• 回答数

    3

  • 浏览数

    167

超级能吃的兔兔
首页 > 学术期刊 > 云基础设施毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

sml90050056

已采纳

开题报告对整个课题研究工作的顺利开展起着关键的作用,以下是我搜集整理的计算机毕业论文开题报告范文,欢迎阅读查看。

论文题目: 批量到达的云中心性能分析模型

一、选题背景

云计算是一种基于网络的计算模型。用户通过网络向提供商申请计算资源,例如申请操作系统、运行环境或者软件包等资源。其实用户被分配资源的时候,并不清楚真正的运行环境和分配的具体细节。也就是说云就是用户和计算环境之间的一层抽象。在1969年,曾说过,计算机网络还处在初步阶段,但是随着它的壮大和成长,我们就会看到与电力系统和电话系统一样的“计算服务”,将会在个人家庭和办公室全面的使用。这种基于“计算服务”的观点预测了整个计算工业在21世纪的大转型。云这种计算服务模型已经和其他基础设施服务一样按需服务。云计算己经成为继电、水、煤气和电话之后的第五个公共基础设施⑴。目前,客户已经不需要在构建和维护大型而复杂的IT基础设施方面投入太多精力和财力。取而代之的是他们只需要支付他们使用的计算服务的费用。云计算的服务模式可以分为三层:设备即服务(laaS),设备就是指硬盘、内存、服务器和网络设备等,这些都可以通过网络访问;平台即服务(PaaS),其中包括一些计算平台,比如说带有操作系统的硬件,虚拟服务器等;软件即服务(SaaS),包括软件应用以及其他相应的服务应用。云计算的定义并不唯一,其中能够较为准确描述其特征的是于2010年提出的,“云计算是一种新型的运算领域,物理设备,硬件平台和应用软件等共享资源通过网络服务方式为用户提供按其需求的服务。”[2]这个定义阐述了云计算的几个重要特点。

(1)大规模基础设施。以超大规模的硬件设备为底层的云计算平台具有超强的计算能力。各大全球知名的企业,如roM、亚马逊、微软等,均拥有数十万台服务器的云服务平台,而谷歌的云计算平台中服务器的数量更是超过百万台。即便是普通的私有云,一般也会购置数百甚至上千台的服务器。

(2)基于虚拟化技术。用户从云计算平台中获取的资源均经过虚拟化的。从运行端而言,用户将应用程序在云中托管运行即可,而无需了解程序运行的具体位置。从终端来讲,用户可以在任何位置通过终端设备获取所需服务。简而言之,用户始终面对的是一个云平台的使用接口,而不是有形的、固定的实体。

(3)高可靠性。云计算采用数据多副本容错技术、计算节点同构互换策略等来确保云中心的可靠性。云计算这一级别的可靠性是本地计算所无法比拟的。

(4)通用性。云计算并不会专门针对任何一个具体的应用而提供服务。事实上,一个用户可以在云计算平台中根据自己的需要去创建多个不同的应用,而一个云计算平台也可以运行多个不同用户的不同应用。

(5)易扩展性。云计算平台的规模可以根据实际需要进行收缩和扩展,从而满足平台请求大小和使用用户数目的变化。

(6)按需服务。用户所应支付的使用费用是根据其使用计算资源的多少进行计算。多使用多付费,少使用少付费,不使用不付费。这样完全可以减少闲暇时用户资源的闲置。

(7)成本低。通过采用容错技术,可以使用大规模廉价的服务器集群作为硬件基础设施建设云计算平台,这对于云计算服务提供商而言,大大降低了成本投入。对于用户而言,以少量租金换取了原本需要高昂价格投入才能获得的计算资源,并且无需考虑软硬件维护的开销,亦是十分划算。

二、研究目的和意义

现有的云中心物理机模型通常都是面向单任务的,而面向批量任务的服务模型,其性能评估和指标的变化目前正属于初步的研宄阶段,并没有成熟的模型。因此,本文采用ikT/G/m/w+t排队系统对面向批量任务的.云中心进行描述,使用嵌入式马尔可夫链法对+排队系统进行建模,从而实现了对云中心进行准确的建模和分析。

三、本文研究涉及的主要理论

排队现象是日常生活中常见的社会现象。等待公交车时需要排队、去医院看病需要排队、在食堂打饭同样需要排队等等。排队现象的出现需要两个方面同时具备,排队的个体需要得到服务并且存在服务的提供者。而所谓的排队论就是仿照这样的排队现象,先抽象成物理模型,然后进一步建立数学模型的理论体系。显然,排队论研究的是一个系统对用户提供某种服务时,系统所呈现的各种状态。在排队论中,通常将要求得到服务的人或物称为顾客,而给予服务的人员或者机构称为服务台。顾客与服务台就构成了一个排队系统。尽管排队系统种类繁多,但从决定排队系统进程的主要因素来看,它主要是由三个部分组成:顾客到达,排队过程和服务过程。

(1)顾客到达:顾客到达过程描述了顾客到达时候的规律。顾客到达的方式通常是一个一个到达的,此外还有批量到达的,也叫做集体到达。顾客既可能逐个到达也可能分批到达,同时顾客到达之间的时间间隔长度也并不唯一。但是到达总会有一定的规律的。这个到达规律指的是到达过程或到达时间的分布。顾客到达过程研究的主要内容便包括相邻顾客到达的时间间隔服从怎样的概率分布、该概率分布的参数取值如何、各到达时间间隔之间是否相互独立等。

(2)排队过程:在排队过程中,需要讨论的主要问题有两个,一个是排队的队列长度,另一个是排队的规则。排队的队列长度分为有限和无限的两种。队列长度的大小不同,讨论问题的难易和结论就不同。很多情况下,队列长度容量设为无限大来处理问题。排队规则中又包括有队列形态和等待制度两个部分。队列形态包括单队列,并联式多队列,串联式多队列以及杂乱队列这四种形态。并联式多队列就是允许在多个窗口的每一个窗口前形成一个队列。到达顾客可根据队列的长短在开始排队时选择一个队列进行排队。串联式队列顾名思义就是指多队列串行形成多个队列,顾客在一个队列接受服务后,再去下一个队列排队接受服务。杂乱队列就是指串联并联队列会杂乱无章的分布。

排队模型仿真的主要目的是寻找服务设置和服务的对象之间的最佳的配置,使得系统具有最合理的配置和最佳的服务效率。马尔可夫过程是研究排队系统的主要方法。马尔可夫过程是一种特殊的随机过程,它具有无后效性的特点,其状态空间是有限的或可数无限的。这种系统中从一个状态跳转到另一个状态的过程仅取决于当前出发时的状态,与之前的历史状态无关。马尔可夫链作为研究排队系统的重要工具有广泛的应用。但并不是所有的排队系统都可以抽象成严格意义上的马尔可夫过程,因此随着排队过程的发展,马尔可夫链也有了许多的扩展模型和再生方法使得马尔可夫链有更加广泛的应用,例如嵌入马尔可夫链、补充变量法、拟生灭过程等。本节首先介绍一下最严格意义上的马尔可夫链,按照时间来划分可以分为两类,离散时间的马尔可夫链和连续时间过程。

四、本文研究的主要内容

本文从政府的立场考虑,围绕如何成功地将REITs应用于公租房建设融资,结合国内相关形势与政策和现有的国内外经验启示,以REITs在公租房建设融资中应用的运作为主要研究对象。除绪论和结论部分,本文的主要内容集中在2至5章,共4部分内容:第一部分,研究国内外REITs的应用经验及其与保障性住房结合的成功经验,国外主要考察美国和亚洲的典型国家与地区,包括日本、新加坡和香港,国内由于经验很少,主要考察中信一凯德科技园投资基金和汇贤产业信托这两个典型的案例。第二部分,深入研究我国发展公租房REITs的必要性和可行性,其中必要性分析指出REITs是拓展公租房建设融资渠道和提高公租房建设管理效率的重要途径,可行性从经济金融环境和法规政策这两大方面进行了详细分析。第三部分,针对目前国内公租房管理现状,详细阐述了目前REITs在公租房建设融资中运作,包括REITs的基本模式和运作流程,并进一步深入研究了REITs内部参与各方的权责关系和利益分配,从而提出了代理人的选择机制和激励机制。值得指出的是,此时政府除了担任REITs补贴的支付者,更主要的,政府还是REITs投资人的代表身份,在REITs运作的不同阶段,政府以不同的身份参与REITs的内部博弈。第四部分,从政府作为监管者的角度,针对REITs在我国公租房建设融资中的应用提出了一系列政策建议,包括政府应当健全REITs和公租房相关的法律法规,并建立一套针对REITs的全方位的监管制度。

五、写作提纲

致谢5-6

中文摘要6-7

ABSTRACT7

第1章绪论10-17

研究背景与意义10-11

研究背景10-11

研究意义11

研究现状11-15

国外研究现状11-12

国内研究现状12-15

论文内容与结构15-17

论文主要内容15

论文结构15-17

第2章国内外REITs的应用经验及启示17-35

美国REITs的应用经验17-26

美国的REITs及其在廉租房建设中的应用17-21

美国REITs的运作模式21-26

洲典型国家和地区REITs的应用经验26-29

日本REITs的运作模式26-27

新加坡REITs的运作模式27-28

香港REITs的运作模式28-29

我国REITs的应用经验29-32

中信—凯德科技园区投资基金29-30

汇贤产业信托30-32

国内外REITs的经验比较及启示32-35

国内外REITs的经验比较32-33

在我国公租房建设融资中应用的经验启示33-35

第3章REITs在我国公租房建设融资中应用的必要性与可行性分析35-43

在公租房建设融资中应用的必要性分析35-37

是拓展公租房建设融资渠道的重要途径35-36

在提高公租房建设管理效率的重要途径36-37

在公租房建设融资中应用的可行性分析37-43

经济金融环境宽松,民间资本充裕37-41

法律法规导向,政策利好不断41-43

第4章REITs在我国公租房建设融资中的运作43-64

在我国公租房建设融资中的基本模式43-47

设计原则43-44

基本形式选择44-45

组织结构搭建45-47

在我国公租房建设建设融资中的运作流程47-50

设立发行阶段47-48

运营管理阶段48-49

终止清盘阶段49-50

在我国公租房建设融资中的运作机制50-64

运作中的代理问题50-52

代理人选择机制52-56

代理人激励机制56-64

第5章REITs在我国公租房建设融资中应用的政策建议64-68

健全法律法规体系64-66

建全REITs的法律法规体系64-65

完善公租房的相关法律法规65-66

建立REITs的监管制度66-68

明确政府监管主体及职责66

建立REITs信息披露制度66-67

引导社会公众进行监督67-68

第6章结论与展望68-70

论文主要工作及结论68

有待进一步研究的问题68-70

参考文献70-73

211 评论

summaryzhen

首先介绍下云计算,的发展历史,他的前身,现在的应用,然后在介绍现在计算机的应用,在应用之中的不足,然后,着重阐述云计算的优势,我这里有一份关于这方面的对比及心得,发给你,希望能帮到你。 云计算简史著名的美国计算机科学家、 图灵奖 (Turing Award) 得主麦卡锡 (John McCarthy,1927-) 在半个世纪前就曾思考过这个问题。 1961 年, 他在麻省理工学院 (MIT) 的百年纪念活动中做了一个演讲。 在那次演讲中, 他提出了象使用其它资源一样使用计算资源的想法,这就是时下 IT 界的时髦术语 “云计算” (Cloud Computing) 的核心想法。云计算中的这个 “云” 字虽然是后人所用的词汇, 但却颇有历史渊源。 早年的电信技术人员在画电话网络的示意图时, 一涉及到不必交待细节的部分, 就会画一团 “云” 来搪塞。 计算机网络的技术人员将这一偷懒的传统发扬光大, 就成为了云计算中的这个 “云” 字, 它泛指互联网上的某些 “云深不知处” 的部分, 是云计算中 “计算” 的实现场所。 而云计算中的这个 “计算” 也是泛指, 它几乎涵盖了计算机所能提供的一切资源。麦卡锡的这种想法在提出之初曾经风靡过一阵, 但真正的实现却是在互联网日益普及的上世纪末。 这其中一家具有先驱意义的公司是甲骨文 (Oracle) 前执行官贝尼奥夫 (Marc Benioff, 1964-) 创立的 Salesforce 公司。 1999 年, 这家公司开始将一种客户关系管理软件作为服务提供给用户, 很多用户在使用这项服务后提出了购买软件的意向, 该公司却死活不干, 坚持只作为服务提供, 这是云计算的一种典型模式, 叫做 “软件即服务” (Software as a Service, 简称 SaaS)。 这种模式的另一个例子, 是我们熟悉的网络电子邮箱 (因此读者哪怕是第一次听到 “云计算” 这个术语, 也不必有陌生感, 因为您多半已是它的老客户了)。 除了 “软件即服务” 外, 云计算还有其它几种典型模式, 比如向用户提供开发平台的 “平台即服务” (Platform as a Service, 简称 PaaS), 其典型例子是谷歌公司 (Google) 的应用程序引擎 (Google App Engine), 它能让用户创建自己的网络程序。 还有一种模式更彻底, 干脆向用户提供虚拟硬件, 叫做 “基础设施即服务” (Infrastructure as a Service, 简称 IaaS), 其典型例子是亚马逊公司 (Amazon) 的弹性计算云 (Amazon Elastic Compute Cloud, 简称 EC2), 它向用户提供虚拟主机, 用户具有管理员权限, 爱干啥就干啥, 跟使用自家机器一样。1.2云计算的概念狭义云计算是指计算机基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。广义云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是计算机和软件、互联网相关的,也可以是其他的服务。云计算是并行计算(Parallel Computing)、分布式计算(Distributed Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。云计算是虚拟化(Virtualization)、效用计算(Utility Computing)、IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等概念混合演进并跃升的结果。云计算的特点和优势(一)超大规模性。“云”具有相当的规模,Google云计算已经拥有100多万台服务器,Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。(二)虚拟化。云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现用户需要的一切,甚至包括超级计算这样的任务。[2](三)高可靠性。“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。(四)通用性。云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。(五)高可扩展性。“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。(六)价格合适。由于“云”的特殊容错措施可以采用具有经济性的节点来构成“云”,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。云计算作为一种技术,与其它一些依赖互联网的技术——比如网格计算 (Grid Computing)——有一定的相似之处,但不可混为一谈。拿网格计算来说, 科学爱好者比较熟悉的例子是 SETI@Home,那是一个利用互联网上计算机的冗余计算能力搜索地外文明的计算项目,目前约有来自两百多个国家和地区的两百多万台计算机参与。它在 2009 年底的运算能力相当于当时全世界最快的超级计算机运算能力的三分之一。有些读者可能还知道另外一个例子:ZetaGrid,那是一个研究黎曼 ζ 函数零点分布的计算项目, 曾有过一万多台计算机参与 (但现在已经终止了,原因可参阅拙作 超越 ZetaGrid)。从这两个著名例子中我们可以看到网格计算的特点,那就是计算性质单一,但运算量巨大 (甚至永无尽头,比如 ZetaGrid)。而云计算的特点恰好相反,是计算性质五花八门,但运算量不大[注三],这是它们的本质区别,也是云计算能够面向大众成为服务的根本原因。云计算能够流行,它到底有什么优点呢? 我们举个例子来说明,设想你要开一家网络公司。按传统方法,你得有一大笔启动资金, 因为你要购买计算机和软件,你要租用机房,你还要雇专人来管理和维护计算机。 当你的公司运作起来时,业务总难免会时好时坏,为了在业务好的时候也能正常运转, 你的人力和硬件都要有一定的超前配置, 这也要花钱。 更要命的是, 无论硬件还是软件厂商都会频繁推出新版本, 你若不想被技术前沿抛弃, 就得花钱费力不断更新 (当然, 也别怪人家, 你的公司运作起来后没准也得这么赚别人的钱)。如果用云计算, 情况就不一样了: 计算机和软件都可以用云计算, 业务好的时候多用一点, 业务坏的时候少用一点, 费用就跟结算煤气费一样按实际用量来算, 无需任何超前配置[注四]。 一台虚拟服务器只需鼠标轻点几下就能到位, 不象实体机器, 从下定单, 到进货, 再到调试, 忙得四脚朝天不说, 起码得好几天的时间。虚拟服务器一旦不需要了, 鼠标一点就可以让它从你眼前 (以及账单里)消失。至于软硬件的升级换代,服务器的维护管理等,那都是云计算服务商的事,跟你没半毛钱的关系。更重要的是,开公司总是有风险的, 如果你试了一两个月后发现行不通,在关门大吉的时候,假如你用的是云计算,那你只需支付实际使用过的资源。假如你走的是传统路子,买了硬件、软件,雇了专人,那很多投资可就打水漂了。浅谈云计算的一个核心理念大规模消息通信:云计算的一个核心理念就是资源和软件功能都是以服务的形式进行发布的,不同服务之间经常需要通过消息通信进行协助。由于同步消息通信的低效率,我们只考虑异步通信。如Java Message Service是J2EE平台上的一个消息通信标准,J2EE应用程序可以通过JMS来创建,发送,接收,阅读消息。异步消息通信已经成为面向服务架构中组件解耦合及业务集成的重要技术。大规模分布式存储:分布式存储的目标是利用多台服务器的存储资源来满足单台服务器所不能满足的存储需求。分布式存储要求存储资源能够被抽象表示和统一管理,并且能够保证数据读写操作的安全性,可靠性,性能等各方面要求。下面是几个典型的分布式文件系统:◆Frangipani是一个可伸缩性很好的高兴能分布式文件系统,采用两层的服务体系架构:底层是一个分布式存储服务,该服务能够自动管理可伸缩,高可用的虚拟磁盘;上层运行着Frangipani分布式文件系统。◆JetFile是一个基于P2P的主播技术,支持在Internet这样的异构环境中分享文件的分布式文件系统。◆Ceph是一个高性能并且可靠地分布式文件系统,它通过把数据和对数据的管理在最大程度上分开来获取极佳的I/O性能。◆Google File System(GFS)是Google公司设计的可伸缩的分布式文件系统。GFS能够很好的支持大规模海量数据处理应用程序。在云计算环境中,数据的存储和操作都是以服务的形式提供的;数据的类型多种多样;必须满足数据操作对性能,可靠性,安全性和简单性的要求。在云计算环境下的大规模分布式存储方向,BigTable是Google公司设计的用来存储海量结构化数据的分布式存储系统;Dynamo是Amazon公司设计的一种基于键值对的分布式存储系统,它能提供非常高的可用性;Amazon公司的Simple Storage Service(S3)是一个支持大规模存储多媒体这样的二进制文件的云计算存储服务;Amazon公司的SimpleDB是建立在S3和Amazon EC2之上的用来存储结构化数据的云计算服务。许可证管理与计费:目前比较成熟的云环境计费模型是Amazon公司提供的Elastic Compute Cloud(EC2)和Simple Storage Service(S3)的按量计费模型,用户按占用的虚拟机单元,IP地址,带宽和存储空间付费。云计算的现状云计算是个热度很高的新名词。由于它是多种技术混合演进的结果,其成熟度较高,又有大公司推动,发展极为迅速。Amazon、Google、IBM、微软和Yahoo等大公司是云计算的先行者。云计算领域的众多成功公司还包括Salesforce、Facebook、Youtube、Myspace等。Amazon使用弹性计算云(EC2)和简单存储服务(S3)为企业提供计算和存储服务。收费的服务项目包括存储服务器、带宽、CPU资源以及月租费。月租费与电话月租费类似,存储服务器、带宽按容量收费,CPU根据时长(小时)运算量收费。Amazon把云计算做成一个大生意没有花太长的时间:不到两年时间,Amazon上的注册开发人员达44万人,还有为数众多的企业级用户。有第三方统计机构提供的数据显示,Amazon与云计算相关的业务收入已达1亿美元。云计算是Amazon增长最快的业务之一。Google当数最大的云计算的使用者。Google搜索引擎就建立在分布在200多个地点、超过100万台服务器的支撑之上,这些设施的数量正在迅猛增长。Google地球、地图、Gmail、Docs等也同样使用了这些基础设施。采用Google Docs之类的应用,用户数据会保存在互联网上的某个位置,可以通过任何一个与互联网相连的系统十分便利地访问这些数据。目前,Google已经允许第三方在Google的云计算中通过Google App Engine运行大型并行应用程序。Google值得称颂的是它不保守。它早已以发表学术论文的形式公开其云计算三大法宝:GFS、MapReduce和BigTable,并在美国、中国等高校开设如何进行云计算编程的课程。IBM在2007年11月推出了“改变游戏规则”的“蓝云”计算平台,为客户带来即买即用的云计算平台。它包括一系列的自动化、自我管理和自我修复的虚拟化云计算软件,使来自全球的应用可以访问分布式的大型服务器池。使得数据中心在类似于互联网的环境下运行计算。IBM正在与17个欧洲组织合作开展云计算项目。欧盟提供了亿欧元做为部分资金。该计划名为RESERVOIR,以“无障碍的资源和服务虚拟化”为口号。2008年8月, IBM宣布将投资约4亿美元用于其设在北卡罗来纳州和日本东京的云计算数据中心改造。IBM计划在2009年在10个国家投资3亿美元建13个云计算中心。微软紧跟云计算步伐,于2008年10月推出了Windows Azure操作系统。Azure(译为“蓝天”)是继Windows取代DOS之后,微软的又一次颠覆性转型——通过在互联网架构上打造新云计算平台,让Windows真正由PC延伸到“蓝天”上。微软拥有全世界数以亿计的Windows用户桌面和浏览器,现在它将它们连接到“蓝天”上。Azure的底层是微软全球基础服务系统,由遍布全球的第四代数据中心构成。云计算的新颖之处在于它几乎可以提供无限的廉价存储和计算能力。纽约一家名为Animoto的创业企业已证明云计算的强大能力(此案例引自和讯网维维编译《纽约时报》2008年5月25日报道)。Animoto允许用户上传图片和音乐,自动生成基于网络的视频演讲稿,并且能够与好友分享。该网站目前向注册用户提供免费服务。2008年年初,网站每天用户数约为5000人。4月中旬,由于Facebook用户开始使用Animoto服务,该网站在三天内的用户数大幅上升至75万人。Animoto联合创始人Stevie Clifton表示,为了满足用户需求的上升,该公司需要将服务器能力提高100倍,但是该网站既没有资金,也没有能力建立规模如此巨大的计算能力。因此,该网站与云计算服务公司RightScale合作,设计能够在亚马逊的网云中使用的应用程序。通过这一举措,该网站大大提高了计算能力,而费用只有每服务器每小时10美分。这样的方式也加强创业企业的灵活性。当需求下降时,Animoto只需减少所使用的服务器数量就可以降低服务器支出。在我国,云计算发展也非常迅猛。2008年5月10日,IBM在中国无锡太湖新城科教产业园建立的中国第一个云计算中心投入运营。2008年6月24日,IBM在北京IBM中国创新中心成立了第二家中国的云计算中心——IBM大中华区云计算中心;2008年11月28日,广东电子工业研究院与东莞松山湖科技产业园管委会签约,广东电子工业研究院将在东莞松山湖投资2亿元建立云计算平台;2008年12月30日,阿里巴巴集团旗下子公司阿里软件与江苏省南京市政府正式签订了2009年战略合作框架协议,计划于2009年初在南京建立国内首个“电子商务云计算中心”,首期投资额将达上亿元人民币;世纪互联推出了CloudEx产品线,包括完整的互联网主机服务"CloudEx Computing Service", 基于在线存储虚拟化的"CloudEx Storage Service",供个人及企业进行互联网云端备份的数据保全服务等等系列互联网云计算服务;中国移动研究院做云计算的探索起步较早,已经完成了云计算中心试验。中移动董事长兼CEO王建宙认为云计算和互联网的移动化是未来发展方向。我国企业创造的“云安全”概念,在国际云计算领域独树一帜。云安全通过网状的大量客户端对网络中软件行为的异常监测,获取互联网中木马、恶意程序的最新信息,推送到服务端进行自动分析和处理,再把病毒和木马的解决方案分发到每一个客户端。云安全的策略构想是:使用者越多,每个使用者就越安全,因为如此庞大的用户群,足以覆盖互联网的每个角落,只要某个网站被挂马或某个新木马病毒出现,就会立刻被截获。云安全的发展像一阵风,瑞星、趋势、卡巴斯基、MCAFEE、SYMANTEC、江民科技、PANDA、金山、360安全卫士、卡卡上网安全助手等都推出了云安全解决方案。瑞星基于云安全策略开发的2009新品,每天拦截数百万次木马攻击,其中1月8日更是达到了765万余次。势科技云安全已经在全球建立了5大数据中心,几万部在线服务器。据悉,云安全可以支持平均每天55亿条点击查询,每天收集分析亿个样本,资料库第一次命中率就可以达到99%。借助云安全,趋势科技现在每天阻断的病毒感染最高达1000万次。值得一提的是,云安全的核心思想,与刘鹏早在2003年就提出的反垃圾邮件网格非常接近[1][2]。刘鹏当时认为,垃圾邮件泛滥而无法用技术手段很好地自动过滤,是因为所依赖的人工智能方法不是成熟技术。垃圾邮件的最大的特征是:它会将相同的内容发送给数以百万计的接收者。为此,可以建立一个分布式统计和学习平台,以大规模用户的协同计算来过滤垃圾邮件:首先,用户安装客户端,为收到的每一封邮件计算出一个唯一的“指纹”,通过比对“指纹”可以统计相似邮件的副本数,当副本数达到一定数量,就可以判定邮件是垃圾邮件;其次,由于互联网上多台计算机比一台计算机掌握的信息更多,因而可以采用分布式贝叶斯学习算法,在成百上千的客户端机器上实现协同学习过程,收集、分析并共享最新的信息。反垃圾邮件网格体现了真正的网格思想,每个加入系统的用户既是服务的对象,也是完成分布式统计功能的一个信息节点,随着系统规模的不断扩大,系统过滤垃圾邮件的准确性也会随之提高。用大规模统计方法来过滤垃圾邮件的做法比用人工智能的方法更成熟,不容易出现误判假阳性的情况,实用性很强。反垃圾邮件网格就是利用分布互联网里的千百万台主机的协同工作,来构建一道拦截垃圾邮件的“天网”。反垃圾邮件网格思想提出后,被IEEE Cluster 2003国际会议选为杰出网格项目在香港作了现场演示,在2004年网格计算国际研讨会上作了专题报告和现场演示,引起较为广泛的关注,受到了中国最大邮件服务提供商网易公司创办人丁磊等的重视。既然垃圾邮件可以如此处理,病毒、木马等亦然,这与云安全的思想就相去不远了。 2008年11月25日,中国电子学会专门成立了云计算专家委员会,聘任中国工程院院士李德毅为主任委员,聘任IBM大中华区首席技术总裁叶天正、中国电子科技集团公司第十五研究所所长刘爱民、中国工程院院士张尧学、Google全球副总裁/中国区总裁李开复、中国工程院院士倪光南、中国移动通信研究院院长黄晓庆六位专家为副主任委员,聘任国内外30多位知名专家学者为专家委员会委员。2009年5月22日,中国电子学会将于在北京中国大饭店隆重举办首届中国云计算大会。

199 评论

薇枫1988

这个链接你看是不是提纲式的浅谈云计算 摘要云计算是当前计算机领域的一个热点。它的出现宣告了低成本提供超级计算时代的到来。云计算将改变人们获取信息、分享内容和互相沟通的方式。此文阐述了云计算的简史、概念、特点、现状、保护、应用和发展前景,并对云计算的发展及前景进行了分析。关键词: 云计算特点, 云计算保护, 云计算应用.1云计算简史著名的美国计算机科学家、 图灵奖 (Turing Award) 得主麦卡锡 (John McCarthy,1927-) 在半个世纪前就曾思考过这个问题。 1961 年, 他在麻省理工学院 (MIT) 的百年纪念活动中做了一个演讲。 在那次演讲中, 他提出了象使用其它资源一样使用计算资源的想法,这就是时下 IT 界的时髦术语 “云计算” (Cloud Computing) 的核心想法。云计算中的这个 “云” 字虽然是后人所用的词汇, 但却颇有历史渊源。 早年的电信技术人员在画电话网络的示意图时, 一涉及到不必交待细节的部分, 就会画一团 “云” 来搪塞。 计算机网络的技术人员将这一偷懒的传统发扬光大, 就成为了云计算中的这个 “云” 字, 它泛指互联网上的某些 “云深不知处” 的部分, 是云计算中 “计算” 的实现场所。 而云计算中的这个 “计算” 也是泛指, 它几乎涵盖了计算机所能提供的一切资源。麦卡锡的这种想法在提出之初曾经风靡过一阵, 但真正的实现却是在互联网日益普及的上世纪末。 这其中一家具有先驱意义的公司是甲骨文 (Oracle) 前执行官贝尼奥夫 (Marc Benioff, 1964-) 创立的 Salesforce 公司。 1999 年, 这家公司开始将一种客户关系管理软件作为服务提供给用户, 很多用户在使用这项服务后提出了购买软件的意向, 该公司却死活不干, 坚持只作为服务提供, 这是云计算的一种典型模式, 叫做 “软件即服务” (Software as a Service, 简称 SaaS)。 这种模式的另一个例子, 是我们熟悉的网络电子邮箱 (因此读者哪怕是第一次听到 “云计算” 这个术语, 也不必有陌生感, 因为您多半已是它的老客户了)。 除了 “软件即服务” 外, 云计算还有其它几种典型模式, 比如向用户提供开发平台的 “平台即服务” (Platform as a Service, 简称 PaaS), 其典型例子是谷歌公司 (Google) 的应用程序引擎 (Google App Engine), 它能让用户创建自己的网络程序。 还有一种模式更彻底, 干脆向用户提供虚拟硬件, 叫做 “基础设施即服务” (Infrastructure as a Service, 简称 IaaS), 其典型例子是亚马逊公司 (Amazon) 的弹性计算云 (Amazon Elastic Compute Cloud, 简称 EC2), 它向用户提供虚拟主机, 用户具有管理员权限, 爱干啥就干啥, 跟使用自家机器一样。1.2云计算的概念狭义云计算是指计算机基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。广义云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是计算机和软件、互联网相关的,也可以是其他的服务。云计算是并行计算(Parallel Computing)、分布式计算(Distributed Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。云计算是虚拟化(Virtualization)、效用计算(Utility Computing)、IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等概念混合演进并跃升的结果。云计算的特点和优势(一)超大规模性。“云”具有相当的规模,Google云计算已经拥有100多万台服务器,Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。(二)虚拟化。云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现用户需要的一切,甚至包括超级计算这样的任务。[2](三)高可靠性。“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。(四)通用性。云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。(五)高可扩展性。“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。(六)价格合适。由于“云”的特殊容错措施可以采用具有经济性的节点来构成“云”,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。云计算作为一种技术,与其它一些依赖互联网的技术——比如网格计算 (Grid Computing)——有一定的相似之处,但不可混为一谈。拿网格计算来说, 科学爱好者比较熟悉的例子是 SETI@Home,那是一个利用互联网上计算机的冗余计算能力搜索地外文明的计算项目,目前约有来自两百多个国家和地区的两百多万台计算机参与。它在 2009 年底的运算能力相当于当时全世界最快的超级计算机运算能力的三分之一。有些读者可能还知道另外一个例子:ZetaGrid,那是一个研究黎曼 ζ 函数零点分布的计算项目, 曾有过一万多台计算机参与 (但现在已经终止了,原因可参阅拙作 超越 ZetaGrid)。从这两个著名例子中我们可以看到网格计算的特点,那就是计算性质单一,但运算量巨大 (甚至永无尽头,比如 ZetaGrid)。而云计算的特点恰好相反,是计算性质五花八门,但运算量不大[注三],这是它们的本质区别,也是云计算能够面向大众成为服务的根本原因。云计算能够流行,它到底有什么优点呢? 我们举个例子来说明,设想你要开一家网络公司。按传统方法,你得有一大笔启动资金, 因为你要购买计算机和软件,你要租用机房,你还要雇专人来管理和维护计算机。 当你的公司运作起来时,业务总难免会时好时坏,为了在业务好的时候也能正常运转, 你的人力和硬件都要有一定的超前配置, 这也要花钱。 更要命的是, 无论硬件还是软件厂商都会频繁推出新版本, 你若不想被技术前沿抛弃, 就得花钱费力不断更新 (当然, 也别怪人家, 你的公司运作起来后没准也得这么赚别人的钱)。如果用云计算, 情况就不一样了: 计算机和软件都可以用云计算, 业务好的时候多用一点, 业务坏的时候少用一点, 费用就跟结算煤气费一样按实际用量来算, 无需任何超前配置[注四]。 一台虚拟服务器只需鼠标轻点几下就能到位, 不象实体机器, 从下定单, 到进货, 再到调试, 忙得四脚朝天不说, 起码得好几天的时间。虚拟服务器一旦不需要了, 鼠标一点就可以让它从你眼前 (以及账单里)消失。至于软硬件的升级换代,服务器的维护管理等,那都是云计算服务商的事,跟你没半毛钱的关系。更重要的是,开公司总是有风险的, 如果你试了一两个月后发现行不通,在关门大吉的时候,假如你用的是云计算,那你只需支付实际使用过的资源。假如你走的是传统路子,买了硬件、软件,雇了专人,那很多投资可就打水漂了。浅谈云计算的一个核心理念大规模消息通信:云计算的一个核心理念就是资源和软件功能都是以服务的形式进行发布的,不同服务之间经常需要通过消息通信进行协助。由于同步消息通信的低效率,我们只考虑异步通信。如Java Message Service是J2EE平台上的一个消息通信标准,J2EE应用程序可以通过JMS来创建,发送,接收,阅读消息。异步消息通信已经成为面向服务架构中组件解耦合及业务集成的重要技术。大规模分布式存储:分布式存储的目标是利用多台服务器的存储资源来满足单台服务器所不能满足的存储需求。分布式存储要求存储资源能够被抽象表示和统一管理,并且能够保证数据读写操作的安全性,可靠性,性能等各方面要求。下面是几个典型的分布式文件系统:◆Frangipani是一个可伸缩性很好的高兴能分布式文件系统,采用两层的服务体系架构:底层是一个分布式存储服务,该服务能够自动管理可伸缩,高可用的虚拟磁盘;上层运行着Frangipani分布式文件系统。◆JetFile是一个基于P2P的主播技术,支持在Internet这样的异构环境中分享文件的分布式文件系统。◆Ceph是一个高性能并且可靠地分布式文件系统,它通过把数据和对数据的管理在最大程度上分开来获取极佳的I/O性能。◆Google File System(GFS)是Google公司设计的可伸缩的分布式文件系统。GFS能够很好的支持大规模海量数据处理应用程序。在云计算环境中,数据的存储和操作都是以服务的形式提供的;数据的类型多种多样;必须满足数据操作对性能,可靠性,安全性和简单性的要求。在云计算环境下的大规模分布式存储方向,BigTable是Google公司设计的用来存储海量结构化数据的分布式存储系统;Dynamo是Amazon公司设计的一种基于键值对的分布式存储系统,它能提供非常高的可用性;Amazon公司的Simple Storage Service(S3)是一个支持大规模存储多媒体这样的二进制文件的云计算存储服务;Amazon公司的SimpleDB是建立在S3和Amazon EC2之上的用来存储结构化数据的云计算服务。许可证管理与计费:目前比较成熟的云环境计费模型是Amazon公司提供的Elastic Compute Cloud(EC2)和Simple Storage Service(S3)的按量计费模型,用户按占用的虚拟机单元,IP地址,带宽和存储空间付费。云计算的现状云计算是个热度很高的新名词。由于它是多种技术混合演进的结果,其成熟度较高,又有大公司推动,发展极为迅速。Amazon、Google、IBM、微软和Yahoo等大公司是云计算的先行者。云计算领域的众多成功公司还包括Salesforce、Facebook、Youtube、Myspace等。Amazon使用弹性计算云(EC2)和简单存储服务(S3)为企业提供计算和存储服务。收费的服务项目包括存储服务器、带宽、CPU资源以及月租费。月租费与电话月租费类似,存储服务器、带宽按容量收费,CPU根据时长(小时)运算量收费。Amazon把云计算做成一个大生意没有花太长的时间:不到两年时间,Amazon上的注册开发人员达44万人,还有为数众多的企业级用户。有第三方统计机构提供的数据显示,Amazon与云计算相关的业务收入已达1亿美元。云计算是Amazon增长最快的业务之一。Google当数最大的云计算的使用者。Google搜索引擎就建立在分布在200多个地点、超过100万台服务器的支撑之上,这些设施的数量正在迅猛增长。Google地球、地图、Gmail、Docs等也同样使用了这些基础设施。采用Google Docs之类的应用,用户数据会保存在互联网上的某个位置,可以通过任何一个与互联网相连的系统十分便利地访问这些数据。目前,Google已经允许第三方在Google的云计算中通过Google App Engine运行大型并行应用程序。Google值得称颂的是它不保守。它早已以发表学术论文的形式公开其云计算三大法宝:GFS、MapReduce和BigTable,并在美国、中国等高校开设如何进行云计算编程的课程。IBM在2007年11月推出了“改变游戏规则”的“蓝云”计算平台,为客户带来即买即用的云计算平台。它包括一系列的自动化、自我管理和自我修复的虚拟化云计算软件,使来自全球的应用可以访问分布式的大型服务器池。使得数据中心在类似于互联网的环境下运行计算。IBM正在与17个欧洲组织合作开展云计算项目。欧盟提供了亿欧元做为部分资金。该计划名为RESERVOIR,以“无障碍的资源和服务虚拟化”为口号。2008年8月, IBM宣布将投资约4亿美元用于其设在北卡罗来纳州和日本东京的云计算数据中心改造。IBM计划在2009年在10个国家投资3亿美元建13个云计算中心。微软紧跟云计算步伐,于2008年10月推出了Windows Azure操作系统。Azure(译为“蓝天”)是继Windows取代DOS之后,微软的又一次颠覆性转型——通过在互联网架构上打造新云计算平台,让Windows真正由PC延伸到“蓝天”上。微软拥有全世界数以亿计的Windows用户桌面和浏览器,现在它将它们连接到“蓝天”上。Azure的底层是微软全球基础服务系统,由遍布全球的第四代数据中心构成。云计算的新颖之处在于它几乎可以提供无限的廉价存储和计算能力。纽约一家名为Animoto的创业企业已证明云计算的强大能力(此案例引自和讯网维维编译《纽约时报》2008年5月25日报道)。Animoto允许用户上传图片和音乐,自动生成基于网络的视频演讲稿,并且能够与好友分享。该网站目前向注册用户提供免费服务。2008年年初,网站每天用户数约为5000人。4月中旬,由于Facebook用户开始使用Animoto服务,该网站在三天内的用户数大幅上升至75万人。Animoto联合创始人Stevie Clifton表示,为了满足用户需求的上升,该公司需要将服务器能力提高100倍,但是该网站既没有资金,也没有能力建立规模如此巨大的计算能力。因此,该网站与云计算服务公司RightScale合作,设计能够在亚马逊的网云中使用的应用程序。通过这一举措,该网站大大提高了计算能力,而费用只有每服务器每小时10美分。这样的方式也加强创业企业的灵活性。当需求下降时,Animoto只需减少所使用的服务器数量就可以降低服务器支出。在我国,云计算发展也非常迅猛。2008年5月10日,IBM在中国无锡太湖新城科教产业园建立的中国第一个云计算中心投入运营。2008年6月24日,IBM在北京IBM中国创新中心成立了第二家中国的云计算中心——IBM大中华区云计算中心;2008年11月28日,广东电子工业研究院与东莞松山湖科技产业园管委会签约,广东电子工业研究院将在东莞松山湖投资2亿元建立云计算平台;2008年12月30日,阿里巴巴集团旗下子公司阿里软件与江苏省南京市政府正式签订了2009年战略合作框架协议,计划于2009年初在南京建立国内首个“电子商务云计算中心”,首期投资额将达上亿元人民币;世纪互联推出了CloudEx产品线,包括完整的互联网主机服务"CloudEx Computing Service", 基于在线存储虚拟化的"CloudEx Storage Service",供个人及企业进行互联网云端备份的数据保全服务等等系列互联网云计算服务;中国移动研究院做云计算的探索起步较早,已经完成了云计算中心试验。中移动董事长兼CEO王建宙认为云计算和互联网的移动化是未来发展方向。我国企业创造的“云安全”概念,在国际云计算领域独树一帜。云安全通过网状的大量客户端对网络中软件行为的异常监测,获取互联网中木马、恶意程序的最新信息,推送到服务端进行自动分析和处理,再把病毒和木马的解决方案分发到每一个客户端。云安全的策略构想是:使用者越多,每个使用者就越安全,因为如此庞大的用户群,足以覆盖互联网的每个角落,只要某个网站被挂马或某个新木马病毒出现,就会立刻被截获。云安全的发展像一阵风,瑞星、趋势、卡巴斯基、MCAFEE、SYMANTEC、江民科技、PANDA、金山、360安全卫士、卡卡上网安全助手等都推出了云安全解决方案。瑞星基于云安全策略开发的2009新品,每天拦截数百万次木马攻击,其中1月8日更是达到了765万余次。势科技云安全已经在全球建立了5大数据中心,几万部在线服务器。据悉,云安全可以支持平均每天55亿条点击查询,每天收集分析亿个样本,资料库第一次命中率就可以达到99%。借助云安全,趋势科技现在每天阻断的病毒感染最高达1000万次。值得一提的是,云安全的核心思想,与刘鹏早在2003年就提出的反垃圾邮件网格非常接近[1][2]。刘鹏当时认为,垃圾邮件泛滥而无法用技术手段很好地自动过滤,是因为所依赖的人工智能方法不是成熟技术。垃圾邮件的最大的特征是:它会将相同的内容发送给数以百万计的接收者。为此,可以建立一个分布式统计和学习平台,以大规模用户的协同计算来过滤垃圾邮件:首先,用户安装客户端,为收到的每一封邮件计算出一个唯一的“指纹”,通过比对“指纹”可以统计相似邮件的副本数,当副本数达到一定数量,就可以判定邮件是垃圾邮件;其次,由于互联网上多台计算机比一台计算机掌握的信息更多,因而可以采用分布式贝叶斯学习算法,在成百上千的客户端机器上实现协同学习过程,收集、分析并共享最新的信息。反垃圾邮件网格体现了真正的网格思想,每个加入系统的用户既是服务的对象,也是完成分布式统计功能的一个信息节点,随着系统规模的不断扩大,系统过滤垃圾邮件的准确性也会随之提高。用大规模统计方法来过滤垃圾邮件的做法比用人工智能的方法更成熟,不容易出现误判假阳性的情况,实用性很强。反垃圾邮件网格就是利用分布互联网里的千百万台主机的协同工作,来构建一道拦截垃圾邮件的“天网”。反垃圾邮件网格思想提出后,被IEEE Cluster 2003国际会议选为杰出网格项目在香港作了现场演示,在2004年网格计算国际研讨会上作了专题报告和现场演示,引起较为广泛的关注,受到了中国最大邮件服务提供商网易公司创办人丁磊等的重视。既然垃圾邮件可以如此处理,病毒、木马等亦然,这与云安全的思想就相去不远了。2008年11月25日,中国电子学会专门成立了云计算专家委员会,聘任中国工程院院士李德毅为主任委员,聘任IBM大中华区首席技术总裁叶天正、中国电子科技集团公司第十五研究所所长刘爱民、中国工程院院士张尧学、Google全球副总裁/中国区总裁李开复、中国工程院院士倪光南、中国移动通信研究院院长黄晓庆六位专家为副主任委员,聘任国内外30多位知名专家学者为专家委员会委员。2009年5月22日,中国电子学会将于在北京中国大饭店隆重举办首届中国云计算大会。

268 评论

相关问答

  • 关于基础设施论文范文资料

    来范文之家看看,有一个你可以参考的,你看看

    张小天11 3人参与回答 2023-12-09
  • 基础工程施工毕业论文

    土木工程施工论文结课范文篇3 浅谈土木工程施工技术教学问题及解决对策 土木工程是建筑学科中非常具有基础性的和代表性的学科,其涉及到的方面

    蝶澈kaixin 3人参与回答 2023-12-09
  • 桩基础设计毕业论文

    你好,本人也是学土木的,这篇文章为原创,在百度或谷歌等网站绝对找不到,供你参考、修改,实为抛砖引玉之作,希望你能满意。 不良地基

    悠闲小猫 3人参与回答 2023-12-11
  • 农村数学基础设施研究论文

    农村初中数学中小班化教学的运用论文 在个人成长的多个环节中,大家都不可避免地要接触到论文吧,通过论文写作可以培养我们独立思考和创新的能力。写论文的注意事项有许多

    小石在青岛 3人参与回答 2023-12-06
  • 基金投资基础设施的研究论文

    基金在中国发展时间才十多个年头,现在也出现不少问题,如基金经理人才流失严重问题;基金公司制度问题:目前国内的基金公司都是契约型,还没有公司型基金,怎么向这个方向

    三鲜豆皮皮 6人参与回答 2023-12-11