• 回答数

    6

  • 浏览数

    312

馋嘴鱼了乐
首页 > 学术期刊 > 桥梁建设的国内外研究现状论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

家有陈先森

已采纳

桥梁工程学的发展主要取决于交通运输对它的需要。古代桥梁以通行人、畜为主,载重不大,桥面纵坡可以较陡,甚至可以铺设台阶。在有重载马车之后,载重量逐步加大,桥面纵坡也必须使之平缓。这时的桥梁材料仍以木、石为主,铸铁和锻铁很少使用。 从桥梁的原始雏形——堤梁(及在浅滩溪涧中筑起一个个石堤,堤间流水,人从石堤上跨越)、独木桥、浮桥(架设在船只上的桥)和石拱到现在超千米跨度的悬索桥,桥梁工程在几千年的时间里发展可谓翻天覆地。然而桥梁工程能拥有这翻天覆地的发展取决于工程材料和工程技术迅猛发展的有力推动。在原始社会里,懵然无知的古人类还只是追求有一个起身的洞穴和能填饱肚子的食物,还不会想到桥。然而随着社会的发展,人类文明的进步,交通的不断发展,人们开始创造了桥。然而那时工程材料的使用仅限于天然的木和石块,且工程技术非常落后,所以人们只能建造简单的桥——堤梁、独木桥和简单的石拱。世界上现存最古老的石桥在希腊的伯罗奔尼撒半岛,是一座用石块干垒的单孔石拱桥,距今3500年左右建成。我国古代桥梁工程技术的发展在当时处于世界领先地位。公元590——608年建造在河北省赵县(叫)河上留存至今的隋代敞肩式单孔圆弧弓形石拱桥,即赵州桥。该桥全长,桥面宽约10m,采用28条并列的石条砌成拱券形成。拱券矢高。拱上设有4个小拱,既能减轻桥身自重,又便于排洪,且更显美观。该桥无论在材料使用、结构受力、艺术造型和经济上都达到极高成就,是世界上最早的敞肩式拱桥,早于欧洲同类桥约1000年。近代土木工程的时间跨度为从17世纪中叶至20世纪中叶的300年间。这个时期内土木工程的主要特征有:——有力学和结构理论作为指导;——砖、瓦、木、石等结构建筑材料得到日益广泛的使用;混凝土、钢材、钢筋混凝土及早期的预应力混凝土得到发展;——施工技术进步很大,建造规模日益扩大,建造速度大大加快。在这个时期内,以下几件大事对桥梁工程的影响巨大: (1)意大利学者伽利略在1638年出版的著作《关于两门新科学的谈话和数学证明》中论述了建筑材料的力学性质和梁的强度,首次用公式表达了梁的设计理论。 (2)英国科学家牛顿在1687年总结了力学三大定律它们是土木工程设计理论的基础。 (3)瑞士数学家欧拉1744年出版《曲线的变分法》建立了柱的压屈理论,得到计算柱的临界受压力的公式,为分析土木工程结构物的稳定问题奠定了基础。 (4)1824年英国人阿斯普.丁取得了波特兰水泥的专利权,1850年开始生产。这是形成混凝土的主要材料,使得混凝土在土木工程中得到广泛应用。后来,在20世纪初,有人发表了水灰比等学说,才初步奠定了混凝土强度的理论基础。 (5)1859年发明了贝塞麦转炉炼钢法,似的钢材得以大量生产,并愈来愈多地应用于土木工程。 (6)1867年法国人莫尼埃用铁丝加固混凝土制成花盆,并把这种方法应用到工程中,建造了一座蓄水池,这是应用钢筋混凝土的开端。1875年他主持建造了第一座长16m的钢筋混凝土桥。 (8)1779年英国用铸铁建成跨度为的拱桥;1826年英国用锻铁建成跨度为177m的悬索桥;1883年美国建成世界上第一座大跨钢悬索桥——布鲁克林桥;1890年英国又建成两孔主跨达521m的悬臂式刚架桥,这样,现代桥梁3种基本形式(梁桥、拱桥、悬索桥)相继出现。 自从有了铁路以后,桥梁所承受的载重逐倍增加,线路的坡度和曲线标准要求又高,且需要建成铁路网以增大经济效益,因此,为要跨越更大更深的江河、峡谷,迫使桥梁向大跨度发展。石材、木材、铸铁、锻铁等桥梁材料,显然不合要求,而钢材的大量生产正好满足这一要求。 在技术方面,只是凭经验修桥,曾使19世纪80~90年代的许多铁路桥发生重大事故;从这时起,正在发展中的结构力学理论得到了重视,而在它的静力分析理论完全确立并广泛普及之后,桥梁因强度不足而造成的事故显然大为减少。 二十世纪以来,公路交通有很大发展。在内陆,需要在更多的河流、峡谷之上建桥。在城市中,以及在各种交通线路相交处,需要建造立交桥。在沿海,既需在大船通航的河口、海湾、海峡修建特大跨度桥梁,又需在某些海岛与大陆之间修建长桥。 由于更多新技术新材料的出现,现代桥梁工程的发展尤其迅速,世界各国相继建造出超千米的桥梁。世界上跨径最大的预应力混凝土斜拉桥——西班牙的卢纳巴里奥斯桥,跨径达440m,采用了双面辐射形密索布置. 世界第一的悬索桥——日本明石海峡桥,横跨日本内海,使日本神户与淡路岛紧紧相连.这座大桥全长3190M,中央跨度1990m于1998年竣工.它可以承受里氏级地震.目前中国在建的一批公路桥梁,无论是桥梁的数量还是工程规模、技术难度、科技含量,都代表着当今世界的先进水平,创造了中国建桥史之最。据悉,这些桥梁主要有:阳逻长江大桥,主跨1280米的悬索桥;南京长江三桥,主跨648米的斜拉桥;润扬长江公路大桥,跨江连岛的主跨1490米悬索桥和406米斜拉桥组合;深圳湾跨海大桥,主跨180米独塔单索面斜拉桥;苏通长江公路大桥,主跨1088米的斜拉桥,居世界第一;杭州湾跨海大桥,按双向六车道高速公路标准建设,全长36公里,是世上在建最长的公路跨海大桥。一个国家同时在建这么多世界级桥梁,在世界上不多见。 桥梁需要大量修建,而人力、物力、财力有限;于是,不断提高技术水平,引用新材料、新工艺、新桥式,对结构行为进行更精确的数值分析,采用更精确的结构试验进行验证,以使桥梁建设的经济效益不断提高,已成为时代的要求。 桥梁工程学主要研究桥渡设计,包括选择桥址,决定桥梁孔径,考虑通航和线路要求以确定桥面高程,考虑基底不受冲刷或冻胀以确定基础埋置深度,设计导流建筑物等;桥式方案设计;桥梁结构设计;桥梁施工;桥梁检定;桥梁试验;桥梁养护等方面。 在建桥材料方面,以高强、轻质、低成本为选择的主要依据,近期仍以发展传统的钢材和混凝土为主,提高其强度和耐久性。对于建筑钢材的脆断机理、初始几何缺陷等,以及混凝土材料的非弹性问题(收缩徐变以及疲劳等),将继续作充分的研究,使能正确控制结构的受力和变形。至于碳纤维塑料等在桥梁上的广泛应用,还必须在降低成本以后才有可能。 在桥梁勘察设计方面,随着交通事业的迅速发展,大跨度或复杂的桥型将不断涌现。高速公路的发展,对桥梁设计亦将提出新的要求。在桥式方案设计中,将有可能利用结构优化设计理论,借助电子计算机选出最佳方案。 在结构设计计算中,采用空间理论来分析桥梁整体受力已成为可能;以概率统计理论为基础的极限状态设计理论,将进一步反映在桥涵设计规范中,使桥梁设计的安全度得到科学合理的保证。桥梁美学作为时代、民族的文化在某些方面的反映,将愈来愈受到人们的重视:桥梁的面貌将蔚为大观。 在桥梁施工方面,对施工组织将充分利用电子计算机进行经济有效的管理。在施工技术中,将不断引用新技术和高效率、高功能的机具设备,借以提高质量、缩短工期、降低造价。如采用激光测量控制结构的精确定位;引用自升式水上平台克服深水基础的困难;利用遥控设备在沉井、沉箱中挖基,以减少劳动强度并避免人身危险;利用高质量的焊接技术,借能推广工地焊接等,此外,装配式桥梁也将有所发展,以使结构和构件标准化,生产工业化。 在桥梁养护维修方面,要求对既有桥梁建立完善的技术档案管理制度。在桥梁维修检查中,引用新型精密的测量仪表,如用声测法对结构材料的缺陷以及弹性模量进行测定;用手携式金相摄影仪检查钢材的晶体结构俾能及早进行加固防患于末然,以便延长桥梁的使用寿命。 桥梁工程始终是在生产发展与各类科学技术进步的综合影响下,遵循适用、安全、经济与美观的原则,不断的向前发展。人们除了要求桥的功能完善,还讲求桥的外形美观、有艺术性 ,桥梁地建造将更加复杂化,更加艺术化,桥梁的未来将更加多元化,是现代桥梁更现代,还是旧式桥梁的复兴,值得期待! 中国桥梁的历史可以上溯到6000年前的氏族公社时代,到了1000多年前的隋、唐、宋三代,古代桥梁发展到了巅峰时期。公元35年东汉光武帝时,在今宜昌和宜都之间,出现了架 设在长江上的第一座浮桥。 在秦汉时期,我国已广泛修建石粱桥。世界上现在是保 存着的最长、工程最艰巨的石粱桥,就是我国于1053一1059年 在福建泉州建造的万安桥,也称洛阳桥,此桥长达800米,共47 孔,位于“波涛汹涌,水深不可址”的海口江面上。此桥以 磐石铺遍桥位底,是近代筏形基础的开端,并且独具匠心地用养殖海生牡蛎的方法胶固桥基使成整体,此也是世界上 绝无仅有的造桥方法,近千年前就能在这种艰难复杂的水文 条件下建成如此的长桥,实是中华桥梁史上一次勇敢的突破。 我国古代石拱桥的杰出代表是举世闻名的河北省赵 县的赵州桥(又称安济桥),该桥在隋大业初年(公元605年左 右)为李春所创建,是一座空腹式的圆弧形石拱桥,净跨37m, 宽9m,拱失高度7.23m,在拱圈两肩各设有二个跨度不等的腹 拱,这样既能减轻桥身自重,节省材料,又便于排洪、增加美 观,赵州桥的设计构思和工艺的精巧,不仅在我国古桥是首屈一指,据世界桥梁的考证,像这样的敞肩拱桥,欧洲到19世纪中叶才出现,比我国晚了一千二百多年,赵州桥的雕 刻艺术,包括栏板、望柱和锁口石等,其上狮象龙兽形态逼 真,琢工的精致秀丽,不愧为文物宝库中的艺术珍品,我国 石拱桥的建造技术在明朝时曾流传到日本等国,促进了与世 界各国人民的文化交流并增进了友谊。 1240年建造的福建潭州虎渡桥,也是最令人惊奇的一 座粱式大桥,此桥总长约335m,某些石粱长达23.7m,沿宽度 用三根石粱组成,每根宽1.7m,高1.9m,重达200多吨,该桥一直 保存至今”历史记载,这些巨大石梁桥是利用潮水涨落浮运建 设的,足见我国古代加工和安装桥梁的技术何等高超。 广东潮安县横跨韩江的湘子桥(又名广济桥)此桥始 建于公元1169年,全桥长517.95m,总共20墩19孔,上部结构有 石拱、木梁、石梁等多种型式,还有用18条活船组成的长达 97.30m的开合式浮桥,设置浮桥的目的,一方面适应大型商 船和上游木排的通过,并且也避免了过多的桥墩阻塞河道, 以致加剧桥基冲刷而造成水害,这座世界上最早的开合式 桥,柱石桥之长、石墩之大、桥梁之多以及施工条件之困难 工程历时之久,都是古代建桥史上所罕见的。。 1957年,第一座长江大桥——武汉长江大桥的胜利建 成,结束了我国万里长江无桥的状况,从此“一桥飞架南北,天堑变通途”,桥的正桥为三联3X128m的连续钢桁粱,双 线铁路上层公路桥面宽18m,两侧各设2.25m人行道,包括引 桥在内全桥总长1670.4物,大型钢梁的制造和架设、深水管柱基础的施工等,对发展我国现代桥染技术开创了新路。 1969年胜利建成了举世瞩目的南京长江大桥,这是我国自行设计、制造、施工,并使用国产高强钢材的现代大型桥梁,正桥除北岸第一孔为128m简支钢桁粱外,其余为9 孔3联,每联为3x l60m的连续钢桁粱。上层是公路桥面,下层 为双线铁路,包括引桥在内,铁路部分全长6772m,公路部 分为4589m,桥址处水深流急,河床地,质极为复杂桥墩基础 的施工非常困难。南京长江大桥的建成显示出我国的建桥事 业已达到了世界先进水平,也是我国桥梁史又一个重要标 志。 在最近的1000年中,中国的桥梁技术全面落后于世界的脚步,中国第一座现代化桥梁的出现距今仅100多年历史,而且是由外国人建造的。从钱塘江大桥算起,中国人自己设计现代桥梁的历史还不足70年;从南京长江大桥算起,中国人自行设计建造大型桥梁的历史仅34年。而九十年代以来,中国桥梁的成就才使我们重新无愧于祖先地站到了世界前列,这是中国桥梁建设的伟大复兴时代。改革开放以来的20多年中,中国的桥梁建造技术取得了举世瞩目的成就,前十年为此做了经济上、技术上和人才上的准备,九十年代迎来了跨越式的发展。展望未来,随着中国经济的发展,一批更大的越江跨海工程的建设,中国桥梁将会创造更辉煌的成就。中华民族的伟大复兴,必将造就一代巨人去引领世界桥梁的未来。 1990年四川省在宜宾市建成的小南门桥,跨径达到240米,已是当时世界上中承式拱桥中跨径最大的一座。2001年11月7日,小南门大桥因吊杆锈蚀造成部分桥面跨塌,在修复过程中,技术人员对全桥进行了检测,大桥整体结构依然完好。小南门大桥所付出的代价是创新的代价,没有创新我们就不可能一睹1400年前的赵州桥。 1991年,四川省苍溪县建成了中国第一座钢管混凝土拱桥——旺苍大桥,跨径115米。在此之后的几年中,各地虽然兴建了不少钢管混凝土拱桥,但跨径始终在200米以下徘徊,直到1998年,广西壮族自治区建成了三岸邕江大桥,一举将此类桥梁的跨径提高到270米;1999年又建成了跨径220米的六景大桥。此后,在湖北、浙江和贵州等省,跨径在250米左右的钢管混凝土公路、铁路拱桥开始增多。 1995年贵州省瓮安县建成江界河大桥,首次突破了中国混凝土拱桥跨径 300米大关,达到330米,一举成为世界最大的桁式组合拱桥。不仅如此,其拱顶桥面至水面高度达263米,居中国各类桥梁之首。大桥一跨飞跃乌江天险,主孔分108个桁片预制,运用桁架伸臂法悬拼架设,两岸引孔为桁式刚构,全桥轻盈简洁,凌空飞渡,气势不凡。 1997年重庆万县长江大桥建成。大桥位于万州区(原万县市)黄牛孔处,是上海至成都高速公路跨越峡江天险的特大型拱桥。大桥一跨飞渡长江,全长 米,主拱圈为钢管混凝土劲性骨架箱型混凝土结构,主跨420米,桥面宽24米,为双向四车道,是1995年贵州省瓮安县建成江界河大桥,首次突破了中国混凝土拱桥跨径 300米大关,达到330米,一举成为世界最大的桁式组合拱桥。不仅如此,其拱顶桥面至水面高度达263米,居中国各类桥梁之首。大桥一跨飞跃乌江天险,主孔分108个桁片预制,运用桁架伸臂法悬拼架设,两岸引孔为桁式刚构,全桥轻盈简洁,凌空飞渡,气势不凡。 华夏第一桥——江阴长江公路大桥,是我国“八五”规划的“两纵两横”国道主干线中沿海主骨架的跨江工程,是目前 中国第一、世界第四大跨径钢悬索桥。大桥由桥塔、主缆、锚旋和钢箱梁等主要部件组成。大桥全长3071 米,主跨1385米;桥面宽33.8米,双向六车道,设计车速100公里/小时;通航净空为50米,可通行五万 吨级巴拿马型散货轮。江阴长江公路大桥的两根主索,各长2400多米,直径近1米,每根重1.4万 多吨,主索用127根直径5.3毫米的钢丝搅成索,再由169股钢索组成主索。主桥每边有85个吊杆,每个吊杆2根,用以连结主索和桥面。 两岸索塔标高为196.236米,相当于65层搂高。北塔基长43.5米,宽73.5米,下有123根近90米长的基础桩。北锚的混凝土陈井平面长69米,宽51米(面积相当于一片足球场大)。沉入地面58米,被称为世界第一大沉井。江阴长江大桥于1994年11月22日正式开工,1999年10月1日胜利通车,名列“中国第一,世界第四”。 改革开放以来的20多年中,中国的桥梁建造技术取得了举世瞩目的成就,前十年为此做了经济上、技术上和人才上的准备,九十年代迎来了跨越式的发展。展望未来,随着中国经济的发展,一批更大的越江跨海工程的建设,中国桥梁将会创造更辉煌的成就。中华民族的伟大复兴,必将造就一代巨人去引领世界桥梁的未来。

310 评论

MayQueen小乖

这个问题太大了,建议去百度一下。或者找些桥梁的书看看。

322 评论

糖糖和胖秘

世界桥梁工程发展格局演变早在距今约三千年的周文王时,我国就已在宽阔的渭河上架设过大型浮桥。后陆续涌现了一大批以石料、铁为建材的桥梁建筑,其中以赵州桥(跨度,公元605年)、大渡河铁索桥(跨度约100m,1803年)等为标志,体现了古代桥梁的伟大成就,也显示了古代中国的强盛。18世纪以后,欧洲率先进入工业社会,从根本上改变了200年西方文明的历史,促进了大规模的铁路桥梁建设。迄今,以英国不列颠尼亚箱梁桥(跨度141m,185年)、美国布鲁克林悬索桥(跨度486m,1883年)及英国福斯悬臂桁架桥(跨度520m,1890年)为标志的桥梁建筑仍散发着西方工业文明的气息。20世纪初期,西方工业社会获得空前发展,日趋发达。于30年代掀起了第1个大跨悬索桥建设高峰,以美国纽约、华盛顿桥(跨度1067m,1931年)、旧金山金门大桥(跨度1280m,1937年)为代表显示出其桥梁领域的垄断实力。二战后,德国、日本再度堀起。50年代起,德国经济的复苏推动了德国桥梁工程的发展,斜拉桥结构得以初现光芒,并很快波及世界桥梁工程界。60年代,日本、丹麦开辟了兴建跨海工程的先河。80年代初,我国迎来了改革开放的新时期。经过近20年的发展,我国经济突飞猛进,国力显著增强。同时,我国也加快了基础建设的步伐,一大批桥梁如雨后春笋,层出不穷。特别是近十年来建成的代表当今世界桥梁最高发展水平的一大批斜拉桥、悬索桥(见表1,表2),更是确定了中国的世界地位。当今,世界桥梁工程的格局如同国际政局的多极化局面,不再是美、英垄断的天下,呈现了以日、美、英、中、德、法及其他国家共同发展的新局面。展望下一世纪,崛起的中国定会有再现东方文明的辉煌时刻。320世纪桥梁发展主要成就学科发展桥梁工程已被确认为一门独立的科学技术,不再是仅凭桥梁设计者们智慧和经验的创造过程。它已发展成融理论分析、设计、施工控制及管理于一体的系统性学科。由于科技的进步,一些相关的学科也渗透入桥梁工程领域中,发展了新的分支学科,如桥梁抗风、抗震、桥梁CAD、桥梁的施工控制及桥梁检测技术等等。建设规模及施工技术跨径不断增大目前,钢梁、钢拱的最大跨径已超过500m,钢斜拉桥为890m,而钢悬索桥达1990m。随着跨江跨海的需要,钢斜拉桥的跨径将突破1000m,钢悬索桥将超过3000m。至于混凝土桥,梁桥的最大跨径为270m,拱桥已达420m,斜拉桥为530m。桥型不断丰富20世纪50~60年代,桥梁技术经历了一次飞跃:混凝土梁桥悬臂平衡施工法、顶推法和拱桥无支架方法的出现,极大地提高了混凝土桥梁的竞争能力;斜拉桥的涌现和崛起,展示了丰富多彩的内容和极大的生命力;悬索桥采用钢箱加劲梁,技术上出现新的突破。所有这一切,使桥梁技术得到空前的发展。结构不断轻型化悬索桥采用钢箱加劲梁,斜拉桥在密索体系的基础上采用开口截面甚至是板,使梁的高跨比大大减少,非常轻颖;拱桥采用少箱甚至拱肋或桁架体系;梁桥采用长悬臂、板件减薄等,这些都使桥梁上部结构越来越轻型化。桥梁墩台及基础技术不断发展随着上部结构的迅猛发展,必然给下部结构提出更高的要求。自钢筋混凝土推广使用以来,桥梁墩台的结构形式趋于多样化。除了传统的重力墩台外,发展了空心墩、桩柱式墩台、构架式墩台、框架式墩台、双柱式墩、拼装墩台及预应力钢筋薄壁墩等新型墩台,并日趋轻型、柔性化。高墩技术也有较大发展。与此同时,桥梁基础也在发展。50年代以后,越江、跨海湾、海峡大桥的兴建以中国、日本为首大力发展了深水基础技术。如50年代在武汉长江大桥中首创了管柱基础;60年代在南京长江大桥中发展了重型沉井、深水钢筋混凝土沉井和钢沉井;70年代在九江长江大桥中创造了双壁钢围堰钻孔桩基础;80年代后进一步发展了复合基础。在日本,由于本四联络线工程的建设,近20年来,其深水基础技术发展很快,以地下连续墙、设置沉井和无人沉箱技术最为突出。设计风格桥梁设计风格的转变主要表现为以下3个方面:(1)由于计算机的出现与发展,为桥梁设计师们提供了新的设计工具,并已逐步取代了手工制图。桥梁设计师们的创造力与想象力在电脑中得以充分展现。(2)随着人类对地球生态平衡、自然环境及资源的日益重视,对桥梁工程提出了与周围环境相协调的要求桥梁的设计更加注重景观设计。(3)大跨度桥梁的发展,不仅要求对成桥状态进行设计,对施工阶段的设计也很重视,将施工方法与施工过程相结合已成为现代桥梁设计的一大特色。4桥梁工程发展探因材料革新土木工程发展史表明,材料的每一次变革都会带来土木工程的巨大飞跃。桥梁工程因此获得了一次又一次的发展机遇。公元前5世纪至公元前3世纪,砖出现于中国,实现了土木工程的第1次飞跃,开始了砖、木结构的桥梁时代。19世纪波特兰水泥、现代钢材在欧洲的出现,实现了土木工程的第2次飞跃,桥梁工程获得了空前大发展,桥梁结构形式及规模有了突破。20世纪初叶,预应力混凝土的出现,实现了土木工程的第3次飞跃,开始了混凝土桥梁结构的时代。20世纪70年代开始,出现了以碳纤维为代表的高级复合材料,首先被用于航空、航天等高科技领域,现正逐步渗透到桥梁工程领域之中。电子计算机技术当今的各种高新技术革命中,以计算机技术革命最为耀眼。自本世纪70年代第1台微型计算机的诞生,开辟了计算机新时代,从根本上改变了结构工程分析的历史,一门新的学科———计算结构力学得以产生,有限元法就此成为分析复杂桥梁结构形式的主要方法。随着计算机技术的不断进步,促成了以计算机为辅助设计的桥梁CAD技术分支学科的形成。预应力思想预应力思想被喻为本世纪中最为革命的结构思想,它源于1910年法国工程师金.弗来西奈设计建造的足尺试验拱桥(跨度)中。此后的数十年里被推广到混凝土结构中,形成了一整套预应力混凝土技术。在桥梁工程的建设中,发挥出重大作用,创造了巨大的经济与社会效益,其应用已遍及各种桥梁结构形式,不仅带动了中小跨度桥梁的迅猛发展,也促成了大跨度桥梁的进步。尤其在斜拉桥中,这种思想的发挥达到了顶点。此外,它也被用于桥梁工程的施工过程之中,衍生出许多新的施工方法和工艺;而在旧桥加固领域里,也显示出很强的竞争力。当今由于预应力思想的结合,使得预应力混凝土已成为本世纪最主要的桥梁材料。自架设体系思想在本世纪桥梁工程的发展历程中,预应力思想促进了桥梁结构形式的变革,而自架设体系思想带来了大跨度桥梁施工技术的变革,两种思想交相辉映。自架设体系思想是通过将结构离散成若干小的单元或构件,以便于预制或现浇,然后按特定的施工步骤进行拼装或浇注,已完成的结构部分就可以作为支撑体系参与下一阶段的施工,直到全部结构的完成。它体现了“化整为零、集零为整”的特点。这种思想在大跨度悬索桥、斜拉桥、拱桥及连续梁桥等桥型的施工中得到灵活应用。在施工过程中,由于存在着体系转化及受几何非线性、材料非线性因素的影响,施工期间结构的受力状态比成桥状态更为不利,于是提出了对施工阶段进行控制设计的要求。几经发展,施工控制技术已逐步成为一门新兴的桥梁工程分支学科。桥梁设计竞赛机制桥梁设计竞赛的传统在19世纪末就已在瑞士盛行,促进了当时瑞士桥梁工程的发展。两位世界级的桥梁设计师罗伯特.马亚尔(1872-1940)和奥斯玛.安曼(1879-1966)就深得这种传统的熏陶,前者曾创造出轻盈的薄混凝土拱桥,而后者设计了乔治.华盛顿桥、维拉扎诺悬索桥。随后在国外的许多大型跨海工程中都广泛地实行了竞赛制,如丹麦的大贝尔特工程,由于政治原因设计竞赛持续了25年之久,期间许多新的设计构思层出不穷,积累了丰富的桥梁结构设计经验。因而设计竞赛的实行一定程序上推动了桥梁工程事业的发展。施工管理体制桥梁工程的建设过程实际上也是施工组织活动的过程。18世纪,欧洲兴起花型建筑的热潮,开始出现设计与施工的分离。后来在英国进一步发展成了工程建设监理体制。1956年由国际咨询工程师联合(FIDIC)和欧洲建筑工程联合会(FIEC)共同发起对英国土木工程师学会(ICE)制定的合同条款进行修改,颁布“FIDIC”合同条件,后经历了1969、1977、1987年的3次改版。几十年来它已被世界各国土木工程界广泛接受和借鉴,给桥梁工程建设行业注入了新的活力,为确保桥梁的工程质量、加快工程进度、控制工程造价提供了可靠的保障。521世纪桥梁工程发展前瞻学科发展如前所述,本世纪以来桥梁结构工程已发展成系统性的工程学科,主体框架已构筑完毕,但远未完善。可以预见,未来的世纪,这些分支将得以独立发展成熟,同时也会相互渗透。桥梁抗风领域,大跨度桥梁风致振动控制技术将成为研究的热点,试验仍将以风洞为依托。随着计算机技术的不断更新进步,数值风洞技术可望有突破。随着计算机微处理器技术的迅猛发展,桥梁CAD技术将面临新的发展机遇。集结构分析、工程制图、工程数据库及专家系统的桥梁CAD软件将会问世,并将迈入桥梁设计的网络时代。桥梁施工控制技术将进一步发展,GPS(Global Posi-tioning System)技术的应用将成为施工测量技术研究的热点。基础工程发展的重点在于海洋钻井平台技术的引进。旧桥加固检测技术的开发应用将成为下一世纪桥梁工程领域的另一道风景线。材料发展目前,在世界范围,高性能混凝土的研究在深入,应用在扩展。北欧国家如挪威、瑞典,桥梁基本都采用HPC(高性能混凝土)建造,目前对桥梁混凝土除高耐久与高强要求外,又增加了轻质的要求,因为桥梁上部结构使用轻质HPC(容重约),桥梁自重减轻了,可以降低桥梁下部结构的成本,轻质高强(56~74MPa)HPC已经成功地在挪威一些工程中应用。美国、加拿大在SHRP计划的研究与应用基础上,正在大力宣传和推广应用HPC建设桥梁。有理由相信,高性能混凝土将获得越来越广泛的应用,并且会成为21世纪桥梁建设的优选工程材料。

140 评论

油墩子2016

我国道路桥梁工程的建设规模不断扩大,又因道路桥梁工程体量较大、施工周期较长,施工过程中任何一个环节的问题都可能对最终的造价管理效果产生影响,因此,坚持全过程管控理念,把握道路桥梁施工的具体特点,实现对施工全过程造价的有效管控,是新时期道路桥梁施工企业实现可持续发展的必要手段。

138 评论

辉love玉

世界桥梁工程发展格局演变早在距今约三千年的周文王时,我国就已在宽阔的渭河上架设过大型浮桥。后陆续涌现了一大批以石料、铁为建材的桥梁建筑,其中以赵州桥(跨度,公元605年)、大渡河铁索桥(跨度约100m,1803年)等为标志,体现了古代桥梁的伟大成就,也显示了古代中国的强盛。18世纪以后,欧洲率先进入工业社会,从根本上改变了200年西方文明的历史,促进了大规模的铁路桥梁建设。迄今,以英国不列颠尼亚箱梁桥(跨度141m,185年)、美国布鲁克林悬索桥(跨度486m,1883年)及英国福斯悬臂桁架桥(跨度520m,1890年)为标志的桥梁建筑仍散发着西方工业文明的气息。20世纪初期,西方工业社会获得空前发展,日趋发达。于30年代掀起了第1个大跨悬索桥建设高峰,以美国纽约、华盛顿桥(跨度1067m,1931年)、旧金山金门大桥(跨度1280m,1937年)为代表显示出其桥梁领域的垄断实力。二战后,德国、日本再度堀起。50年代起,德国经济的复苏推动了德国桥梁工程的发展,斜拉桥结构得以初现光芒,并很快波及世界桥梁工程界。60年代,日本、丹麦开辟了兴建跨海工程的先河。

359 评论

哈哈2974

320世纪桥梁发展主要成就学科发展桥梁工程已被确认为一门独立的科学技术,不再是仅凭桥梁设计者们智慧和经验的创造过程。它已发展成融理论分析、设计、施工控制及管理于一体的系统性学科。由于科技的进步,一些相关的学科也渗透入桥梁工程领域中,发展了新的分支学科,如桥梁抗风、抗震、桥梁CAD、桥梁的施工控制及桥梁检测技术等等。建设规模及施工技术跨径不断增大目前,钢梁、钢拱的最大跨径已超过500m,钢斜拉桥为890m,而钢悬索桥达1990m。随着跨江跨海的需要,钢斜拉桥的跨径将突破1000m,钢悬索桥将超过3000m。至于混凝土桥,梁桥的最大跨径为270m,拱桥已达420m,斜拉桥为530m。桥型不断丰富20世纪50~60年代,桥梁技术经历了一次飞跃:混凝土梁桥悬臂平衡施工法、顶推法和拱桥无支架方法的出现,极大地提高了混凝土桥梁的竞争能力;斜拉桥的涌现和崛起,展示了丰富多彩的内容和极大的生命力;悬索桥采用钢箱加劲梁,技术上出现新的突破。所有这一切,使桥梁技术得到空前的发展。结构不断轻型化悬索桥采用钢箱加劲梁,斜拉桥在密索体系的基础上采用开口截面甚至是板,使梁的高跨比大大减少,非常轻颖;拱桥采用少箱甚至拱肋或桁架体系;梁桥采用长悬臂、板件减薄等,这些都使桥梁上部结构越来越轻型化。桥梁墩台及基础技术不断发展随着上部结构的迅猛发展,必然给下部结构提出更高的要求。自钢筋混凝土推广使用以来,桥梁墩台的结构形式趋于多样化。除了传统的重力墩台外,发展了空心墩、桩柱式墩台、构架式墩台、框架式墩台、双柱式墩、拼装墩台及预应力钢筋薄壁墩等新型墩台,并日趋轻型、柔性化。高墩技术也有较大发展。与此同时,桥梁基础也在发展。50年代以后,越江、跨海湾、海峡大桥的兴建以中国、日本为首大力发展了深水基础技术。如50年代在武汉长江大桥中首创了管柱基础;60年代在南京长江大桥中发展了重型沉井、深水钢筋混凝土沉井和钢沉井;70年代在九江长江大桥中创造了双壁钢围堰钻孔桩基础;80年代后进一步发展了复合基础。在日本,由于本四联络线工程的建设,近20年来,其深水基础技术发展很快,以地下连续墙、设置沉井和无人沉箱技术最为突出。设计风格桥梁设计风格的转变主要表现为以下3个方面:(1)由于计算机的出现与发展,为桥梁设计师们提供了新的设计工具,并已逐步取代了手工制图。桥梁设计师们的创造力与想象力在电脑中得以充分展现。(2)随着人类对地球生态平衡、自然环境及资源的日益重视,对桥梁工程提出了与周围环境相协调的要求桥梁的设计更加注重景观设计。(3)大跨度桥梁的发展,不仅要求对成桥状态进行设计,对施工阶段的设计也很重视,将施工方法与施工过程相结合已成为现代桥梁设计的一大特色。4桥梁工程发展探因材料革新土木工程发展史表明,材料的每一次变革都会带来土木工程的巨大飞跃。桥梁工程因此获得了一次又一次的发展机遇。公元前5世纪至公元前3世纪,砖出现于中国,实现了土木工程的第1次飞跃,开始了砖、木结构的桥梁时代。19世纪波特兰水泥、现代钢材在欧洲的出现,实现了土木工程的第2次飞跃,桥梁工程获得了空前大发展,桥梁结构形式及规模有了突破。20世纪初叶,预应力混凝土的出现,实现了土木工程的第3次飞跃,开始了混凝土桥梁结构的时代。20世纪70年代开始,出现了以碳纤维为代表的高级复合材料,首先被用于航空、航天等高科技领域,现正逐步渗透到桥梁工程领域之中。电子计算机技术当今的各种高新技术革命中,以计算机技术革命最为耀眼。自本世纪70年代第1台微型计算机的诞生,开辟了计算机新时代,从根本上改变了结构工程分析的历史,一门新的学科———计算结构力学得以产生,有限元法就此成为分析复杂桥梁结构形式的主要方法。随着计算机技术的不断进步,促成了以计算机为辅助设计的桥梁CAD技术分支学科的形成。预应力思想预应力思想被喻为本世纪中最为革命的结构思想,它源于1910年法国工程师金.弗来西奈设计建造的足尺试验拱桥(跨度)中。此后的数十年里被推广到混凝土结构中,形成了一整套预应力混凝土技术。在桥梁工程的建设中,发挥出重大作用,创造了巨大的经济与社会效益,其应用已遍及各种桥梁结构形式,不仅带动了中小跨度桥梁的迅猛发展,也促成了大跨度桥梁的进步。尤其在斜拉桥中,这种思想的发挥达到了顶点。此外,它也被用于桥梁工程的施工过程之中,衍生出许多新的施工方法和工艺;而在旧桥加固领域里,也显示出很强的竞争力。当今由于预应力思想的结合,使得预应力混凝土已成为本世纪最主要的桥梁材料。自架设体系思想在本世纪桥梁工程的发展历程中,预应力思想促进了桥梁结构形式的变革,而自架设体系思想带来了大跨度桥梁施工技术的变革,两种思想交相辉映。自架设体系思想是通过将结构离散成若干小的单元或构件,以便于预制或现浇,然后按特定的施工步骤进行拼装或浇注,已完成的结构部分就可以作为支撑体系参与下一阶段的施工,直到全部结构的完成。它体现了“化整为零、集零为整”的特点。这种思想在大跨度悬索桥、斜拉桥、拱桥及连续梁桥等桥型的施工中得到灵活应用。在施工过程中,由于存在着体系转化及受几何非线性、材料非线性因素的影响,施工期间结构的受力状态比成桥状态更为不利,于是提出了对施工阶段进行控制设计的要求。几经发展,施工控制技术已逐步成为一门新兴的桥梁工程分支学科。桥梁设计竞赛机制桥梁设计竞赛的传统在19世纪末就已在瑞士盛行,促进了当时瑞士桥梁工程的发展。两位世界级的桥梁设计师罗伯特.马亚尔(1872-1940)和奥斯玛.安曼(1879-1966)就深得这种传统的熏陶,前者曾创造出轻盈的薄混凝土拱桥,而后者设计了乔治.华盛顿桥、维拉扎诺悬索桥。随后在国外的许多大型跨海工程中都广泛地实行了竞赛制,如丹麦的大贝尔特工程,由于政治原因设计竞赛持续了25年之久,期间许多新的设计构思层出不穷,积累了丰富的桥梁结构设计经验。因而设计竞赛的实行一定程序上推动了桥梁工程事业的发展。施工管理体制桥梁工程的建设过程实际上也是施工组织活动的过程。18世纪,欧洲兴起花型建筑的热潮,开始出现设计与施工的分离。后来在英国进一步发展成了工程建设监理体制。1956年由国际咨询工程师联合会(FIDIC)和欧洲建筑工程联合会(FIEC)共同发起对英国土木工程师学会(ICE)制定的合同条款进行修改,颁布了“FIDIC”合同条件,后经历了1969、1977、1987年的3次改版。几十年来它已被世界各国土木工程界广泛接受和借鉴,给桥梁工程建设行业注入了新的活力,为确保桥梁的工程质量、加快工程进度、控制工程造价提供了可靠的保障。521世纪桥梁工程发展前瞻学科发展如前所述,本世纪以来桥梁结构工程已发展成系统性的工程学科,主体框架已构筑完毕,但远未完善。可以预见,未来的世纪,这些分支将得以独立发展成熟,同时也会相互渗透。桥梁抗风领域,大跨度桥梁风致振动控制技术将成为研究的热点,试验仍将以风洞为依托。随着计算机技术的不断更新进步,数值风洞技术可望有突破。随着计算机微处理器技术的迅猛发展,桥梁CAD技术将面临新的发展机遇。集结构分析、工程制图、工程数据库及专家系统的桥梁CAD软件将会问世,并将迈入桥梁设计的网络时代。桥梁施工控制技术将进一步发展,GPS(Global Posi-tioning System)技术的应用将成为施工测量技术研究的热点。基础工程发展的重点在于海洋钻井平台技术的引进。旧桥加固检测技术的开发应用将成为下一世纪桥梁工程领域的另一道风景线。材料发展目前,在世界范围,高性能混凝土的研究在深入,应用在扩展。北欧国家如挪威、瑞典,桥梁基本都采用HPC(高性能混凝土)建造,目前对桥梁混凝土除高耐久与高强要求外,又增加了轻质的要求,因为桥梁上部结构使用轻质HPC(容重约),桥梁自重减轻了,可以降低桥梁下部结构的成本,轻质高强(56~74MPa)HPC已经成功地在挪威一些工程中应用。美国、加拿大在SHRP计划的研究与应用基础上,正在大力宣传和推广应用HPC建设桥梁。有理由相信,高性能混凝土将获得越来越广泛的应用,并且会成为21世纪桥梁建设的优选工程材料。

257 评论

相关问答

  • 国内外桥梁研究现状分析论文

    只要是桥梁工程类的学术论文就行

    石头脾气 6人参与回答 2023-12-09
  • 桥梁建设的国内外研究现状论文

    桥梁工程学的发展主要取决于交通运输对它的需要。古代桥梁以通行人、畜为主,载重不大,桥面纵坡可以较陡,甚至可以铺设台阶。在有重载马车之后,载重量逐步加大,桥面纵坡

    馋嘴鱼了乐 6人参与回答 2023-12-09
  • 论文国内外的研究现状

    国内外研究现状的写法: 在撰写之前,要先把从网络上和图书馆收集和阅读过的与所写毕业论文选题有关的专著和论文中的主要观点归类整理,找出课题的研究开始、发展和现在研

    马路小花 3人参与回答 2023-12-10
  • 桥梁裂缝的研究现状论文

    论文关键词 :混凝土裂缝温度变化基础变形早期养护 论文摘要 :本文阐述了混凝土桥梁裂缝的种类,分析了混凝土桥梁裂缝的成因,提出了相应的措施,供大家参考。 1前言

    WaimanTong 2人参与回答 2023-12-11
  • 我国桥梁研究现状论文题目

    道路桥梁,一般由路基、路面、桥梁、隧道工程和交通工程设施等几大部分组成。下面是我精心推荐的一些道路桥梁工程技术论文题目,希望你能有所感触! 道路桥梁

    xian蝦米 3人参与回答 2023-12-08