starlight0503
引言 光全息学是在现代激光的发现之后才迅速发展起来的,本文将就光全息学的一些主要的研究课题进行探讨,并针对一些应用课题进行研究。现代光全息学的起源,发展和人物,新型应用,本文将告诉你. 利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,这样记录下来的干涉条纹图样称为“全息图”,而当用光波照射全息图时,由于衍射原理能重现出原始物光波,从而形成与原物体逼真的三维象,这个波前记录和重现过程称为“全息术”或“全息照相” 光束全息照相由盖伯于1948年提出的,而当时没有足够强的相干辐射源全息研究处于萌芽时期。当时的全息照相采用汞灯为光源,且是同轴全息图,它的+/-1级衍射波是分不开的,即存在所谓的“孪生像”问题,不能获得很好的全息像。这是第一代全息图。1960年激光的出现,1962年美国科学家利思和乌帕特尼克斯将通信理论中的射频概念推广到空域中,提出离轴全息术,他用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光,第一代全息图的两大难题因此得以解决,产生了激光记录,激光再现的第二代全息图。当代光全息学发展主要课题有:1. 球面透镜光学系统2. 光源和光学技术3. 平面全息图分析4. 体积全息图衍射5. 脉冲激光全息学6. 非线性记录,散斑和底片颗粒噪声7. 信息储存8. 彩色全息学9. 合成全息图10. 计算机产生全息图11. 复制,电视传输和非相干光全息图而伴随光全息学的发展也产生一些光全息技术应用,比如高分辨率成像,漫射介质成像,空间滤波,特征识别,信息储存与编码,精密干涉测量,振动分析,等高线测量,三维图象显示等方面的用途。本论文将就当代光全息学的研究与应用两大课题进行学术研究一. 当代光全息学研究 球面透镜不仅能形成光振幅分布的影象,而且易形成该分布的傅立叶变换图形。因此,用一个简单透镜可使物光在全息平面上成为某原始图形的傅立叶变换。存储在全息图中的变换所具有的特性,在光学图形识别中有重要的应用。透镜,作为形成影象的器件,可以在全息术中用来构成像面全息图。一个透镜可以形成:a.傅立叶变换和b.输入复振幅分布的影象 由于利用激光光源来制作全息图片,使得全息学开始成为一门实用的学科。对形成全息图所用光源提出的要求取决于由于物体和必要的光学部件的安排所决定的参数。从单一光源取得物波和参考波有如下图所示两种普通方法:A. 分波前法B. 分振幅法 在光源与全息图之间(通过物表面或参考镜的反射)传播的光线的最大光程差必须小于相干长度。激光的相干性与激光器的振荡模式有关,就全息术而论,它要求在任一个横模振荡的激光器的空间相干的辐射,由于高介模的振荡较不稳定,并有以两个或者多个模式同时振荡的倾向,因此最好的振荡模式是最底阶的模式。激光束的输出功率必须分成物体照明波和参考波。若物体要求从不止一个角度(以消除阴影),就需要将激光束分成好几束,一般采用分振幅法,因分振幅法能产生较均匀的照明,而且对光束的展宽要求小,既可以在分配前也可以在分配后展宽。平面全息图分析用非散射光记录的共线全息图上的条纹间隔与感光乳剂的厚度相比为较宽的。照明这张全息图的波前中的一条光线在通过全息图前只和一条记录条纹相互作用。因此全息图的响应近似于一个有聚焦特性的平面衍射光栅。加伯在分析这些特性时是把这样的全息图严格地当作二维的。用对二维模型分析的结果也很符合实验观察。在应用利思与乌帕尼克首先采用的离轴技术所得到的全息图上,其条纹频率则超过共线全息图,超过了量正比于物光束与参考光束之间的夹角。条纹间隔的典型值可以考虑由两平面波的干涉得到。正弦强度分布的周期d可以由下式决定:2dsinθ=λ, θ为波法线与干涉条纹间的夹角,波长λ,条纹间隔d式中当θ=15°,λ=微米(绿光)时,则d=1微米。记录离轴全息图的感光乳剂的厚度通常为15微米,实际上,在这样的乳剂中记录的全息图已不能当作是二维的了。因此重要的是要记录住平面全息图的分析结果只能准确地应用于使用相当薄的介质所形成的全息图。体积全息图衍射基本的体积全息图对相干照明的响应可以用偶合波理论来描述。假设有两个在yz平面传播的并具有单位振幅的平面波,其进入记录介质并进行干涉的情况,按折射定律,有sin /sin =sin /sin =nn为记录介质的折射率; 及 分别表示两个波在空气中与z轴的夹角; 及 则为两个波在介质中与z轴的夹角。布拉格定律可以用空气中的波长 ,全息片介质折射率 写成如下形式: 2dsinθ= / 体积全息图的特性由布拉格定律确定,因此对照明显示出选择响应。 二.光全息学典型应用高分辨率成像当一张全息图用与制作全息图参考光束共轭的光束照明时,在理论上能再现没有像差没有畸变的物波,其投影实象的分辨率仅受全息图边界衍射的限制。由于分辨率将随全息图尺寸的增加而增加。由于全息图可以做的很大,因此可以指望在现场大到5×5厘米时空间频率高到1000线/毫米。显然此种情况下放大率为1,但1:1的高分辨率投影成像,在集成电路的光刻工艺中有重要的潜在应用。将光刻掩模精密成象在半导体薄片上的工作,目前是用接触印象法来完成的。但这方法很快就会使模板损坏。用投影方法将影象转移到薄片上是一理想的可供选择的方法,但要非常优良和非常昂贵的镜头才能使投影的掩模象达到要求的分辨率和视场。当用相干光源照明制作全息图时,摄影乳剂的收缩,表面变形,非线性及洽谈噪声源的影响就更大了。它们可使图象产生斑纹,衬度降低和边缘模糊,这些缺陷又是用光刻法制作集成电路所不允许的。新的,更稳定的材料可能是这些问题的解答。特征识别由空间调制参考波形成的傅立叶变换全息图的许多特性,曾被范德鲁等人用于特征识别。他们采用全息法作成的空间滤波器完成了“匹配滤波”在特征识别中的应用。匹配滤波与概念,形成与应用可由下图说明 当要把形成的空间滤波器作为特征识别时,在输入平面内z轴上方部分是一个由平面波透明的,在不透明背景上包含M个透明字符的透明片。我们将这一组字符阵列的透过率表示为 这里所有字符均围绕 点对称分布, 是阵列中的一个典型字符,其中心在 点。另外,在输入平面内 处,有一光强度为 δ 的明亮的点光源,并在空间频率面εη面上形成一张傅立叶变换全息图。这一全息图可以看作是t 与δ函数形成的平面波干涉的记录。但是当全息图完成识别功能时,仅由透过t的一小部分,即通过入射平面内的一个或几个字符的光所照明,我们将会看到,在输出平面上我们所关心的再现,是表示识别结果的一个明亮的象点。信息储存与编码全息图既可以存储二维信息也可以存储三维信息。信息可以是彩色的或者编码的,图象的或者字母数字的;可以存储在全息图的表面,或存储在整个体积中;可以为空间上分离的,或者重叠的;可以是永久记录或者是可以消象的。记录的内容可以是彼此无关的或者相互成对的;可以是可辨认的影象或似乎是无意义的图形。现代光全息学的发展前景十分广阔,而其实用技术必然会实现普及,有识之士当携手共同研究以促进社会进步.
亲爱的玉玉
光学专业毕业论文提纲模板
光学专业毕业论文提纲怎么写?下面我以《在胡克参考球观念下诞生的新理论》论文提纲为例,为大家介绍论文提纲的写作技巧。
论文题目: 在胡克参考球观念下诞生的新理论
在光学的发展历史上,曾经有几位学者做出过杰出贡献。其中,依萨克-牛顿(I. Newton1642--1727)[1] 认为,光是发光体发射的一种微粒,人们通常说的粒子性。 到公元二十世纪初,爱因斯坦等人[2] 认为,光是一份一份的,每一份被称为光量子。综合牛顿与爱因斯坦的研究思想,作者经过详细思考后认为,一份光量子为一个独立的能量体,它是由更细微的能量颗粒按照某种方式集合而成的一个能量体,是一个具有空间形态的几何体。作者为了不再引进更多的新名称而称它为基本能量单元体。这种能量单元体颗粒也有学者称它为亚光子[3]。波动性代表人物惠更斯()[4] 提出了光的球面波观点,作者不能理解的是:一个光粒子是怎样产生的一个球面波,一个子波的能量又是多少?恐怕科学巨匠和高手也不理解他的具体描述。
1 自然条件下的光辐射
一份光量子能量的大小,我们不可能将一份光量子的内部结构分拆开进行测量和计算至少在当前这个时代是这样。接下来我们只有间接地使它与粒子(实物体)发生相互作用后所产生的效应进行描述。
如示,设想,这些实物粒子在常温下处于稳定状态(只有温度处在绝对零度或附近时的实物粒子才可能处于基态),当它没有吸收外来能量时,也就不存在能量的外泻(辐射),这时它处于临时稳定状态。在中,从S 发出的光经透镜L 后照射一透明物质,光子-1从实物粒子之间的狭小空隙(真空区域)中穿刺而过,光子-2 被实物粒子所吸收;我们构想,这个理想化粒子具有吸收一切能量段光子的能力,将吸收的每份光子又完全彻底地辐射出去(在粒子中不作任何残留)。即是,认为实物粒子辐射出去的光子与它所吸入光子的能量完全相同。显然,粒子在这一过程中经历了两个阶段:它吸收一份光子便从初始的稳定状态跃升至高的能量状态,这过程即为能量的上涨阶段;而高能态的它是极不稳定的,?即开始泻能,从高能态辐射光子而回落到原有的初始状态。粒子所经历吸能和泻能这一过程的两个阶段,就认为是粒子完成了一次能量的上涨和回落,简称粒子能量的一次涨落。粒子能量的一次涨落总会经历一段时间过程(哪怕很短)。
在中我们假设粒子在发射光子-1 后又吸收相同能量的光子,然后再辐射出光子-2;这一过程所经历的时间称为粒子能量的一次涨落(称为一个周期),用符号T 表示。 在这个涨落周期内光子(在真空中)所运动的路程为CT, 即是:光子-1 和光子-2 之间的距离就称为一个涨落光程(为了直观,这里假定两份光子是在同一直线上),用符号λ0 表示。
为了与经典理论相对应,便将涨落光程另名为涨落长度,光的涨落长度对照成经典概念的光波[5] 波长λ0 。 由于不同能量光子与实物粒子发生相互作用的涨落周期各异,因而涨落长度λ也不相同。显然,光子能量与涨落长度成为一一对应。涨落周期T 的倒数称为涨落频率(将光的涨落频率对照理解成经典概念光波频率), 用符号у表示, у = 1?T 。为此,作者将新旧概念对照列表:
显然,不同颜色(或称为能量)的光,它涨落一次的时间不相同,涨落光程也不相同。即是,光的涨落长度不相同。光子能量与涨落长度成为单值对应。
2 新建概念和观点
胡克参考球
当一份光子从粒子中辐射出去以后,作者假想,光量子是沿实物粒子的自旋切线方向辐射出去的,所以它离开粒子时刻就具有一速度C 。在科学史上,胡克()[6] 认为:光是由快的振动所组成, 可于刹那之间,或者说以非常大的速度,传播过任何距离;在均匀媒质中每一个振动都将产生一个圆球,这个圆球将恒稳地向外扩大。 胡克认为,光的行为如同声音在空气中的传播。 而现代研究认为,光是一种粒子,光子的运动方向是任意地自由取向, 即是:光子的运动方向有可能是OA、OB、OE 和 OF … 等方向的任意一个。 一份光子不可能同时射向两个或两个以上的几个方向,由于光子运动方向的不确定性,所以,作者为此设计一个数学模型半径为R = Ct 的参考球,并坚信它(光子)肯定会出现在这个圆球球面上的某一点,这个光子参考球如所示。
作为一个向外辐射能量(光子)的实物粒子O ,它不可能同时辐射出两份或两份以上的多份光子,因此,一个参考球的球面上就只有一份光子出现。由于它是不受我们的具体操控,也就不能确定它的具体方向,所以,它的运动方向是自由取向。经考证,最先提出扩散圆球概念的是胡克,作者构想的这个数学模型虽然与胡克所描述的物理意义大不相同,但提议将这个光子参考球命名为光子胡克参考球,简称为胡克参考球或胡克球。
惠更斯包络面
惠更斯()提出的包络面概念及惠更斯原理:波所到达的每一点都可以看作是新的波源,从这些点发出的波叫做子波;而新的波面就是这些子波在同一时刻所到达位置的包迹。 惠更斯所称的子波,其实应该理解成胡克提出的扩散圆球 [6] 。
但惠更斯原理对客观?物的描述是不准确的,比如,在真空中运动的光子,是以发射源为参考点的。它不是按照惠更斯包络面形式向外部空间扩散, 而是以胡克参考球方式向外部空间扩散,如所示。只有当这份光子被空间某一实物粒子完全吸收以后,又被完全辐射出去并产生了一个胡克圆球,实物粒子就是这个胡克参考球的中心。显然,包络面是由很多个胡克参考球包络而形成的,于是我们得到:
跟包络面相互作用的每一个质点,都可以看着是新的'发射源或扰动中心,从这些点发出的胡克球叫做次圆球; 而新的包迹就是这些次圆球在同一时刻所到达位置的重叠。
3 综述与讨论
早期的胡克和惠更斯理论说的都是一个一个脉冲,而不是具有一定波长的波列。后来,数学家欧勒(L. Euler,1707-1783)[5]认为, 光谱里每一种颜色必与某一定光波波长相对应。这就是最早提出波动光学的基本模式。不难看出,光波一词,是人为的一种假设。
虽然后来有实验支持,但本文作者应用胡克参考球模型和惠更斯包络面概念相结合,同样对光的干涉、衍射、折射、反射、偏振及全息[7-11]等实验结果作出了更合理的解释。
包络面的物理意义:作者对惠更斯包络面的分析,设有包络面从点O 以速度C 向四周扩散,已知t 时刻的包络面是半径为R1 的球面S1。 用惠更斯原理杨发成理论来求(t + T )时刻的包络面。S1 面上的各点都可以看作新的扰动源,它们在T 时间内发出半径为Ct 的胡克球,这些胡克参考球的包迹, 便成为新的包络面S2 和S3 ,并且S2 和S3的扩展方向相反(由于光子能量作用在粒子上的涨落时间非常小,在此处讨论可以忽略它)。
4 结论
在真空中,一份光粒子出现在以源点为中心、半径为光速与时间乘积的球面上,这个数学模型称为胡克参考球; 两个或两个以上的多个胡克参考球球面在同一时刻所到达位置的包迹,称著包络面。
参考文献
[1] I . Newton , Phil . Trans . No .80 (Feb .1672) , 3075 .
[2] A . Einstein , Ann .d . Physik . (4) .17 (1905) , 132 ;20 (1906) , 199 .
[3] Chong An Zhang, Wide Existence of Wave with the Non- Medium Transmission in the Nature, MatterRegularity 12 (3) 207-214 (2003).
[4] Chr . Huygens , Traite de La Lumiere , Brighton Press, 1690 .
[5] L. Euler, Opuscula varii argumenti, Berlin (1746), 169 .
[6] R . Hooke , Micrographia . (1665) , 47 .
[7] D. Gabor, Nature, 161(1948),777; Proc. Roy. Soc., A, 197(1949),454; Proc. Roy. Soc., B, 64(1951),449.
[8] D. Gabor, Rev. Mod. Phys., 28(1956), 260.
王小波?那你可以用对比的方法来写,结合你的实际,写感想吧....
瑞士洛桑联邦理工学院光子系统实验室的研究人员发明了一种无需外部设备就能重新配置微波光子的滤波器。这为更紧凑、更环保的滤波器铺平了道路,这些滤波器将更实用、更便宜
阎崇年 阎崇年,1934年4月生,山东省蓬莱市人。北京社会科学院满学研究所所长、研究员。北京满学会会长。研究满洲史、清代史,兼及北京史。倡议并创建第一个专业满学
无论如何,得有\如下内容啊.1. 无线数据网络中基于斯塔克尔博格博弈的功率控制 2. 动能定理,机械能守恒定律应用3. 宽带网络中业务模型的仿真分析 4.
钱永祥。1996,〈人民与民:如何理解民主制度里的人民〉,“跨世纪台湾民主发展问题”学术研讨会论文,1996年7月7日至8日。钱永祥。1997,〈霍布斯是自由主