• 回答数

    2

  • 浏览数

    239

陽-iYummy
首页 > 学术期刊 > 苏洲大学研究生黄敏的论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

超级懒喵喵

已采纳

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

281 评论

嘟嘟198887

年份 国家级项目 省部级项目 市厅级项目 其他 2007年 9项 8项 4项 2008年 18项 4项 7项 2009年 22项;863主持1项;973子项目1项;大飞机项目1项。 9项 6项(含重大1项) 15项 2010年 31项 6项11项(含重大1项) 5项 2011年 33(含杰青基金1项);科技部国际交流项目1项。 15项 10项(含重大2项) 8项 仪器设备热分析仪、紫外-可见分光光度计、原子吸收分光光度计、元素分析仪、荧光光谱仪、高效液相色谱仪、气相色谱-质谱联用仪、气相色谱仪、离子色谱仪、傅里叶变换红外光谱仪、x-射线粉末衍射仪、电感耦合等离子发射光谱仪。 图书资料苏州大学材料与与化学化工学部资料室目前有使用面积约300平方米,是为学部师生教学、科研提供服务的专业性资料室。读者对象为本部教职工、研究生、高年级学生和文献课学生。主要收藏化学化工专业相关的中外文期刊、参考书、工具书等。拥有从1907年创刊号开始收藏的美国化学文摘(包括文摘、卷索引、累积索引等)。拥有从二十世纪三十年代以前收藏并至今连续收藏的刊物至少11种,如Journal of American Chemical Society(美国化学会志)、Journal of the Chemical Society(英国化学会志)、Chemical Review(化学评论)、Journal of Chemical Education(化学教育杂志)、Journal of Physical Chemistry(物理化学)、Journal of Organic Chemistry(有机化学)、Journal of Electrochemistry(电化学)等刊物,并收藏Gmelim(无机化学大全)、Beilstein’s(有机化学大全)等多种化学化工专业的多卷册的大型工具书、手册、大全等。化学化工学院资料室期刊合订本藏刊量2012年已达三万多册。期刊种数250多种,期刊合订本14000多册。藏书量13000多册。中国科学院院士、上海有机化学研究所陆熙炎教授曾为该资料室捐献多种著名期刊和参考书2500册。资料室已逐步形成以重点学科、重点实验室文献为核心的,具有研究级水平的材料与化学化工学科特色的专业藏书体系。同时,资料室还建立了50平方米的电子阅览室,配备计算机二十多台,进行计算机上网查阅、检索文献资料的服务,经常为本学部师生、兄弟院校、工矿企业提供检索服务。 以下为十篇最新(至2013年3月1日)的学部论文: 戴洁教授,朱琴玉教授课题组在CrystEngComm上发表研究论文 2013-02-20 论文报道了以TTF四羧酸为配体采用不同的配位模式得到了一系列的配位聚合物。讨论了影响聚合物结构的因素,所有在室温下得到的配合物都是一维的,而在溶剂热条件下得到了二维和三维的配位聚合物。这些配位聚合物在固态时能被氧化得到正一价的自由基阳离子和正二价的阳离子。 戴洁教授,朱琴玉教授课题组在Phys. Chem. Chem. Phys. 上发表研究论文 2013-02-20 论文研究了一个四硫富瓦烯(TTF)双羧酸与含氮杂环类化合物形成的氧化还原酸碱体系。核磁和晶体结构都表明在TTF双羧酸和含氮杂环类化合物之间存在着质子转移和强烈的氢键作用。与单羧酸体系不同的是:TTF双羧酸能够很容易地把一个质子转移给碱,然后第二个质子形成了一个稳定的七元环。电化学测定结果表明了其机理是两步的四方氧化还原和质子转移机理。 戴洁教授,朱琴玉教授课题组在Inorg. Chem. 上发表研究论文 2013-02-20 论文报道了一个含有6个钛原子的氧簇合物的溶剂热合成。配体除醇盐外引进了二元羧酸配体并首次培养了它们的晶体,获得了晶体结构数据。这是至今很少发现的一个具有单晶光致变色效应的钛氧簇合物。Ti(IV) 经光照转化为Ti(III),在接触空气后将氧分子转化为氧游离基,被ESR测定所证实。论文还研究了化合物的光解作用。 戴洁教授,朱琴玉教授课题组在J. Phys. Chem. B 上发表研究论文 2013-02-20 论文研究了一个四硫富瓦烯(TTF)羧酸体系(DMT-TTFCOOH)对吡啶类含氮小分子的响应。研究通过核磁、循环伏安讨论了响应的选择性,提出了电化学响应机理。通过理论计算和晶体结构测定分析了分子间的氢键作用的类型、强度以及在分子响应中的重要作用。该体系为一个独特的具有氧化还原活性的氢键响应体系。 倪沛红教授课题组在Polymer发表研究论文 2012-12-25 此文报道了侧基含丙烯酰氧基的两亲性嵌段共聚物PCL-b-POPEA的合成及表征。这类嵌段共聚物具有良好的生物相容性和完全生物可降解性。本研究首次将碳碳双键(C=C)引入两亲性聚磷酸酯类嵌段共聚物的侧基,可与含巯基(-SH)的有机化合物进行迈克尔加成反应,修饰聚磷酸酯侧基带有-OH、-COOH、-NH2、氨基酸等功能性基团。共聚物PCL-b-POPEA在水中自组装形成以疏水链段PCL为核、亲水链段POPEA为壳的纳米胶束。这种胶束由于具有良好的生物相容性和生物可降解性,可被进一步用作药物载体,输送抗癌药物阿霉素(DOX),并且在磷酸二酯酶I的作用下,能够更加快速有效地释放阿霉素。同时,这类聚合物的载药胶束能显著抑制人鼻咽癌细胞(KB cells)的增殖。 倪沛红教授课题组在Langmuir发表研究论文 2012-12-25 此文设计合成了含胆固醇的聚阳离子修饰的磁性纳米粒子,用于缩合DNA获得磁性阳离子载体。结合刷型共聚物众多的优点如生物相容性、抗凝血性和抗蛋白吸附性,制备了含巯基(-SH)的刷型聚阴离子,通过静电作用,作为上述磁性阳离子载体外层的具有亲水性和抗非特异吸附性的阴离子层,在H2O2或O2作用下,巯基(-SH)交联形成二硫键(S-S),可提高载体在血液循环过程中的稳定性。在模拟细胞环境中,交联的二硫键(S-S)断裂,释放出包裹的DNA。实验结果表明,通过自组装获得的基因载体具有磁响应性、细胞还原敏感性、抗蛋白吸附性、低毒性,且在HEK293T和HeLa细胞内均可有效地实现转染,具有潜在的应用价值。 倪沛红教授课题组在Soft Matter发表研究论文 2012-12-25 此文利用开环聚合及聚合物末端羟基酯化反应相结合,制备两端带有双键的聚磷酸酯大分子交联剂,通过与阳离子型单体甲基丙烯酸-2-二甲氨基乙酯和引发剂过硫酸铵的水溶液混合在一起,不添加任何加速剂,即可在室温条件下快速形成水凝胶。利用旋转流变仪研究了溶胶-凝胶转变过程,并进一步考察了影响凝胶化时间的因素,发现可以通过改变反应物配比来调节凝胶化时间。研究水凝胶的溶胀行为、pH响应性、内部多孔结构和体外细胞毒性,并以阿霉素盐酸盐作为模型药物,对这种可注射型水凝胶的体外药物释放性能进行研究。结果表明,这类水凝胶具有良好细胞相容性、在室温下快速形成载药水凝胶,在药物控释方面具有潜在的应用。 倪沛红教授课题组在J. Polym. Sci., Part A: Polym. Chem. 发表研究论文 2012-12-25 此文利用层层组装方法和壳交联方法制备了以Fe3O4磁性纳米粒子为核,以PEG为冠的可控的磁靶向基因载体。利用自由基聚合在磁性纳米粒子表面接枝聚甲基丙烯酸-2-二甲氨基乙酯(PDMAEMA),与DNA、均聚物PDMAEMA以及含部分巯基(-SH)的聚阴离子MePEG2000-b-PMAASH通过静电作用进行层层组装,获得表面含水溶性PEG链及外层交联的复合基因载体,并且通过凝胶阻滞电泳、zeta电位测试对层层组装的过程进行跟踪研究。实验结果表明,这种复合纳米粒子具有低毒性和模拟体内循环条件的稳定性,可作为潜在的非病毒基因载体。 氧化脱氢偶联反应具有原子经济性、低能耗、绿色环保等特点,同时,这也是一种简单高效的构建复杂的具有生物活性药物分子和天然产物的方法。铜/氧气参与的氧化脱氢偶联反应,由于其高效、廉价易得且易于掌控等优点,引起了有机工作者的广泛关注,并对其进行了深入研究。本文报道了铜参与的有氧氧化反应及其规律的研究:1当量的苯乙酮与3当量的苄胺在20 mol%碘化亚铜、10 mol%三氟化硼乙醚、氧气氛围中能方便高效的合成多取代咪唑类化合物;实现了SP C-H键的功能化,一步反应实现了8个氢原子的消去,3个新C-N键的形成,而反应唯一的副产物是绿色无毒无害的水。 纪顺俊教授课题组在Organic Letters (IF:)上发表研究论文 2012-12-10 本文报道了苊醌参与的多组分插入反应,非常方便高效地合成了一系列的多取代的吡唑并异喹啉骨架衍生物。在该反应中,一步实现了两个C-C键的活化断裂,二苯甲酰甲烷的活性亚甲基插入到了苊醌两个sp-spC-C键中间,实现了无金属试剂催化的C-C键插入反应,同时构建形成两个新的6元环。

176 评论

相关问答

  • 苏州大学研究生论文答辩时间

    苏大研究生中期答辩时间一般在每年的11月中旬进行。据了解,苏州大学会在第一个学期的中旬,也就是每年的11月中旬对研究生进行中期答辩。

    bluecode12345 3人参与回答 2023-12-12
  • 苏州大学研究生毕业论文

    请进苏州大学研究生部的主页,在研究生培养中,呵呵,最好校内登陆

    歪歪悠爱福喔 1人参与回答 2023-12-09
  • 毕淑敏研究生研究论文

    毕淑敏作品集 ◎不宜重逢 昆仑殇 补天石 阿里 转 不宜重逢 伴随你建立功勋 北飞北飞 君子于役 ◎生命 预约死亡 生生不已 教授的戒指 最后一支西

    兜兜兜尔 4人参与回答 2023-12-10
  • 欧洲大学生毕业论文

    凡是你的学位是带“荣誉”这两个字的都需要写论文。比如说你到英、美留学,你的毕业证上肯定会写某某专业荣誉(文/理)学士学位,你就需要些论文。如果你到澳大利亚读三年

    晓晓小同学 3人参与回答 2023-12-07
  • 澳洲研究生毕业论文

    澳洲研究生的论文整体相对于英国来说,不算太多。难度主要取决于学校的排名,专业是什么,是否需要各种数据处理,字数是否比较多,写作时间是否宽裕。如果论文方面实在有困

    芋仔疙瘩牛牛 7人参与回答 2023-12-08