天天要开心哦
(一) 成像测井识别裂缝
裂缝在井壁电成像和声成像测井图上均表现为连续或间断的深色条带,其形状取决于裂缝的产状。垂直缝和水平缝分别为竖直的和水平的条带,斜交缝为正弦波条带状,网状缝为正弦波条带状、竖直的和水平的条带的组合特征。低角度裂缝、高角度缝和网状缝3种裂缝性储层的电成像测井响应特征如图4-21所示。
对裂缝性质的解释主要要注意天然裂缝与层理、各种诱导裂缝,如钻具振动形成的裂缝、重泥浆造成的压裂缝、应力释放裂缝和井眼崩落的区别。特别是应力释放裂缝,既可在岩心上出现,也可在井壁上出现。在成像图上的特征为1组接近平行的高角度裂缝,且裂缝面十分规则。在常规测井解释中,容易误解释为低孔高角度裂缝型储层。当出现在岩心上时,很容易给岩心描述带来错觉,必须注意识别。其方法是看裂缝中有无泥浆侵入的痕迹,无侵入者为应力释放裂缝。应力释放裂缝只有1组,且裂缝面较为完整;而压裂缝或为3组,或为一组不完整的,且仅出现在两个对称方向上的高角度裂缝。
根据X1井EMI图像显示特征,在EMI测量井段内,裂缝较发育,类型有:斜交缝、高角度缝、网状缝(表4-6)。
表4-6 X1井石炭系裂缝统计表
续表
图4-21 X1井裂缝类型EMI图像
斜交缝:倾角小于90°的开口缝,包括高角度斜交缝(倾角≥70°)、低角度斜交缝(10°≤倾角<70°),EMI图像显示为黑色正弦曲线。EMI测量井段内发育有多组(数条)斜交缝。
高角度缝:倾角等于90°的开口缝,EMI图像上表现为黑色竖线,缝宽不等,通常情况下两条线相互平行,延伸较长。
网状缝:由两组以上产状不同的裂缝相互切割的呈网状的开口缝组成。本井石炭系网状缝相对欠发育,网状缝基本是与斜交缝交替发育。
(二) 常规测井识别裂缝
理论研究结果表明,深、浅双侧向电阻率的大小及差异性质除受流体性质影响外,还严重地受到另外两个因素的控制。一是裂缝张开度、裂缝密度、裂缝产状、裂缝径向延伸等裂缝自身的特征;二是岩石本身的电阻率。
1. 双侧向测井
(1) 裂缝性储层在深、浅双侧向上的响应特征
由于深、浅双侧向电阻率的大小及差异性质受流体性质、裂缝张开度、裂缝密度、裂缝产状、裂缝径向延伸以及岩石本身的电阻率影响。因此高角度裂缝(>75°)为主的储层来说,深、浅双侧向出现正差异,且比值随裂缝倾角、裂缝张开度、裂缝径向延伸度、裂缝纵向穿层长度的增大而增大。对于低角度裂缝(<75°),深浅侧向出现负差异。此外还必须考虑到岩块电阻率Rb的影响,即对同样的裂缝,Rb越高,深浅双侧向的电阻率差异也越大。斜角缝、高角度缝和网状缝三种裂缝性储层的深、浅双侧向测井响应特征分别如图4-22~图4-24。
图4-22 X2井斜角缝测井响应特征
(2) 裂缝性储层在微球形聚焦测井曲线上的响应特征
微球形聚焦测井具有比双侧向的径向探测深度浅,垂直分辨率高的特点,因此它受井眼和泥饼的影响比双侧向测井大,但它分辨裂缝的能力却远比双侧向强。因此,当井眼较规则时,微球形聚焦测井在裂缝段将发生比双侧向较多的起伏,且在双侧向电阻率背景上来回变化,如图4-23。
2. 密度测井
密度测井测量的是岩石的体积密度,主要反映的是岩石的总孔隙度,而与孔隙的几何形态无关。由于密度测井仪为极板推靠式仪器,当极板接触到天然裂缝时会对密度测井产生较大影响。
图4-23 X3井高角度缝测井响应特征
图4-24 X4井网状缝测井响应特征
3. 补偿中子
与密度测井类似,补偿中子测量的也是岩石的总孔隙度,不受孔隙几何形态和分布的影响。补偿中子由于其测井探测深度较大,而成为确定非均质的裂缝性火山岩油藏总孔隙度的有效方法。在裂缝性火山岩剖面层段上,补偿中子显示为相对高的孔隙度值,而且裂缝越发育,中子孔隙度就越大。与其他常规测井类似,补偿中子也同样只能指示裂缝带的位置,不能确定裂缝的发育方向。
4. 声波时差
裂缝在声波时差曲线上的反应与井筒周围裂缝的产状及发育程度有关。声波时差对高角度缝没有反应,对低角度缝或网状裂缝,声波时差将相应增大。当遇到大的水平裂缝或网状裂缝时,声波能量急剧衰减而产生周波跳跃现象。因此利用声波时差可以识别水平裂缝或网状裂缝,但不能用于识别垂直裂缝。
(三) 地层倾角测井识别裂缝
地层倾角测井是探测天然裂缝的各种方法中较为有效的方法之一。用地层倾角测井资料识别裂缝的方法有:裂缝识别测井、电导率异常检测、定向微电阻率、双井径曲线等。
1. 裂缝识别测井(FIL)
地层倾角的微电阻率曲线常在高阻背景上以低的电阻率异常显示出裂缝。FIL是利用地层倾角的4条微电阻率曲线,按顺序排列组合相邻两极板的4组重叠曲线(1-2,2-3,3-4,4-1),裂缝则以明显的高电导率异常显示出来。当任一极板通过充满高电导率泥浆的裂缝时,其电导率升高,重叠曲线出现幅度差。一般高倾角裂缝常以一组或两组明显的幅度差出现,垂直裂缝在两条曲线上有较长井段的异常;而水平裂缝在4条重叠曲线上均有较短的异常。这种方法的缺点是不能准确地识别沉积构造和裂缝。
2. 利用电导率异常检测识别火山岩裂缝
该方法是利用地层倾角测量的原始记录在曲线对比垂向移动范围所确定的井段上,求出各极板与相邻两个极板电导率的最小正差异值,并把此值叠加在该极板的方位曲线上。作为判别裂缝的标志,这种方法排除了由于层理所引起的电导率异常,突出了与裂缝有关的电导率异常。在电导率异常检测DCA成果图上,不仅可以直接显示出裂缝的存在,而且直接给出了裂缝存在的方位。用该方法必须满足下列3个条件:①电导率超过一定的水准,②电导率数值之差足够大,③异常可以在极少数连续层位上探测到。
3. 双井径重叠法
双井径重叠是识别裂缝的一种重要方法,通常具有较好的使用效果。根据地层倾角测井曲线显示的定向扩径、椭圆形井眼及相对方位角曲线平直无明显变化等,可以划分出高角度裂缝层段。而且,根据扩径方位或椭圆形井眼的长轴方向,可以确定高角度裂缝的方向。一般双井径曲线值与钻头直径均相等为硬地层,双井径曲线值均小于钻头直径为渗透层,双井径曲线值均大于钻头直径为泥岩或疏松易塌层,双井径曲线值之一大于钻头直径,另一等于或小于钻头直径,呈椭圆形井眼,为高角度裂缝。
(四) 利用双侧向测井资料定性识别裂缝的实现方法
为了能有效识别出裂缝、优化单井射孔层段,从而更好地指导现场生产工作,在基于对众多的成像测井资料与常规测井资料进行对比分析后,建立了天然裂缝的常规测井解释模型。这种方法不同于裂缝孔隙度计算,是一种定性的判断方法,其主要方法是首先提取成像测井资料中典型的裂缝,然后对常规测井资料进行标定,从而提取裂缝在常规测井资料中的响应特征,然后针对这些特征进行编写识别程序,从而使用计算机对裂缝进行自动识别评价。
通过分析笔者发现当地层出现网状缝或其他类型的斜交缝的时候,微球测井曲线一般会比较迅速地下穿双侧向,在非裂缝处微球一般会悬浮于双侧向之上。其原理为:井壁的张开裂缝会导致微球电阻率值(RXO)的急剧下降(张开裂缝中充满泥浆所致),依此可以识别裂缝发育井段。通过与成像测井对比发现,该方法可以识别多数的张开裂缝,但无法区别钻井诱导裂缝。
其识别图版为:
BRXO≤并且BXOT≤
则该井段为裂缝发育井段当RT≤70和RXO≤70的情况不能使用本方法判断。
其中:BRXO=RXO/RXO1;
BXOT=RXO/RT。
式中:RXO———冲洗带电阻率;
RT———地层真电阻率;
BRXO———冲洗带电阻率变化幅度;
BXOT———冲洗带电阻率与地层真电阻率幅度比;
RXO1———RXO曲线上当前深度点的上一个采样点。
通过BRXO和BRXT的斜率大小来判断裂缝的存在。
图4-25是利用该方法进行裂缝识别的一个实例,图中第三道裂缝指示曲线即是根据双侧向和微球形聚焦测井曲线计算得到的,它只是一条定性指示曲线。无量纲,代表该深度存在裂缝或裂缝发育的相对程度。
通过利用常规测井曲线计算判断的储层裂缝段与成像测井拾取的裂缝层段对比,认为利用常规测井资料判断裂缝的方法是可行的,也是较为有效的。
(五) 基于测井曲线元的裂缝定量识别
针对火山岩裂缝性油气藏裂缝测井识别这一难题,在充分分析其裂缝曲线元及其变化特征的基础上,刻画了裂缝曲线元的数学特征,建立了基于测井曲线元的裂缝概率模型,进而来计算裂缝发育的概率。
裂缝的存在对电性、放射性等各种物理性质均有不同程度的影响,其影响可在测井曲线元的变化形态上造成异常响应。由于各种测井方法对裂缝的敏感程度并非完全相同,加之某些非裂缝因素也可能引起与裂缝相同的异常响应。所以,用一、二种常规测井方法识别裂缝的准确性往往很低,在井眼条件较差的情况下尤其如此,而多种测井信息综合反映裂缝的可能性明显增大。因此,本节利用多种常规测井信息来建立基于测井曲线元的裂缝概率模型,进而来对研究工区的裂缝进行定量识别。
1. 裂缝曲线元及其特征
在裂缝发育段,三侧向电阻率曲线和微电阻率都比上下相邻曲线段读值降低,但不同的层段降低的程度有所不同。也就是说,同样是裂缝发育段,曲线的形态还与岩性、层厚、泥浆电阻率、侵入深度等因素有关。而这些因素的影响都反映在曲线元的形态变化上。
图4-25 X5井利用双侧向和微球形聚焦测井识别裂缝实例
为了便于准确地刻画测井曲线的变化形态,引入了测井曲线元的概念。在测井曲线上,如果对曲线所考查的某一性质与邻近的曲线段明显不同,则把这样的一段曲线称为测井曲线元,简称为曲线元。记为
准噶尔盆地火山岩储层测井评价技术
或者记为C∶C∈[a,b]。通常a,b为测井曲线的左右刻度。
假设Ci-1∈[a,b]、Ci∈[a,b]、Ci+1∈[a,b]分别为相邻的3段曲线元,假设Ai-1,Ai,Ai+1表示相应曲线元的某一性质,ε1为一给定值,依据定义则有
准噶尔盆地火山岩储层测井评价技术
式(4-13)中,F并不表示一种单纯的映射,而是一种刻度,就是一种度量相邻曲线元某一特征的差别的方式。ε1是针对某一项待考察的指标给定的限定值,也就是划分不同曲线元的截至值。
若已知Ci∈[a,b]为一曲线元,[a,b]为该曲线的左右刻度。有时这一区间也可限定在该段曲线的最大最小值之间。
曲线元的数理统计分析主要计算曲线元的均值μ、极差J、数学期望E、方差σ2或标准差σ等。在进行数理统计分析之前,先要有一个合理的假定条件,对于xi∈[a,b],i=0,1,…,n取任意值的几率都是相等的。因为对于某一段地层来说,在已知的值域内(比如曲线的左右刻度),没有任何理由让某一项测井量(例如电阻率)只取某一值而不能为另外的值,也就是说,在值域测井量取任一个值的机会是均等的。因此对于任意点的概率Pi有
准噶尔盆地火山岩储层测井评价技术
在这一假设条件下,测井曲线元的数学期望和方差就可以计算了。
根据关键井的岩心标定,裂缝在测井曲线上的变化特征主要表现为三侧向电阻率曲线出现高值背景上的降低,深浅电阻率的幅度差也有所减小,同时微电极曲线也表现为同样的特征。自然伽马曲线没有增大或增大很小,通过滤波可以消除。把这样的曲线段称为裂缝曲线元。
2. 火山岩储层裂缝指标的定义
在实际处理过程中,考虑到火山岩地层岩性的复杂性,定义的裂缝指标有如下4种方式。
(1) 双侧向或双感应幅度差
直接在综合测井曲线图(对数坐标)上找到致密段和裂缝段的双侧向(或双感应)幅度差绝对值,ΔRb和ΔRf。当前处理深度的电阻率幅差指示的裂缝概率为:
准噶尔盆地火山岩储层测井评价技术
式中:P———裂缝概率;
ΔR———当前深度的电阻率对数的幅度差绝对值。
(2) 井径测井曲线
准噶尔盆地火山岩储层测井评价技术
式中:CAL———当前深度的井径;
CALf和CALb———裂缝层段和致密层段的井径。
(3) 微球形聚焦测井
对微球形聚焦电阻率测井曲线的对数lg(x)进行滤波处理,得到滤波后的测井曲线lg(x)',提取剩余变化(Dx),则裂缝概率:
准噶尔盆地火山岩储层测井评价技术
式中:Dxf和Dxb分别为裂缝层段和致密层段的剩余变化值;Dx=lg(x)-lg(x)'。
(4) 其他曲线
对其他非电阻率测井曲线x进行滤波处理,得到滤波后的测井曲线x',提取剩余变化Δx=x-x'。
准噶尔盆地火山岩储层测井评价技术
式中:Δxf和Δxb———裂缝层段和致密层段的剩余变化值。
上述指标除了双侧向取绝对值外,均考虑到裂缝特征在曲线上的方向性。
3. 裂缝识别
一般测井采样间距为,岩心裂缝观察表明裂缝的一般长度在1个采样间距到几十个采样间距之间。因此,从采样间距上考虑,如果要利用常规测井曲线识别裂缝,必须至少有3个采样点,即2个采样间距构成的裂缝。因为如果是2个采样点,2个采样点读值的变化只可能是由大变小、相反或不变,3种之一,而不能构成裂缝曲线元由大变小再变大的变化特征。这是根据常规测井曲线判断裂缝存在的必要条件。一条裂缝的延伸长度必须至少大于×2cm才能够被常规测井曲线识别到。从测井解释的角度说,常规测井资料识别的裂缝长度至少是25cm。
根据裂缝曲线元的特征编制了基于测井曲线元的计算机裂缝识别软件系统,其识别过程如下。
1) 测井数据录入。
2) 判断原始数据文件是否有三侧向曲线和微电极曲线,或二者之一。如果都没有,则无法进行裂缝识别,退出系统。
3) 测井资料校正和数据标准化。资料校正是正确识别的前提,数据标准化便于进行曲线元拟合和计算曲线元的数字特征。该软件主要采用了极差标准化、极差正规化和标准差标准化3种方法。
4) 读入分层数据。研究中只对砂岩储层段进行了裂缝识别,对泥岩未处理,所以在识别之前先要读入分层数据。如果该井还没有分层,必须先分层。
5) 曲线元滤波。滤波主要是消除曲线上微小的扰动,因为它会影响到对裂缝曲线元识别。滤波方法多采用加权滑动平均法,如钟型函数或汉明函数等,也可采用卡尔曼滤波。
6) 从第1层开始,逐点判断电阻率与邻近上下两个采样点关系,设存在xi-1,xi,xi+1为3个相邻的采样点,并且给定ε为一门限值,如果式(4-19)成立,则从采样点xi开始记录采样点数S1,直到式(4-19)成立,则必然有式(4-20)成立。同样开始记录采样点数S2,直到式(4-20)不成立
准噶尔盆地火山岩储层测井评价技术
记录满足式(4-19)和式(4-20)总采样点数(S=S1+S2)。对三侧向和微电极曲线依据式(4-19)和式(4-20)作判断。
7) 对同一层段的GR曲线进行判断,消除由于泥岩夹层引起电阻率降低而误判为裂缝的层段。
8) 计算裂缝存在概率Pf。
计算裂缝曲线元的极差(J)、数学期望(E)、方差(D)。因为裂缝曲线元的形态特征是电阻率在高值背景上的骤然降低,表明其极差很大,并且降低越明显,极差就越大。同时,其数学期望与极差的差值也随之增大。方差越大,裂缝存在的可能性越大,因此裂缝的概率与方差成正比。此外裂缝曲线元的曲线突变不会延续很长,否则这种突变成了一种渐变,也就不是裂缝了。定义单条曲线判断裂缝存在的概率计算式为
准噶尔盆地火山岩储层测井评价技术
在识别过程中,对于JD-581测井系列同时采用了深、浅三侧向及其幅度差、微电极及其幅度差、GR曲线、感应曲线和声波曲线;对于CLS3700测井系列则将三侧向换为双侧向电阻率曲线。根据式(4-21),每1条曲线都将给出1个单曲线裂缝存在概率,按照贝叶斯准则,所有曲线指示裂缝存在概率由下式计算
准噶尔盆地火山岩储层测井评价技术
式中,Pf,i———单曲线裂缝存在概率;
l———参加裂缝判别的曲线条数。同时给定了一个经验参数εP作为裂缝存在概率的截止值,规定只有Pf>εP时,才认为该裂缝存在,并且被记录下来。
经本书研究确定,RXO权值变化范围为~、Rt和Ri幅度差的权值变化范围为~、井径变化范围为~、声波或密度变化范围为~。
4. 裂缝识别实例
基于上述方法,对研究盆地内的白X1井进行裂缝识别,其识别成果图如图4-26所示。由该图可知,在1717~1728m井段所计算的裂缝概率值较高,说明该段发育裂缝的概率较大;而在1710~1717、1728~1750m井段处,所计算的裂缝概率值较低,说明该段发育裂缝的概率较小。裂缝概率反映地层中存在裂缝的概率大小,是对裂缝发育程度的判别。概率值越大,裂缝越发育;反之,概率值越小,裂缝发育越差。从FMI图像上看,~发育一组高角度缝,在~发育一组高角度缝以及斜交缝,在~发育一组雁状缝以及斜交缝。根据岩心描述裂缝统计(表4-7)可知,在该井段内,裂缝较发育,类型有:斜交缝、直劈缝、网状缝、充填缝以及雁状缝。由此可知,对缺乏成像测井和岩心描述等资料的情况下,该方法能够利用常规测井资料来较准确地识别其裂缝发育的井段。
图4-26 白X1井裂缝识别实例
表4-7 白X1井裂缝统计表
由于本区石炭系地层火山岩岩性复杂,裂缝的常规测井响应特征(如声波时差、中子孔隙度、深浅双侧向等)受岩性影响较大,容易将岩性的变化混淆为裂缝。而成像测井图可直观地反映裂缝的形状(如弯曲程度)、填充状况。从本区岩心资料和成像测井资料综合来看,利用成像测井来识别裂缝较为有效。
一只自由鱼儿
石油工程钻井论文
随着经济的发展,人们对石油的需求不断增长,为满足人们需求,石油工程技术也呈现出了不断发展的趋势。以下是我搜索整理一篇石油工程钻井论文,欢迎大家阅读!
摘要: 石油钻井工程技术是石油工程技术中的重要部分,为提升钻井速度,提高钻井质量,黑龙江大庆油田有限公司也加强了对这一技术的研究。本文就石油工程技术钻井技术进行了研究分析。
关键词: 石油工程技术;钻井技术;研究
石油的开采中,石油工程技术具有重要地位,石油钻井技术则是石油工程技术中的重要部分。为充分满足现阶段人们对石油的需求,石油企业也应加强对石油工程技术中钻井技术的研究,以提升钻井效率和工作质量,以推动我国石油开发与勘探工作的进一步发展。
1、石油钻井技术相关概述
近年来,我国石油产业得到了巨大的发展,石油技术方面也取得了显著的成就。尤其是近十年,越来越多的先进技术被引入石油工程[1]。尤其是钻井技术的应用,使我国的油气储备量大大增加,对石油的开采也从以往的地面转向了海洋、深层等难度较大的区域,有效提升了我国的'油气产量。而石油工程钻井技术的创新发展,也成为了现阶段石油企业发展的关键。
2、主要石油钻井技术研究
石油工程技术水平钻井技术研究
水平钻井技术是一种定向钻井技术[2]。在实际运用过程中,需要利用井底动力工具、随钻测量仪器等,钻井完成时的斜角应保持86°以上。这一技术的应用时间较早,大庆油田在这一技术的研究应用中,抓住了动态监控、上下方位调整,钻具平稳、多开转盘等技术要点。其中,上下调整是要求工作人员能够对井斜角和铅垂位置进行调整,动态监控是实现对已钻井段、钻具组合定向状态等进行分析,以便进行科学调整的过程,钻具平稳是要求钻具稳定性能较强,这一要点主要受钻具选型和组合设计所影响,而多开转盘则是通过减少摩擦力提升钻速,以保证水平段开钻盘进尺度能够不小于总进尺的75%。
石油工程技术地质导向钻井技术研究
地质导向钻井技术的运用需要将导向工具和仪器相结合,并实现了钻井技术与测井技术和油藏工程技术的协同使用。因其具备的电阻率地质参数等,使这一技术在运用中,能够给对地质构造进行准确判断,并对储层特性进行明确,有效实现了对钻头轨迹的控制,使钻井工程的开采成功率提升,成本降低。
石油工程技术大位移井钻井技术研究
这一技术是现阶段石油工程技术中的高精尖技术之一,能够实现定位井和水平井技术的有效统一。现阶段,这一技术的运用中还存在着很多难点,我国大庆油田企业也加强了对这一技术的研究,不但优化器配套技术和相关理论,并将其应用于浅海区域油田,以充分发挥其实际价值。
石油工程技术连续管与套管钻井技术研究
连续管与套管钻井技术主要应用于小眼井、侧钻以及老井加深等方面,由于其所用设备和空间较小,因此具有较大的优势,能够在海上或是限制条件较多的地面的钻井工作中。这一技术在运用时,需要在防喷器上设置环形橡胶,以保证欠平衡压力钻井工作的顺利进行,并起到保护油气层的作用,钻井时通常不需要停泵,钻井液会在这一技术的运用下始终处于循环状态,有效避免井喷。
石油工程技术深层钻井提速技术研究
为提升钻井速度、加快石油勘探工作,大庆油田企业对深层钻井提速技术进行了研究。深层勘探主要是对超过两千五百米深度的地质层进行勘探的工作,这一工作多由深层气藏岩性的复杂,导致工作很难进行,硬度较大的岩石会造成钻头的严重磨损,并影响钻井工作效率,而地下的高温也会对钻井设备造成极大的伤害,地下压力层和胶质性较差的破碎性地层会为工作人员的工作造成极大的安全隐患。大庆油田公司对深层钻井提速技术进行了研究,深入研究钻井设计、提速工具、配套技术等。钻井设计优化有利于深层钻井提速提效[3]。大庆油田公司综合考虑了井深、岩性、地层压力等方面的因素,要求深层直井全部采用三开井身结构,例如对古深3井进行优化,使其表层套管下深为352m,二开井段采用气体钻井技术,套管下深为3180m,三开井段采用气体技术与涡轮技术等相结合的方式。最终完钻井深4920m,钻井时间与以往相比缩短了。同时,根据不同井段选择了相应的高效钻头。另外,大庆油田公司对提速工具进行了研制。其中,液动旋冲提速工具能够实现钻井液流体能量向机械能的转化,减轻了钻头的磨损度,有效提升了机械钻速。涡轮钻具则能够利用钻井液的冲击产生机械能,推动钻头高速运转,有效提升了对高硬、极硬地层的钻井速度。同时,其在地层出水预测技术、气体钻井技术等方面也进行了完善。建立了不同渗透率、不同流动方式等条件下底层出水的判别公式,有效提升了预测精度。完善后的气体钻井技术也在石油钻井中中得到了成功运用,平均钻井周期缩短了。
3、结语
石油工程技术在石油勘探工作中起到了重要的作用,尤其是其中的钻井工程技术的有效运用,能够有效减少安全事故的发生。我国大庆油田公司针对这一技术进行了积极研究,并实现了深层钻井提速技术的有效研究运用,对我国石油工程技术的发展做出了巨大的贡献。
参考文献:
[1]马春宇.浅谈石油工程钻井技术的发展[J].科技资讯,2015,5(5):69-70.
[2]魏斌.关于石油钻井工程技术的探讨[J].中国石油石化,2015,7(14):86-87.
[3]李瑞营.大庆深层钻井提速技术[J].石油钻探技术,2015,1(1):38-42.
chen251791802
测井行业个人总结
导语:《测井技术》所刊登的文章内容主要涵盖测井技术的理论研究、实验分析、仪器设计与数据采集、测井资料分析处理、石油地质解释、动态监测技术、软件开发以及科技信息动态等方面,内容覆盖了与测井相关的各个领域。下面是我给大家整理的测井行业个人总结内容,希望能给你带来帮助!
一、钻井地球物理-地球物理测井
钻井地球物理广泛应用于石油、天然气、煤、地下水和地热、金属与非金属矿产等资源勘探中, 以及基础地质研究和许多工程监测中, 凡涉及需要取得钻井(孔)资料时, 都可以进行钻井地球物理勘探。
钻井地球物理是地球物理学的一个重要组成部分, 同时它也是工业中实用性很强的一门工程技术, 工业部门习惯上称它为地球物理测井或简称测井。在国外也存在着类似的两种称呼,在该课程中简称测井。
测井以地质学、物理学、数学为理论基础,应用计算机信息技术、电子技术及传感器技术设计专门的测井仪器。将测井仪器置于井中沿井身进行测量,得出井壁地层的各种物理化学性质、地层结构及井身几何特性等各种信息,为石油、天然气和煤等矿产的勘探和开发提供资料和服务。
二、测井的概念
测井(钻井地球物理)是在勘探和开发石油、天然气、煤、金属矿等地下矿藏的过程中,利用各种仪器测量井孔地层的各种物理参数和井眼的技术状况,解决地质和工程问题的一种手段。测井是地球物理学的一个分支。
测井是获取地层信息的最直接的地球物理方法之一,通过在井下放置一定的测量仪器,同时在地面配置对井下仪器进行控制、操作、记录和分析的设备。沿井孔测量井孔地层剖面上不同地层物理参数的变化,然后对参数进行综合分析得到地层的各种地质特征。
三、测井的发展简史
世界上第一次测井是由法国人斯仑贝谢兄弟(C. Schlumberger & M. Schlumberger)与道尔(Doll)一起,在1927年9月5日实现的。 我国第一次测井是由著名地球物理学家翁文波,于1939年12月20日在四川巴县石油沟油矿1号井实现的。
1、模拟记录阶段2、数字测井阶段3、数控测井阶段4、成像测井阶段
四、测井工作的两个阶段
1、现场测取资料阶段
即将仪器运往井场,组装测井仪器,下到待测井段,上提仪器测量各种参数,得到满足一定要求的测井曲线。
2、资料处理解释阶段
将测井数据带回室内,在专用的测井解释工作站上用专用测井解释软件进行处理、解释,得到地层各种地质
参数。
五、测井在石油勘探开发中的应用
石油测井求取的主要储集层参数
储集层:具有孔隙、裂缝等储集空间,并且储集空间之间联通的地层称为储集层。根据储集空间类型可分为碎屑岩储集层和碳酸盐储集层。
岩石孔隙度:岩石内孔隙总体积占岩石总体积的百分比。一般用有效孔隙度评价储集层储集能力。
含油饱和度:含油体积占孔隙体积的百分比,同样可以定义含水饱和度和含气饱和度。
石油测井求取的主要储集层参数
渗透率:在压力差作用下岩石允许流体通过的性质。用于描述岩石渗透性优劣的参数。单位为μm2,1μm2表示长、宽、高为1cm的岩样两端压力差为一个大气压(atm)允许黏度为1×10-3Pa·S的1cm3液体在一秒内通过该岩样的能力。
储集层有效厚度:用测井曲线确定储集层的顶、底界面深度后,两个界面的深度差为储集层的厚度。扣除储集层中的夹层厚度,得到储集层的有效厚度。
六、测井在石油勘探开发中的应用
识别井孔剖面岩性,解释地层岩石矿物成分并计算其含量。
划分储集层,解释储集层所含流体性质(含油性),定量计算储集层参数。
结合其他物探方法计算油气储量。
进行地层层序分析、沉积学研究、地质构造研究、烃源岩与盖层研究。
计算地层压力、地层温度,分析岩石机械特性。
在钻井工程、采油工程及完井工程的应用等。
七、测井在煤田勘探开发中的应用
确定煤层的埋深、厚度及结构。
划分钻孔岩性剖面,提供煤、岩层的物性数据。
确定含水层位置及含水层间的补给关系。
测量地层产状,研究煤、岩层的变化规律、地质构造及沉积环境。
推断解释煤层的碳、灰、水含量,岩层的砂、泥、水含量。
提供地温、岩石力学性质等资料。
对其它有益矿产(煤层气)提供信息或做出初步评价。
八、测井在沉积学研究的应用
主要研究内容有:
相体几何形态:沉积岩体的几何形态是指总体形状和大小,不涉及内部层理构造,是沉积前地形、沉积环境和沉积后地质史的总体表现。
岩性及岩相分析:岩性分析主要是成分和结构分析。岩相分析包括岩性和沉积相的划分,盆地演化的动力学特征分析,沉积相分析,测井相分析等。
沉积构造:沉积构造是测井沉积学研究的重要内容, 包括沉积构造所造成的层理、裂缝及其产状、形状,界面特性和界面内物质结构等内容。
古水流和搬运方向:根据水流层理的特征(类型、角度、形式、分布)和方向(定向程度、发散程度、与古斜坡和砂体几何形状的走向关系)与对应的测井信息来确定古水流的方向及发育情况。
地球化学分析:自然伽玛能谱、岩性密度测井、激发伽马能谱测井等测井技术可直接测量到岩石中的10余种元素成分,使识别岩石成分和分析沉积环境的能力得到提高。
九、测井地质研究中正、反演问题
正演问题:把自然界各种需要研究的地质现象建立相应的地质模型、模式,研究各种测井方法在这种模型、模式中的响应。模型、模式可分为两大类,即数学模型和物理模型。
反演问题:用各种测井参数和曲线形态与各种不同的地质模型、模式建立关系,以便正确反映地下地质现象。反演问题包括两个因素,一是客观因素,即测井资料的准确性, 另为主观因素,即在推论和提出假设的过程中加进人的思想,这也是反演问题的关键。
第一章 自然电位测井
第一节自然电场的产生
一、扩散电动势产生的条件
1. 两种溶液的矿化度不同 2. 中间具有渗透性隔层 3.正负离子的迁移率不同
井中砂岩剖面的扩散电动势:泥浆滤液和地层水的矿化度不同;附着在地层上的泥饼具有渗透性;泥浆滤液和地层水的正负离子迁移率不同。
二、扩散吸附电动势
组成泥岩的粘土矿物,其结晶构造和化学性质只允许阳离子通过泥岩扩散,而吸附带负电的阴离子的作用称为阳离子交换作用。扩散结果 在浓度小的一方富集正电荷带正电,在浓度大的一方富集负电荷,形成扩散吸附电动势Eda: 扩散吸附电动势产生的条件:1.两种溶液的矿化度不同;2.两种溶液用渗透性隔层隔离;3.渗透性隔层对不同极性的离子具有不同的吸附性。
井中泥岩剖面的扩散吸附电动势:1. 泥浆滤液矿化度低于地层水矿化度2. 泥岩具有渗透性3. 泥岩具有吸附阴离子的阳离子交换能力。
当井壁附近地层水和泥浆滤液矿化度都较低时,且Cw>Cmf时泥岩剖面上的扩散吸附电动势为:
在矿化度较低的情况下,溶液的电阻率与溶液的矿化度成反比关系,因此上式可写为:
三、氧化还原电位
地下煤层与其接触的溶液(地层水或钻井液)发生氧化还原反应,从而在其接触面上形成氧化还原电位,最终形成沿井身的自然电位异常。当煤层处于氧化状态时,可形成自然电位正异常;当煤层处于还原状态时,可形成自然电位的负异常。
无烟煤和石墨的氧化反应最强烈,自然电位曲线表现为正异常。
瘦煤、炼焦煤、肥煤氧化反应强度递减,其自然电位正异常依次减小。
气煤和褐煤处于还原状态且强度不大自然电位表现为不大的负异常。
由于烟煤中含有的金属硫化物氧化作用很强,因此烟煤的自然电位正异常与其所含的金属硫化物有关。
四、 过滤电动势
在岩石中,岩石颗粒之间形成很细的毛细管孔道,当泥浆柱的压力大于地层的压力时,泥浆滤液通过井壁在岩石孔道中流过,形成过滤电动势。
在砂泥岩剖面的井中的自然电场主要由砂岩井段的扩散电位和泥岩井段扩散吸附电位组成。在煤层中自然电位以氧化还原电位为主。
第二节 自然电位测井及曲线特征
一、自然电位测井(Spontaneous Potential Logging)
进行自然电位测井时将对比电极N放在地面测量电极M用电缆送至井下,提升M电极沿井轴测量自然电位随井深的变化曲线该曲线称为自然电位曲线(SP曲线)。
二、自然电位测井曲线的特征
静自然电位:在相当厚的纯砂岩和纯泥岩交界面附近的自然电位变化最大其电动势E总称为静自然电位SSP:
泥岩基线:均质、巨厚的泥岩地层所对应的自然电位曲线,即Eda的幅度。而Ed的幅度称为砂岩线。所以静自然电位SSP是均质、巨厚的砂岩地层的自然电位读数与泥岩基线的`幅
淡水泥浆上下围岩为泥岩有限厚度的砂岩的自然电位曲线特征:
1. 曲线关于地层中点对称,地层中点处异常值最大;
2. 地层越厚,ΔUSP越接近SSP,地层厚度变小,ΔUSP下降,且曲
ΔUSP≤SSP;
3. 当h>4d时,ΔUSP的半幅点对应地层的界面,较厚地层可用半幅点法确定地层界面,
地线顶部变尖,底部变宽度差。
层变薄时,不能用半幅点法分层。
4. 实测曲线与理论曲线特点基本相同,由于测井时受多方面因素的影响,实测曲线不如理论曲线规则。
使用自然电位曲线时应注意:
自然电位曲线没有绝对零点,是以泥岩井段的自然电位曲线幅度作基线;
砂泥岩剖面中自然电位曲线幅度ΔUSP的读数是基线到曲线极大值之间的宽度所代表的毫伏数。
在砂泥岩剖面中,以泥岩作为基线,Cw>Cmf时,砂岩层段出现自然电位负异常;Cw 第三节 自然电位测井的影响因素 一、地层水和泥浆滤液中含盐浓度比值(Cw/Cmf)的影响二、岩性的影响 三、温度的影响四、地层水和泥浆滤液中含盐性质的影响 五、 地层电阻率的影响六、地层厚度的影响七、 井径扩大和泥浆侵入的影响 第四节 自然电位曲线的应用 一、划分渗透性岩层 在砂泥岩剖面中,当RwCmf)时,在自然电位曲线上,以泥岩为基线,出现负异常的井段可认为是渗透性岩层,其中纯砂岩井段出现最大的负异常;含泥质的砂岩层,负异常幅度较低,而且随泥质含量的增多,异常幅度下降。砂岩的ΔUSP还决定于砂岩渗透层孔隙中所含流体的性质,一般含水砂岩的 ΔU水SP比含油砂岩的ΔU油SP要高。 二、 估计泥质含量 1. 图版法 2. 利用经验公式估算: 三、 确定地层水电阻率Rw 1. 确定含水层的静自然电位SSP 2. 确定泥浆滤液等效电阻率Rmfe 3. 确定地层水电阻率Rw 四、判断水淹层 水淹层:含有注入水的储层。 SP曲线能够反映水淹层的条件及现象:当注入水与原地层水的及钻井液的矿化度不同时,与水淹层相邻的泥岩层出现基线偏移。偏移量的大小与水淹的程度有关。 第二章 普通电阻率测井 电阻率测井:是一类通过测量地层电阻率来研究井剖面地层性质的测井方法。普通电阻率测井包括梯度电极系测井、电位电极系测井。 第一节岩石电阻率与岩性、孔隙度、含有饱和度的关系 一、岩石电阻率与岩性的关系 离子导电的岩石主要靠连通孔隙中所含溶液中溶解的正负离子导电。 电子导电的岩石靠组成岩石颗粒本身的自由电子导电。金属矿物、无烟煤、石墨,以电子导电为主,电阻率极低。 二、岩石电阻率与地层水性质的关系 岩石骨架:组成沉积岩石的造岩矿物的固体颗粒部分叫做岩石骨架。岩石骨架主要靠很少的自由电子导电,其导电能力很差,因此沉积岩石的导电能力主要取决于所含地层水的电阻率。 1.地层水电阻率与地层水所含盐类化学成份的关系 2.地层水电阻率与矿化度和温度的关系 三、岩石电阻率与孔隙度的关系 沉积岩的导电能力主要取决于孔隙度和地层水电阻率Rw。岩石孔隙度越大或地层水的电阻率越低,岩石导电能力越强, 电阻率就越低;反之,则岩石导电能力差,岩石电阻率高。 四、含油岩石电阻率与含油气饱和度的关系 含油饱和度So :含油孔隙体积占孔隙体积的百分比。含水饱和度Sw :含水孔隙体积占孔隙体积的百分比。 阿尔奇(Archie)公式的应用: 1.确定地层孔隙度2.确定地层水电阻率和视地层水电阻率3.确定孔隙流体性质 第二节普通电阻率测井原理 普通电阻率测井研究的是稳定的电流场,电场强度E、电位U和电流密度J的关系: 一、均匀介质中的电阻率测量 U为:二、普通电阻率测量原理(p27) 电极系:能够在钻孔中实施供电和测量的装置。 电位电极系和梯度电极系电阻率公式的通式为 公式中K值随电极系不同而不同。电极系确定则K值为常数。沿井筒提升电极系,测量ΔU随井深的变化曲线,经横向比例刻度后即为岩层电阻率测井曲线,在均匀介质中所测得电阻率曲线应为一条直线。 三、非均匀介质中的电阻率测井 视电阻率Ra :在井剖面的情况下,测量的电位差除了受地层真电阻率Rt影响外,还要受Ri、Rmc、Rs、Rm,井径d,侵入带直径D,以及地层厚度h和电极系结构等因素的影响,因此不能用均匀介质中的电阻率计算公式简单地求解地层的真电阻率。但是在井中实际测量的电位差,仍然可以代入公式计算电阻率,在这种复杂情况下求出的电阻率称为地层的视电阻率,用Ra表示。 四、电极系 1.电极系的分类 电极系:是由供电电极A、B和测量电极M、N按一定的相对位置、距离组成的测量系统。电极系一般三个电极在井下,一个电极在地面。 成对电极:下井的三个电极中两个在同一线路(供电线路或测量线路)中,或叫同名电极,如A和B、M和N。 不成对电极:另外一个和地面电极在同一线路(测量线路或供电线路)中,叫不成对电极或单电极。 据电极间的相对位置的不同,可以分为梯度电极系和电位电极系。 2. 电位电极系 不成对电极到成对电极中靠近它的那个电极之间的距离小于成对电极间距离的电极系为电位电极系。 3. 梯度电极系 单电极到成对电极中靠近它的那个电极之间的距离大于成对电极间距离的电极系为梯度电极系。梯度电极系的深度记录点O在成对电极的中点。单电极距到O点的距离是梯度电极系的电极距。
煤矿开采技术的进步和完善是采矿学发展的主题。下面我给大家分享煤矿开采技术论文,大家快来跟我一起欣赏吧。 浅议煤矿开采技术 [摘 要]我国煤炭资源储量丰富,据不完
在毕业论文开题报告写作之前写好文献综述,是写好本科毕业论文的一项必要的前期工作。下面是我整理的几篇本科毕业论文文献综述范文,欢迎阅读参考。 本科毕业论文如何撰写
(一) 成像测井识别裂缝 裂缝在井壁电成像和声成像测井图上均表现为连续或间断的深色条带,其形状取决于裂缝的产状。垂直缝和水平缝分别为竖直的和水平的条带,斜交缝为
A15、B125、C250、D400、E600、F900为荷载等级,并可根据客户要求(包括荷载、图案、着手等)进行生产。A15类型(15F/KN):适用于绿化带
在现代技术中,理化检验是指借助一些测量工具进行物理、化学方面的测试和检验,因而又称“器具检验”。下面是我精心推荐的一些理化检验技术论文,希望能对大家有所帮助!理