dt930014240
学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!
↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓
★ 数学应用数学毕业论文 ★
★ 大学生数学毕业论文 ★
★ 大学毕业论文评语大全 ★
★ 毕业论文答辩致谢词10篇 ★
中学数学论文题目
1、用面积思想 方法 解题
2、向量空间与矩阵
3、向量空间与等价关系
4、代数中美学思想新探
5、谈在数学中数学情景的创设
6、数学 创新思维 及其培养
7、用函数奇偶性解题
8、用方程思想方法解题
9、用数形结合思想方法解题
10、浅谈数学教学中的幽默风趣
11、中学数学教学与女中学生发展
12、论代数中同构思想在解题中的应用
13、论教师的人格魅力
14、论农村中小学数学 教育
15、论师范院校数学教育
16、数学在母校的发展
17、数学学习兴趣的激发和培养
18、谈新课程理念下的数学教师角色的转变
19、数学新课程教材教学探索
20、利用函数单调性解题
21、数学毕业论文题目汇总
22、浅谈中学数学教学中学生能力的培养
23、变异思维与学生的创新精神
24、试论数学中的美学
25、数学课堂中的提问艺术
26、不等式的证明方法
27、数列问题研究
28、复数方程的解法
29、函数最值方法研究
30、图象法在中学数学中的应用
31、近年来高考命题研究
32、边数最少的自然图的构造
33、向量线性相关性讨论
34、组合数学在中学数学中的应用
35、函数最值研究
36、中学数学符号浅谈
37、论数学交流能力培养(数学语言、图形、 符号等)
38、探影响解决数学问题的心理因素
39、数学后进学生的心理分析
40、生活中处处有数学
41、数学毕业论文题目汇总
42、生活中的数学
43、欧几里得第五公设产生背景及对数学发展影响
44、略谈我国古代的数学成就
45、论数学史的教育价值
46、课程改革与数学教师
47、数学差生非智力因素的分析及对策
48、高考应用问题研究
49、“数形结合”思想在竞赛中的应用
50、浅谈数学的 文化 价值
51、浅谈数学中的对称美
52、三阶幻方性质的探究
53、试谈数学竞赛中的对称性
54、学竞赛中的信息型问题探究
55、柯西不等式分析
56、中国剩余定理应用
57、不定方程的研究
58、一些数学思维方法的证明
59、分类讨论思想在中学数学中的应用
60、生活数学文化分析
数学研究生论文题目推荐
1、混杂随机时滞微分方程的稳定性与可控性
2、多目标单元构建技术在圆锯片生产企业的应用研究
3、基于区间直觉模糊集的多属性群决策研究
4、排队论在交通控制系统中的应用研究
5、若干类新形式的预条件迭代法的收敛性研究
6、高职微积分教学引入数学文化的实践研究
7、分数阶微分方程的Hyers-Ulam稳定性
8、三维面板数据模型的序列相关检验
9、半参数近似因子模型中的高维协方差矩阵估计
10、高职院校高等数学教学改革研究
11、若干模型的分位数变量选择
12、若干变点模型的 经验 似然推断
13、基于Navier-Stokes方程的图像处理与应用研究
14、基于ESMD方法的模态统计特征研究
15、基于复杂网络的影响力节点识别算法的研究
16、基于不确定信息一致性及相关问题研究
17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究
18、广义时变脉冲系统的时域控制
19、正六边形铺砌上H-三角形边界H-点数的研究
20、外来物种入侵的广义生物经济系统建模与控制
21、具有较少顶点个数的有限群元阶素图
22、基于支持向量机的混合时间序列模型的研究与应用
23、基于Copula函数的某些金融风险的研究
24、基于智能算法的时间序列预测方法研究
25、基于Copula函数的非寿险多元索赔准备金评估方法的研究
26、具有五个顶点的共轭类类长图
27、刚体系统的优化方法数值模拟
28、基于差分进化算法的多准则决策问题研究
29、广义切换系统的指数稳定与H_∞控制问题研究
30、基于神经网络的混沌时间序列研究与应用
31、具有较少顶点的共轭类长素图
32、两类共扰食饵-捕食者模型的动力学行为分析
33、复杂网络社团划分及城市公交网络研究
34、在线核极限学习机的改进与应用研究
35、共振微分方程边值问题正解存在性的研究
36、几类非线性离散系统的自适应控制算法设计
37、数据维数约简及分类算法研究
38、几类非线性不确定系统的自适应模糊控制研究
39、区间二型TSK模糊逻辑系统的混合学习算法的研究
40、基于节点调用关系的软件执行网络结构特征分析
41、基于复杂网络的软件网络关键节点挖掘算法研究
42、圈图谱半径问题研究
43、非线性状态约束系统的自适应控制方法研究
44、多维power-normal分布及其参数估计问题的研究
45、旋流式系统的混沌仿真及其控制与同步研究
46、具有可选服务的M/M/1排队系统驱动的流模型
47、动力系统的混沌反控制与同步研究
48、载流矩形薄板在磁场中的随机分岔
49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制
50、带有非线性功能响应函数的食饵-捕食系统的研究
51、基于观测器的饱和时滞广义系统的鲁棒控制
52、高职数学课程培养学生关键技能的研究
53、基于生存分析和似然理论的数控机床可靠性评估方法研究
54、面向不完全数据的疲劳可靠性分析方法研究
55、带平方根俘获率的可变生物种群模型的稳定性研究
56、一类非线性分数阶动力系统混沌同步控制研究
57、带有不耐烦顾客的M/M/m排队系统的顾客损失率
58、小波方法求解三类变分数阶微积分问题研究
59、乘积空间上拓扑度和不动点指数的计算及其应用
60、浓度对流扩散方程高精度并行格式的构造及其应用
专业微积分数学论文题目
1、一元微积分概念教学的设计研究
2、基于分数阶微积分的飞航式导弹控制系统设计方法研究
3、分数阶微积分运算数字滤波器设计与电路实现及其应用
4、分数阶微积分在现代信号分析与处理中应用的研究
5、广义分数阶微积分中若干问题的研究
6、分数阶微积分及其在粘弹性材料和控制理论中的应用
7、Riemann-Liouville分数阶微积分及其性质证明
8、中学微积分的教与学研究
9、高中数学教科书中微积分的变迁研究
10、HPM视域下的高中微积分教学研究
11、基于分数阶微积分理论的控制器设计及应用
12、微积分在高中数学教学中的作用
13、高中微积分的教学策略研究
14、高中微积分教学中数学史的渗透
15、关于高中微积分的教学研究
16、微积分与中学数学的关联
17、中学微积分课程的教学研究
18、高中微积分课程内容选择的探索
19、高中微积分教学研究
20、高中微积分教学现状的调查与分析
21、微分方程理论中的若干问题
22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程
23、基于偏微分方程图像分割技术的研究
24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性
25、几类分数阶微分方程的数值方法研究
26、几类随机延迟微分方程的数值分析
27、微分求积法和微分求积单元法--原理与应用
28、基于偏微分方程的图像平滑与分割研究
29、小波与偏微分方程在图像处理中的应用研究
30、基于粒子群和微分进化的优化算法研究
31、基于变分问题和偏微分方程的图像处理技术研究
32、基于偏微分方程的图像去噪和增强研究
33、分数阶微分方程的理论分析与数值计算
34、基于偏微分方程的数字图象处理的研究
35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程
36、反射倒向随机微分方程及其在混合零和微分对策
37、基于偏微分方程的图像降噪和图像恢复研究
38、基于偏微分方程理论的机械故障诊断技术研究
39、几类分数阶微分方程和随机延迟微分方程数值解的研究
40、非零和随机微分博弈及相关的高维倒向随机微分方程
41、高中微积分教学中数学史的渗透
42、关于高中微积分的教学研究
43、微积分与中学数学的关联
44、中学微积分课程的教学研究
45、大学一年级学生对微积分基本概念的理解
46、中学微积分课程教学研究
47、中美两国高中数学教材中微积分内容的比较研究
48、高中生微积分知识理解现状的调查研究
49、高中微积分教学研究
50、中美高校微积分教材比较研究
51、分数阶微积分方程的一种数值解法
52、HPM视域下的高中微积分教学研究
53、高中微积分课程内容选择的探索
54、新课程理念下高中微积分教学设计研究
55、基于分数阶微积分的线控转向系统控制策略研究
56、基于分数阶微积分的数字图像去噪与增强算法研究
57、高中微积分教学现状的调查与分析
58、高三学生微积分认知状况的思维层次研究
59、分数微积分理论在车辆底盘控制中的应用研究
60、新课程理念下高中微积分课程的教育价值及其教学研究
neil2446326902
协同过滤(collaborative filtering)算法是最经典、最常用的推荐算法。其基本思想是收集用户偏好,找到相似的用户或物品,然后计算并推荐。 基于物品的协同过滤算法的核心思想就是:给用户推荐那些和他们之前喜欢的物品相似的物品。主要可分为两步: (1) 计算物品之间的相似度,建立相似度矩阵。 (2) 根据物品的相似度和用户的历史行为给用户生成推荐列表。 相似度的定义有多种方式,下面简要介绍其中几种:其中,分母 是喜欢物品 的用户数,而分子 是同时喜欢物品 和物品 的用户数。因此,上述公式可以理解为喜欢物品 的用户中有多少比例的用户也喜欢物品 。 上述公式存在一个问题。如果物品 很热门, 就会很大,接近1。因此,该公式会造成任何物品都会和热门的物品有很大的相似度,为了避免推荐出热门的物品,可以用下面的公式:这个公式惩罚了物品 的权重,因此减轻了热门物品会和很多物品相似的可能性。 另外为减小活跃用户对结果的影响,考虑IUF(nverse User Frequence) ,即用户活跃度对数的倒数的参数,认为活跃用户对物品相似度的贡献应该小于不活跃的用户。为便于计算,还需要进一步将相似度矩阵归一化 。其中 表示用户 对物品 的评分。 在区间 内,越接近1表示相似度越高。 表示空间中的两个点,则其欧几里得距离为: 当 时,即为平面上两个点的距离,当表示相似度时,可采用下式转换: 距离越小,相似度越大。 一般表示两个定距变量间联系的紧密程度,取值范围为[-1,1] 其中 是 和 的样品标准差 将用户行为数据按照均匀分布随机划分为M份,挑选一份作为测试集,将剩下的M-1份作为训练集。为防止评测指标不是过拟合的结果,共进行M次实验,每次都使用不同的测试集。然后将M次实验测出的评测指标的平均值作为最终的评测指标。 对用户u推荐N个物品(记为 ),令用户u在测试集上喜欢的物品集合为 ,召回率描述有多少比例的用户-物品评分记录包含在最终的推荐列表中。准确率描述最终的推荐列表中有多少比例是发生过的用户-物品评分记录。覆盖率反映了推荐算法发掘长尾的能力,覆盖率越高,说明推荐算法越能够将长尾中的物品推荐给用户。分子部分表示实验中所有被推荐给用户的物品数目(集合去重),分母表示数据集中所有物品的数目。采用GroupLens提供的MovieLens数据集, 。本章使用中等大小的数据集,包含6000多用户对4000多部电影的100万条评分。该数据集是一个评分数据集,用户可以给电影评1-5分5个不同的等级。本文着重研究隐反馈数据集中TopN推荐问题,因此忽略了数据集中的评分记录。 该部分定义了所需要的主要变量,集合采用字典形式的数据结构。 读取原始CSV文件,并划分训练集和测试集,训练集占比,同时建立训练集和测试集的用户字典,记录每个用户对电影评分的字典。 第一步循环读取每个用户及其看过的电影,并统计每部电影被看过的次数,以及电影总数;第二步计算矩阵C,C[i][j]表示同时喜欢电影i和j的用户数,并考虑对活跃用户的惩罚;第三步根据式\ref{similarity}计算电影间的相似性;第四步进行归一化处理。 针对目标用户U,找到K部相似的电影,并推荐其N部电影,如果用户已经看过该电影则不推荐。 产生推荐并通过准确率、召回率和覆盖率进行评估。 结果如下所示,由于数据量较大,相似度矩阵为 维,计算速度较慢,耐心等待即可。 [1]. [2]. 推荐系统与深度学习. 黄昕等. 清华大学出版社. 2019. [3]. 推荐系统算法实践. 黄美灵. 电子工业出版社. 2019. [4]. 推荐系统算法. 项亮. 人民邮电出版社. 2012. [5]. 美团机器学习实践. 美团算法团队. 人民邮电出版社. 2018.
yangguangsnow
矩阵分解在协同过滤推荐算法中的应用推荐系统是当下越来越热的一个研究问题,无论在学术界还是在工业界都有很多优秀的人才参与其中。近几年举办的推荐系统比赛更是一次又一次地把推荐系统的研究推向了高潮,比如几年前的Neflix百万大奖赛,KDD CUP 2011的音乐推荐比赛,去年的百度电影推荐竞赛,还有最近的阿里巴巴大数据竞赛。这些比赛对推荐系统的发展都起到了很大的推动作用,使我们有机会接触到真实的工业界数据。我们利用这些数据可以更好地学习掌握推荐系统,这些数据网上很多,大家可以到网上下载。推荐系统在工业领域中取得了巨大的成功,尤其是在电子商务中。很多电子商务网站利用推荐系统来提高销售收入,推荐系统为Amazon网站每年带来30%的销售收入。推荐系统在不同网站上应用的方式不同,这个不是本文的重点,如果感兴趣可以阅读《推荐系统实践》(人民邮电出版社,项亮)第一章内容。下面进入主题。 为了方便介绍,假设推荐系统中有用户集合有6个用户,即U={u1,u2,u3,u4,u5,u6},项目(物品)集合有7个项目,即V={v1,v2,v3,v4,v5,v6,v7},用户对项目的评分结合为R,用户对项目的评分范围是[0, 5]。R具体表示如下: 推荐系统的目标就是预测出符号“?”对应位置的分值。推荐系统基于这样一个假设:用户对项目的打分越高,表明用户越喜欢。因此,预测出用户对未评分项目的评分后,根据分值大小排序,把分值高的项目推荐给用户。怎么预测这些评分呢,方法大体上可以分为基于内容的推荐、协同过滤推荐和混合推荐三类,协同过滤算法进一步划分又可分为基于基于内存的推荐(memory-based)和基于模型的推荐(model-based),本文介绍的矩阵分解算法属于基于模型的推荐。矩阵分解算法的数学理论基础是矩阵的行列变换。在《线性代数》中,我们知道矩阵A进行行变换相当于A左乘一个矩阵,矩阵A进行列变换等价于矩阵A右乘一个矩阵,因此矩阵A可以表示为A=PEQ=PQ(E是标准阵)。 矩阵分解目标就是把用户-项目评分矩阵R分解成用户因子矩阵和项目因子矩阵乘的形式,即R=UV,这里R是n×m, n =6, m =7,U是n×k,V是k×m。直观地表示如下: 高维的用户-项目评分矩阵分解成为两个低维的用户因子矩阵和项目因子矩阵,因此矩阵分解和PCA不同,不是为了降维。用户i对项目j的评分r_ij =innerproduct(u_i, v_j),更一般的情况是r_ij =f(U_i, V_j),这里为了介绍方便就是用u_i和v_j内积的形式。下面介绍评估低维矩阵乘积拟合评分矩阵的方法。首先假设,用户对项目的真实评分和预测评分之间的差服从高斯分布,基于这一假设,可推导出目标函数如下: 最后得到矩阵分解的目标函数如下: 从最终得到得目标函数可以直观地理解,预测的分值就是尽量逼近真实的已知评分值。有了目标函数之后,下面就开始谈优化方法了,通常的优化方法分为两种:交叉最小二乘法(alternative least squares)和随机梯度下降法(stochastic gradient descent)。首先介绍交叉最小二乘法,之所以交叉最小二乘法能够应用到这个目标函数主要是因为L对U和V都是凸函数。首先分别对用户因子向量和项目因子向量求偏导,令偏导等于0求驻点,具体解法如下: 上面就是用户因子向量和项目因子向量的更新公式,迭代更新公式即可找到可接受的局部最优解。迭代终止的条件下面会讲到。接下来讲解随机梯度下降法,这个方法应用的最多。大致思想是让变量沿着目标函数负梯度的方向移动,直到移动到极小值点。直观的表示如下: 其实负梯度的负方向,当函数是凸函数时是函数值减小的方向走;当函数是凹函数时是往函数值增大的方向移动。而矩阵分解的目标函数L是凸函数,因此,通过梯度下降法我们能够得到目标函数L的极小值(理想情况是最小值)。 言归正传,通过上面的讲解,我们可以获取梯度下降算法的因子矩阵更新公式,具体如下: (3)和(4)中的γ指的是步长,也即是学习速率,它是一个超参数,需要调参确定。对于梯度见(1)和(2)。下面说下迭代终止的条件。迭代终止的条件有很多种,就目前我了解的主要有1) 设置一个阈值,当L函数值小于阈值时就停止迭代,不常用2) 设置一个阈值,当前后两次函数值变化绝对值小于阈值时,停止迭代3) 设置固定迭代次数另外还有一个问题,当用户-项目评分矩阵R非常稀疏时,就会出现过拟合(overfitting)的问题,过拟合问题的解决方法就是正则化(regularization)。正则化其实就是在目标函数中加上用户因子向量和项目因子向量的二范数,当然也可以加上一范数。至于加上一范数还是二范数要看具体情况,一范数会使很多因子为0,从而减小模型大小,而二范数则不会它只能使因子接近于0,而不能使其为0,关于这个的介绍可参考论文Regression Shrinkage and Selection via the Lasso。引入正则化项后目标函数变为: (5)中λ_1和λ_2是指正则项的权重,这两个值可以取一样,具体取值也需要根据数据集调参得到。优化方法和前面一样,只是梯度公式需要更新一下。矩阵分解算法目前在推荐系统中应用非常广泛,对于使用RMSE作为评价指标的系统尤为明显,因为矩阵分解的目标就是使RMSE取值最小。但矩阵分解有其弱点,就是解释性差,不能很好为推荐结果做出解释。后面会继续介绍矩阵分解算法的扩展性问题,就是如何加入隐反馈信息,加入时间信息等。
计算机技术的发展一日千里,稍不留神,就大有落后之感觉。笔者的体会是常阅读一些计算机类的报刊杂志,受益非浅。据不完全统计,国内正式出版发行的计算机类报纸有20余种
算术平均滤波每次采样值所占的比例均相等,可用于任何场合:如压力、流量等。加权平均滤波则每次采样值所占的比例不等,可以突出某些部分,使其所占的比例增大,但各次采样
特殊教育家校互动形成教育合力的实践研究论文 特殊教育家校互动形成教育合力的策略是开展家长培训课堂的主要方向,家校互动的亲子教育,家校微时代的运用,家校联系方式方
南大,北大,很多
《当代法学》也还行,关键是有可能发表。像《法学研究》那样的刊物,吾恐今生也无缘付梓了。