季铵盐抗静电效果良好,而酯类则必须在增塑剂用量为30份以上时,才能充足施展抗静电效果。在增塑剂用量低于30份的半硬质和硬质品中,必须使用季铵盐等阳离子型抗静电剂,能力得到良好的抗静电效果。多元醇酯类抗静电剂兼具有润滑剂的作用,在配方设计时应予以注意。另外,由于抗静电剂与聚氯乙烯树脂及热稳定剂可能发生化学反应,从而影响树脂的热稳定性和抗静电效果,所以在使用抗静电剂时,必须细心考虑抗静电剂与热稳定剂之间的相互搭配。 聚氯乙烯常用阳离子抗静电剂主要有:抗静电剂SN(硬脂酰胺丙基二甲基-β-羟乙基铵硝酸盐)、抗静电剂LS[(3-月桂酰胺丙基)三甲基铵硫酸甲酯盐]、抗静电剂609[(N,N’-双(2-羟基乙基)-N-(3’-十二烷氧基-2’-羟基丙基)甲胺硫酸甲酯盐)、抗静电剂SP(硬脂酰胺丙基二甲基-β-羟乙基铵二氢磷酸盐),用量一般为。非离子型抗静电剂主要有:ECH型抗静电剂(杭州市化工研究所)、SGK-03A型抗静电剂(山东寿光助剂厂)等。另外,还有北京市化工研究院生产的非离子和阳离子复合型抗静电剂ASA-150。 五、发泡剂 发泡剂是指能在塑料中形成泡孔结构而添加的一类助剂。它们在特定条件下产生大量气体,使塑料形成气固结合的多孔结构,可降低塑料的密度和硬度,,或增强其隔音性和隔热性。发泡剂按其产赌气体的方式可分为物理发泡剂和化学发泡剂两种。 聚氯乙烯发泡剂成型是以化学发泡为主,常用化学发泡剂如偶氮二甲酰胺(AC发泡剂),2,2’-偶氮二异丁腈,偶氮二甲酸二异丙酯,偶氮二甲酸钡,N,N’-二亚硝基对苯二甲酰胺(特别实用于聚氯乙烯糊树脂的发泡成型),三肼基三嗪,碳酸氢钠,磺基酰肼和对甲苯磺酰肼可并用,聚氯乙烯也有用物理发泡剂成型的,如二氧化碳、氮气、二氯乙烷、二氯甲烷。 对硬聚氯乙烯管材、异型材和板材的泡沫制品,目前比拟风行的是采取“塞路卡”法和共挤芯层发泡法,软质发泡聚氯乙烯制品主要有发泡人造革、聚氯乙烯泡沫内垫等。实际配方中所用发泡剂大多以AC发泡剂为主,用量一般为1-10phr。 在聚氯乙烯中应用AC发泡剂时应留神,聚氯乙烯配方中所用的一些热稳定剂会影响发泡剂的分解温度,与下列稳定剂并用,可使其分解温度下降为: 三碱式硫酸铅169℃, 二碱式亚磷酸铅164℃, 硬脂酸铅 177℃, 硬脂酸钙 162℃, 硬脂酸钡 190℃, 硬脂酸隔 162℃, 硬脂酸锌 170℃ 纯AC分解温度为211℃。 其中以铅、镉、锌盐类影响发泡剂分解温度最显著。由于发泡剂会耗费聚氯乙烯中部分热稳定剂,影响其热稳定剂,为此聚氯乙烯发泡配方中应相应增加稳定剂的用量。 在一些聚氯乙烯发泡配方中,有时还加入发泡助剂以改善泡沫结构和泡沫质量,最常用的发泡助剂为氧化锌,加入量一般为0-5phr。 六、防雾剂(流滴剂) 薄膜上造成的水雾会使光芒散布不均,产生光栅,既不雅观又影响功能,为了缓解这个问题,配方中添加防雾剂(流滴剂)。这些具有表面作用的化学品,在聚合物加工进程中加入。可使冷凝而成的小水滴分布成持续的透明的薄层。这种添加剂的功能是提高聚合物表面的临界潮湿张力,缩小水与聚合物表面之间的接触角。 防雾剂(流滴剂)按使用方法可分为添加型和涂布型。 聚氯乙烯制品中只有在农用薄膜和一些高级包装膜中添加防雾剂(流滴剂),并将一些农膜形象地称为“防滴膜”。 在聚氯乙烯配方中应用最多的防雾剂是单硬脂酸甘油脂,用量为,铜雕,防滴农膜中加入量偏大。另外,甘油单油酸酯、甘油单蓖麻醇酸酯,山梨糖醇酐单油酸酯、山梨糖醇酐单棕榈酸酯、聚环氧乙烷(20)甘油单硬脂酸酯等,以及一些专用配方产品,如美国Drem公司的Dremplast100等均可在聚氯乙烯薄膜中应用,其用量一般为1?,专用防雾剂配方用量偏大,为2?5phr。 为提高聚氯乙烯压延棚膜的透光率和增温效果并减轻作物病害,促使作物增产,已开发生产流滴消雾耐老化扩幅聚氯乙烯压延棚膜,这种棚膜添加3%?流滴消雾剂。聚氯乙烯压延棚膜流滴剂由多种非离子型表面活性剂复配制得。目前使用的流滴剂多由硬脂酸聚甘油脂、失水山梨醇单硬脂酸酯(S-60)、失水山梨醇单棕榈酸酯(S-40)等复配组成,三者比例可为1::。 七、防霉剂 塑料在合适前提下,由于微生物尤其是霉菌的作用,会变色产生霉斑,甚至生长菌丝。不仅外观受到破坏,而且机械及电气等性能下降,使用寿命缩短,造成挥霍,并给环境卫生带来危害。防霉剂就是能杀死霉菌或抑制其生长的一种化学添加剂,能掩护聚合物材料免受霉菌侵蚀。 聚氯乙烯本身虽对微生物的腐化是不敏感的,然而,当添加了各种助剂当前,就有可能助长导致聚合物降解的微生物繁殖。像增塑剂、润滑剂甚至某些热稳定剂均是细菌和霉菌生长的食源。研究表明:甚至在只用不受侵蚀组调配成的聚氯乙烯塑料中,由于从外部染上了食源,这个塑料表面上也会呈现微生物的成长。由于软聚氯乙烯中通常含有大量的上述助剂,是最常见的易受微生物侵蚀的聚合物。 聚氯乙烯配方中一般不添加防霉剂,只是在制品有防霉抑菌要求时才选用防霉剂。目前可用的防霉剂主要有五氯苯酚、五氯苯酚钠、水杨酰苯胺、8-羟基喹啉铜双(三正丁基锡)氧化物、N-(三氯甲基硫代)邻苯二甲酰亚胺、2,2’-二羟基-5,5’二氯代二苯基甲烷等。用量一般为。 目前已有报道,在聚氯乙烯聚合后期加入抗菌剂,制成抗菌聚氯乙烯树脂,以提高聚氯乙烯制品抗菌防霉能力。 八、偶联剂 偶联剂也称表面处理剂,是一种能通过化学和(或)物理作用将两种性质差别很大的,本来不易结合的材料较坚固地联合起来的物资。主要用于无机加强材料或填料(极性物)与非极性的聚合物之间。偶联剂不仅可使填料和聚合物严密相连而达到良好的机械强度,而且填料经由偶联剂处理后,凑集的颗粒直径大多显明减少,可提高填料在聚合物中的疏散性,使填料聚合物体制的流动性得以改良。这些因素都有利于改进制品的机械性能、表观品质和加工性能。 偶联剂大抵可分为硅烷、钛酸酯、铝酸酯等多少类,但应用广泛的主要是前两种。 聚氯乙烯树脂结构中因为Cl-的存在,不同于聚烯烃,是一种极性聚合物,所以偶联剂在其配方中应用较少。但研究表明,偶联剂,特别是钛酸酯偶联剂对提高聚氯乙烯-碳酸钙系统的冲击强度有很大赞助,是相同配比未经偶联处置配方的4?9倍。这也阐明聚氯乙烯填充材料在偶联剂作用下,表示出良好的整体性。 实际生产中,偶联处理是针对填料进行的,比方对碳酸钙的偶联处理是由填料生产厂家实现的。进行配方设计时一般不波及偶联剂的选取,只是根据性能和成本,挑选经过不同方法和偶联剂处理的填料。 但也有报道:加有钛酸酯类偶联剂,并填充了25%碳酸钙的硬聚氯乙烯管材配料,将在其挤出性能上有所改进,其冲击强度也比不填加者好。将钛酸酯加入到一种软聚氯乙烯配料中,就能使碳酸钙填料量大为增长,从每100份树脂添加100份碳酸钙增到每100份树脂添加150份碳酸钙,且其物感性能不变。 九、交联剂 交联剂是一种受热能放出游离基来,活化高分子链,使他们产生化学反应而彼此交联起来的一种助剂。线性的热塑性树脂通过高分子链之间的交联反应可以得到三维的网状构造,这种结构可改良塑料耐热性差,机械强度不高级毛病,尤其是提高塑料在高温下的热稳定性和化学耐蚀性,使其具备工程塑料的某些性能,从而扩展其用处。 对聚氯乙烯的交联曾做过广泛的研究。其目的是为了失掉较好耐热变形性、耐溶剂性以及改进机械和电气性能(跟着使用温度的提高)。聚氯乙烯可用辐射法,或与金属氧化物反应,或与过氧化物并用来进行交联。 对于聚氯乙烯的有机过氧化物交联,见诸专利报道的较多,但真正工业化的很少,仅在聚氯乙烯糊树脂中有部门应用。其起因是聚氯乙烯的熔融温度和分解温度非常濒临,故交联前的加工处理非常艰苦。再者,,聚氯乙烯在受热或化学作用时极易分解,其成果是主链中产生多烯烃结构,轻易着色,有损于产品外观。 用于聚氯乙烯配方中的交联剂主要为过氧化二异丙苯(DCP),用量为左右。另据报道,1,2-苯二磺酰叠氮化物,卤化钴和磷酸三甲苯酯混合物也可使聚氯乙烯交联。 论断 本文汇总列举了聚氯乙烯一些无比用助剂及其在聚氯乙烯配方中的应用情形,但毋庸置疑,聚氯乙烯配方的中心是聚氯乙烯树脂及常用助剂,如稳定剂、增塑剂、光滑剂、改性剂等的抉择和搭配,这些异常用助剂只是赋予聚氯乙烯制品一些特有的性能和用途。 由于聚氯乙烯制品用途太广泛,涉及的应用领域太多太杂,所以仍是有些聚氯乙烯非常用助剂在本文中没有先容,如:塑解剂、香味剂、生物杀除剂等。另外,随着超细化和纳米技巧的开发应用,一些新的纳米材料冲破了旧有观点,成为聚氯乙烯新的改性助剂,这里也没有述及。 总之,咱们需要一直总结,不断研究和汲取新的货色,通过新物质的引入,使聚氯乙烯制品获得更丰盛的品德和性能,使其更好地为人类服务。 参考文献 [1]山西省化工研究所,塑料橡胶加工助剂,北京,化学工业出版社,1985; [2]陈宇等,塑料助剂产供销指南,北京,化学工业出版社,2002; [3]王伯英等译,[美].纳斯,聚氯乙烯大全,第二卷,北京,化学工业出版社,1983; [4]蓝凤祥等,聚氯乙烯出产与加工应用手册,北京,化学工业出版社,1996; [5]王文广,塑料配方设计,北京,化学工业出版社,1998; [6]王善勤,塑料配方手册,北京,中国轻产业出版社,1995; [7]中国塑料编纂部译,美国现代塑料杂志社,古代塑料百科手册,1996年3月增刊; [8]吴曾权译,[美] Enginooying,42,,1986,
食品塑料包装的种类及安全性食工051 2081605127 程鹏摘要 食品包装是现代食品生产的最后一个环节,起着保护食品质量和卫生、方便储藏和运输、延长或假
[1] Yu,M.-F.,Files,B. S.,Arepalli,S.,Ruoff,R. S. Tensile loading of ropes of sin
化学化工环境1. 喜树发根培养及培养基中次生代谢产物的研究2. 虾下脚料制备多功能叶面肥的研究3. 缩合型有机硅电子灌封材料交联体系研究4. 棉籽蛋白接枝丙烯酸
聚氯乙烯是由氯乙烯通过自由基聚合而成的。有悬浮聚合法、乳液聚合法、本体聚合法和微悬浮聚合法,以悬浮聚合法为主,约占PVC总产量的80%左右。单体的来源:乙烯法、
中文摘要论述了PVC的结构性能。PVC可分为软PVC和硬PVC。其中硬PVC大约占市场的2/3,软PVC占1/3。软PVC一般用于地板、天花板以及皮革的表层,但