芥末花vera
天文学家探测行星的方法有: 方法一:天体测量学 天体测量学,主要通过精密追踪一颗恒星在天空中运行轨迹的变化,来确定受其引力拖曳的行星所在。这与径向速度法的原理很类似,只不过天体测量学并不涉及恒星光芒中的多普勒频移。 方法二:利用狭义相对论 这是人类宇宙探索“技术库”里增添的一个新手段。作为新的研究方法,它指导天文学家们去关注恒星的亮度因行星运动而发生的变化——后者的引力作用引发相对论效应,导致组成光的光子以能量的形式“堆积”,并集中于恒星运动的方向。
方法三:脉冲星计时法 这种方法特别适用于发现围绕脉冲星运动的行星。所谓脉冲星,是由恒星衰亡后的残余形成的密度极高的星体。它在高速自转的同时,会发射出强烈脉冲——且由于一颗脉冲星的自转本质上是非常稳定的,所以这种辐射因为自转而非常规律。 方法四:直接成像法 这种方法最大的特点,叫“不言自明”——用不着什么复杂的演算,只需使用功能强大的望远镜,直接给距离遥远的行星拍摄个“证件照”,一并还能取得其“行星护照”——上面包含了这颗行星光度、温度、大气和轨道信息。
方法五:重力微透镜法 重力微透镜法,是指科学家们从地球上观察巨大星体路经一颗恒星正面时发生的现象,进而寻找行星的方法。这是唯一有能力在普通的主序星周围检测出质量类似地球大小行星的方法。
方法六:径向速度法 这是到目前为止最具有成效的确认行星的方法。 径向速度法找寻的线索,是恒星母星相对地球发生远近运动时,卫星行星受其影响所产生的微小波动。变化虽然小,但使用现代的光谱仪已可以检测出低至1米/秒的速度变化。这种方法通常也叫做“多普勒效应法”,因为它测量的,就是恒星的光受引力拖曳而产生的变化。 方法七:凌日法 凌日法的基本原理,是观察恒星亮度在有行星横穿或路经其表面时发生的细微变化。它的好处是可以从光变曲线测定行星的大小。
人参娃娃小辫子
一般是用三角法,比如说地球在春分点和秋分点时分别观测一颗恒星对地球的角度,然后以公转轨道半径为基线,算出它距地球的距离 对于较近的天体(500光年以内)采用三角法测距。 500--10万光年的天体采用光度法确定距离。 10万光年以外天文学家找到了造父变星作为标准,可达5亿光年的范围。 更远的距离是用观测到的红移量,依据哈勃定理推算出来的。 参考资料:吴国盛 《科学的历程》 同的天体距离要有不同的方法,摘抄如下: 天体测量方法 光谱在天文研究中的应用 人类一直想了解天体的物理、化学性状。这种愿望只有在光谱分析应用于天文后才成为可能并由此而导致了天体物理学的诞生和发展。通过光谱分析可以:(1)确定天体的化学组成;(2)确定恒星的温度;(3)确定恒星的压力;(4)测定恒星的磁场;(5)确定天体的视向速度和自转等等。 天体距离的测定 人们总希望知道天体离我们有多远,天体距离的测量也一直是天文学家们的任务。不同远近的天体可以采不同的测量方法。随着科学技术的发展,测定天体距离的手段也越来越先进。由于天空的广袤无垠,所使用测量距离单位也特别。天文距离单位通常有天文单位(AU)、光年(ly)和秒差距(pc)三种。 月球与地球的距离 月球是距离我们最近的天体,天文学家们想了很多的办法测量它的远近,但都没有得到满意的结果。科学的测量直到18世纪(1715年至1753年)才由法国天文学家拉卡伊()和他的学生拉朗德(Larand)用三角视差法得以实现。他们的结果是月球与地球之间的平均距离大约为地球半径的60倍,这与现代测定的数值(384401千米)很接近。 雷达技术诞生后,人们又用雷达测定月球距离。激光技术问世后,人们利用激光的方向性好,光束集中,单色性强等特点来测量月球的距离。测量精度可以达到厘米量级。 太阳和行星的距离 地球绕太阳公转的轨道是椭圆,地球到太阳的距离是随时间不断变化的。通常所说的日地距离,是指地球轨道的半长轴,即为日地平均距离。天文学中把这个距离叫做一个“天文单位”(1AU)。1976年国际天文学联合会把一个天文单位的数值定为×1011米,近似亿千米。 太阳是一个炽热的气体球,测定太阳的距离不能像测定月球距离那样直接用三角视差法。早期测定太阳的距离是借助于离地球较近的火星或小行星。先用三角视差法测定火星或小行星的距离,再根据开普勒第三定律求太阳距离。1673年法国天文学家卡西尼(Dominique Cassini)首次利用火星大冲的机会测出了太阳的距离。 许多行星的距离也是由开普勒第三定律求得的,若以1AU为日地距离,“恒星年”为单位作为地球公转周期,便有:T2=a3。若一个行星的公转周期被测出,就可以算出行星到太阳的距离。如水星的公转周期为恒星年,则水星到太阳的距离为天文单位(AU)。 恒星的距离 由于恒星距离我们非常遥远,它们的距离测定非常困难。对不同远近的恒星,要用不同的方法测定。目前,已有很多种测定恒星距离的方法: (1)三角视差法 河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为: sinπ=a/D 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定。三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星。 天文学上的距离单位除天文单位(AU)、秒差距(pc)外,还有光年(ly),即光在真空中一年所走过的距离,相当94605亿千米。三种距离单位的关系是: 1秒差距(pc)=206265天文单位(AU)=光年=×1013千米 1光年(1y)=秒差距(pc)=63240天文单位(Au)=×1013千米。 (2)分光视差法 对于距离更遥远的恒星,比如距离超过110pc的恒星,由于周年视差非常小,无法用三角视差法测出。于是,又发展了另外一种比较方便的方法--分光视差法。该方法的核心是根据恒星的谱线强度去确定恒星的光度,知道了光度(绝对星等M),由观测得到的视星等(m)就可以得到距离。 m - M= -5 + 5logD. (3)造父周光关系测距法 大质量的恒星,当演化到晚期时,会呈现出不稳定的脉动现象,形成脉动变星。在这些脉动变星中,有一类脉动周期非常规则,中文名叫造父。造父是中国古代的星官名称。仙王座δ星中有一颗名为造父一,它是一颗亮度会发生变化的“变星”。变星的光变原因很多。造父一属于脉动变星一类。当它的星体膨胀时就显得亮些,体积缩小时就显得暗些。造父一的这种亮度变化很有规律,它的变化周期是5天8小时46分38秒钟,称为“光变周期”。在恒星世界里,凡跟造父一有相同变化的变星,统称“造父变星”。 作者: haj520520 2005-5-21 18:44 回复此发言 ------------------------------------------------------------------------ 2 天体测量方法 1912 年美国一位女天文学家勒维特(Leavitt 1868--1921)研究小麦哲伦星系内的造父变星的星等与光变周期时发现:光变周期越长的恒星,其亮度就越大。这就是对后来测定恒星距离很有用的“周光关系”。目前在银河系内共发现了700多颗造父变星。许多河外星系的距离都是靠这个量天尺测量的。 (4)谱线红移测距法 20 世纪初,光谱研究发现几乎所有星系的都有红移现象。所谓红移是指观测到的谱线的波长(l)比相应的实验室测知的谱线的波长(l0)要长,而在光谱中红光的波长较长,因而把谱线向波长较长的方向的移动叫做光谱的红移,z=(l-l0)/ l0。1929年哈勃用米大型望远镜观测到更多的河外星系,又发现星系距我们越远,其谱线红移量越大。 谱线红移的流行解释是大爆炸宇宙学说。哈勃指出天体红移与距离有关:Z = H*d /c,这就是著名的哈勃定律,式中Z为红移量;c为光速;d为距离;H为哈勃常数,其值为50~80千米/(秒·兆秒差距)。根据这个定律,只要测出河外星系谱线的红移量Z,便可算出星系的距离D。用谱线红移法可以测定远达百亿光年计的距离。
solomuse2012
楼主把这望远镜给我看看可以么?好好奇。学了这么多年,从没见过这样的反射镜,论倍数的反射镜。而且是处于一个13岁就能造出这样的望远镜的同好。显然这位同好有着极强的专业知识可是这位同好为什么不知道望远镜是不论倍数的呢?而且要能看清500倍的反射镜好像我国的天文台都没有,楼主是怎么有的呢?而且既然楼主怎么有才为什么鄙人会在全国奥赛和集训上没有见到楼主那?有这样的水平国际奥赛稳拿金牌为何不为国争光那?所以,吹牛还是换个地方吧。稍有天文知识得人都能一眼看穿。当然,楼主可以说我诋毁你。要是楼主可以让我相信我是以小人之心度君子之腹的话,我可以当众道歉。既然楼主有如此水平,如果说得是事实的话一概可以轻松地驳倒我,难道不是么?
请叫我癸小亥
至今科学家已经发现了4000多个外星球,你有没有好奇过人类究竟是如何发现这些外星的呢?是我们在地球上通过人眼就能判断?还是我们需要用望远镜来判断?太空中那么多的物质和星体,我们又是如何确定我们发现的就是一个行星呢?事实上,科学家有多个科学的办法来判断外星球,让我们一起来看看是哪几种方法吧!你又知道哪几种呢?
当行星穿过恒星的时候,就会阻挡住恒星的部分光线,因此通过观察恒星的亮度就可以观察是否有行星的存在。NASA在2009年3月发射了一个开普勒宇宙飞船来进行观测,至今已经发现了2700多颗可能的行星。此外,天文学家通过观测行星穿过恒星的时间变化,可以进一步来观测围绕着这颗恒星的其他行星的存在。
引力透镜是一种特殊的光学效应。假如地球与另一个天体之间存在着一个强引力场天体,当这三个天体差不多在一条直线上时,强引力天体附近的时空弯曲会让远方的光无法以直线的形式到达地球,因此在地球上观测到的光实际上是偏离原本方向的。我们可以想象成一个透镜对光线进行了折射。
因此,当地球观察一个大质量的物体从一颗恒星面前经过时,就产生了类似的透镜效应。科学家可以通过研究这种光亮的亮度和暗度来进行观察。引力透镜法适合去研究较远的行星,包括那些没有母恒星,在太空漫游的“流氓流星”。
这也就是说通过仪器和望远镜直接拍摄到了天体的真实图像。比如NASA可以直接通过哈勃望远镜对一些行星的样子直接进行成像,此外夏威夷的凯克天文台、智利的欧洲南方天文台的望远镜,以及其它的望远镜都得到过类似的照片证据。
脉冲星是旋转的中子星,是恒星高密度的残留物,会不断地发出电磁脉冲信号,而脉冲星计时是以毫秒脉冲星的自转周期为基准所建立的,专门用来探测脉冲星的方法。通过无线电脉冲的时间计算可以来研究轨道卫星的存在。
科学界最早就是用这种方法发现了太阳系以外的星系的。
多普勒效应是指物体辐射的波长会因为波源和观测者的相对运动而产生变化。通过红移和蓝移,我们可以计算出跟寻波源方向的行星轨道的运动,比如若处于运动的波源前面,光波则会被压缩,波长变短,频率变高,处于波源后面则反之。
这种方法测量了运动行星的径向速度,计算了行星相对于恒星所产生的相对位移,也就是在围绕恒星运动时所产生的微小摆动。
目前也有很多系外行星是通过这种方法发现的,用来观测的仪器主要是摄谱仪,它能够对光谱进行分析,并且分解出不同波长的光。
根据相对论的原理,光会聚集在恒星运动的方向上,因此天文学家就可以通过观测恒星在被行星拉扯的过程中,是否有出现光子的堆积情况,就可以判断恒星是否存在轨道行星。
爱因斯坦的行星(开普勒-76b行星)正是通过这种方法所发现的,之后采用了多普勒方法进一步验证了。
天体测量学是依靠对太空中的行星运行轨道进行计算而得出精确结果的一种方法。事实上,很多天文学家一直都尝试着使用天体测量的方法来寻找外星,比如欧洲航天局在2013年发射上天的盖亚任务,确认了十亿颗恒星的位置、距离以及每年的运动量。并且侦查了数万个太阳系外的行星系统。
宇宙这么大,你是否好奇过天文学家究竟是如何发现并且确认某个行星的位置的呢?事实上,他们与很多科学的方法能够用来证明,比如过境法、引力透镜法、照片证据、脉冲星计时、多普勒方法、狭义相对论和天体测量学等方法,或者多个方法共同使用加以佐证。
都说粉丝行为,偶像买单,良好的行为氛围才能使得这个艺人更加红火更加受人尊敬。真正的追星应是理智的,文明的,对于追星,我们当如此。下面是我为大家整理的我对追星现象
难忘那缕羁绊 3人参与回答 2023-12-05 调查法 调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,
大大的蚂蚁啊 4人参与回答 2023-12-08 毕业论文的研究方法只需写明在论文课题研究中使用了何种方法,以及起到的作用等即可。论文研究方法分为观察法、测验法、行动研究法、文献法、经验总结法、文研究方法,需要
Huanglingying 2人参与回答 2023-12-11 (一)主题的写法行政管理论文只能有一个主题(不能是几块工作拼凑在一起),这个主题要具体到问题的基层(即此问题基本再也无法向更低的层次细分为子问题),而不是问题所
石小鱼苗 2人参与回答 2023-12-10 【内容提要】本文着重分析了科学方法论的五种困境:对归纳逻辑的反对、反对方法、当代科学方法论 家的自悖、元方法论的困境以及对评价规则的质疑,指出认清这些困境的目的
annking168 2人参与回答 2023-12-08