• 回答数

    8

  • 浏览数

    154

可乐你不乖
首页 > 学术期刊 > 小学数量关系课题研究论文

8个回答 默认排序
  • 默认排序
  • 按时间排序

tracy07280917

已采纳

合作——讨论式教学的成功标志合作是一种比知识更重要的能力,是素质教育的重要内容。当今的时代是科技竞争的时代,而竞争的成败往往取决于人们的合作。一个人的能力是有限的,如果不善于和他人合作,将不同的知识加以交流、综合、提高和运用,就不能适应时代的发展要求。所以,在研究-讨论式教学中实施小组合作教学是研究-讨论式教学实验课题中的重要内容。数学小组合作学习是集体教学模式在小学数学中的应用,它是根据团体动力学的原理设计,旨在改变过去班级只是作为制约学生课堂行为的一种“静态的集体背景”,而使班级、小组等学生集体成为帮助学生课堂学习的一种“动态的集体力量”。所以,“小组合作学习”是一种很好的教学模式。这种模式有利于学生人人参与学习的全过程,学生学得生动活泼,人人尝试成功喜悦,它既能发掘个人内在的潜能,又能培养集体、团体的合作精神。一、合理组建,增强合作学习效率根据学生性格心理特征,合理组建学习小组是开展小组合作学习的重要开端。组建学习小组时,应先根据学生的知识基础、兴趣爱好、学习能力、心理素质、性格特征进行综合评定,然后搭配成若干学习小组,通常以4~6人为妥,由1人任小组长。小组长一般是学习基础较好,乐于助人,且有一定的合作创新意识、口头表达及组织能力较强的学生。要求各组间无明显差异,力求均衡,便于公平竞争。组建后,要求每个小组中的成员相互帮助、坦诚相见、民主平等。以达到增强合作学习效率的目的。二、让合作小组主动参与教学过程1.营造氛围,激发兴趣。心境的好坏直接影响到学习效果。相比,教师要根据教材特点,充分发挥电教手段,营造一种宽松、愉快的合作学习氛围,让学生在这种气氛中充分发挥自己的智慧,激发他们合作学习的兴趣。如在“柱体的体积”复习教学中,抓住新旧知识的联系,充分尊重、相信学生,创设平等、民主、和谐的合作氛围,运用媒体、实物手段,出示一个“小博士”图象,并说明复习的方法,即看到一个图形可以就有关知识自问自答,你问我答或我问你答。接着逐个出示图形和长方体。要求以小组为单位,让每个小组说出自己知道的知识,还可以接着提出一个问题给下一组的同学回答,依次进行。这样小组成员积极配合,圆满地复习学过的知识,为新课教学做好准备。2.创设情境,提高效率合作学习中,教师要针对教学目标、教学内容及教材的重难点,结合班级学生实际,创设既能激起学生参与学习的动机效应,又能充分发挥小组合作学习的认知功能的情境,以提高同伴间合作的效率。例如,在教学“基本数量关系”时可设计班级活动奖品购买计划,让学生自己挑选喜欢的奖品,制定喜欢的购买计划,激发学生参与学习的兴趣,在合作研究中掌握基本数量关系。在教学“旅游路线设计”时可以联系学生的旅游经历,说说旅游中的感想和体会,激发学生学习合理选择旅游路线的兴趣,掌握优化策略知识。3.重视引导,合理组织有效的引导和合理的组织是合作学习成功的保证,在课堂教学中根据问题的不同类别,鼓励学生灵活采用各种方法对新问题进行独立探究、多向思索,如阅读、操作、尝试、迁移、类比、分类等。教师做好巡视指导,特别对有困难的学生作适当启发与辅导。有益于教学的全面进行。因此,学生自主探索,合作成功与教师的激励和指导是密不可分的。当学生对新知识疑惑不解,产生问题时,就要抓住时机释疑,解决问题。合作讨论这个环节,就是为了激励学生积极地投入学习,调动全体学生动脑、动口、动手,自始至终参与教学全过程,积极主动地去学习。从信息论的角度来讲,在课堂教学中学生、教师、教材三者之间的互相作用和信息交流才能优化课堂教学结构,提高课堂教学的效果。因此在课堂上让学生多说多议,有利于学生之间的相互作用和信息交流。但一节课40分钟有很多环节,最后还得保证学生练习的时间,而现在学生人数又多,让每个学生都来说一说是不可能的,于是合理组织各种形式的讨论在小组合作讨论中就非常重要。这些形式有同桌两人互相说说的,有4 人一组共同讨论的,有大组讨论的,也有师生共同讨论的,这样就使一些平时不大开口的学生都有了说话的机会。在组织学生分组讨论的过程中,还要注意培养他们怎样围绕中心,抓住重点来讨论。如讨论的时候,中等以下的学生,利用他们知识上的不完善把问题逐步展开,而中等以上的学生则在突破难点,运用知识的迁移,在概括新学的知识中尽量发挥作用,启发组内同学的理解。这样就调动了不同层次学生的学习积极性,还能使他们的思维开阔起来,发表不同的观点,从不同的角度来讨论。比如,在讨论梯形面积计算公式为何是(上底+下底)×高÷2时,大多数学生都能用两个完全一样的梯形拼成一个平行四边形来推导,但也有一些学生把一个梯形通过割移论证,培养了思想的开阔性,掌握了学习的方法,知道了为什么要这样做的道理。又比如教学“梯形”一课,可设计了下面的小组学习题:(1)什么叫梯形?下面哪些图形是梯形?哪些不是?为什么?(2)什么叫做梯形的底?指出上面梯形的底?(3)什么叫做梯形的腰?指出上面梯形的腰?(4)什么叫做梯形的高?梯形中有几条高?(5)在预先发的一个梯形图中,分别标出它的上底,下底,腰,作出它的高?一些数学题有一定的难度,要解决它则如让学生跨上高一级台阶。这类题,优生就象弹跳力好的学生原地就可一跃而上;对于中等生来说,也可退后数步,再借助跑力量腾越而上;而对于学习有困难的学生,怎么办?我们利用小组学习题为其设置阶梯,降低坡度。经过小组学习,全体学生都能掌握学习。小组间对探索结果进行交流。教师深入倾听或参与讨论。为全体学生,尤其是为学困生提供了更多的课堂参与机会,并将个人独立思考的成果转化为全组共有的认识成果,培养了群体意识和活动能力。在新课教学时要注意鼓励学生在独立思考的基础上,深入探讨,展开讨论,小组成员各抒己见,教师适时点拨指导,实现信息在群体间的多向交流,让学生尝试到合作学习的乐趣。在教学“长方体、正方体特征”时,先出示实物模型长方体、正方体支架模型,让学生观察后在小组中合作探讨,看哪一小组的同学找到的特征最完整,并记录下来。这时学生热情很高,通过小组中的探讨合作,小组间的互相交流,很快得到了面、棱、顶点的各种特征。学习效果很好。使学生尝到了合作成功的快乐。5、交流汇报,深入归纳小组派代表向全班汇报讨论结果,教师引导各小组提出不同想法,鼓励发散思维。这种汇报,一方面为较多学生创造了“代表集体”的机会,开展有竞争的合作;另一方面将小组共同的认识成果转化为全班共有,能激发创新,拓展思维。分组讨论充分调动了全体学生的积极性,在此基础上让各组派代表交流,论述本组的思路与观点,从而使学生能从具体到一般,从具体到本质,找出规律性的东西,找到解题的方法,同时还要培养他们用规范的数学语言加以论述,得到一个科学的结论。学生通过分组讨论,对新的知识,解题方法有了初步的理解后,每组派代表发言,论述本小组对问题的分析,概括一个想法。起初,学生们的发言有表达不清、抓不住重点的现象,这时教师就应指导他们逐步掌握分析问题的方法,可以从条件出发,逐步求出问题,也可以从问题出来,寻求问题必须知道的条件。起初他们的论述都是用自己生活中的语言,后来逐步注意要利用数学语言,并注意了用词的准确,这样就使学生的归纳概括能力有了提高。还有的学生不满足已学的知识和口头的论述,则教师可以指导他们学写小论文,培养他们思维的创造力,如有个学生不满足于老师上课讲的“判断一个数能否被3整除”的方法,利用自己平时计算的经验写出了一篇学习小论文。在班上展示后大大增强了同学学习数学的兴趣。收到了很好的效果。小组中学生相互交流解题过程、结果、方法,分析错误原因,交流解题心得,能使学生从别人的错误和解题中学到更多的知识。让学生自由发言,对全班已有的各种意见进行归纳小结。教师则营造适当氛围,让学生自觉、自由地展开争论,充分体现民主平等、自主创新的学习精神。同时,还要鼓励学生用自己的方法验证结论,培养思维的严密性和实事求是的态度。三、让合作小组准确开展学习评价学习评价是师生双方对学习过程、结果和态度进行肯定或否定的一种强化方式,具有激励和导向作用。评价的主要目的在于促进学生主体性的发展。评价体验的主要任务在于增强学生主动发展的动力,提高主动发展的能力。小组合作学习带给学生许多表现的机会,而合理的评价则能充分肯定学生的学习效果,进一步激发学生的学习热情。为此,教师在课堂教学中要重视对学生进行独立探究、合作发现、实践运用等学习活动中表现出的自主性、主动性、独创性等主体精神和品质进行评价,使学生获得主动探究获取知识的情感体验,增强学生学习的信心和动力。同时还可运用小组自评。学生在小组中回顾所学知识、技能,核对自定目标;反思自己的学习方法、解题思路,从而提高学习的自我监控、自我调节等元认知能力水平。有时学生对来自同学的鼓励、帮助比来自于教师的更为有效。比如,为了促进学生自主学习,有时自拟几个题目,让学生进行测试,然后让小组长按标准给每位同学打分,再按小组总分进行评比。成绩好的同学感到他们只为自己的学习是不够的,成绩差的同学感到影响了本组成绩而有了压力,这样就使压力变成集体和个人的动力。评比后,小组里的那些学习有困难的学生,每天都有同学督促和帮助,学习成绩就会有明显的提高。因次,适当以小组为单位开展学习评比活动,有利于强化学生合作意识,全面提高学生的整体素质。最后,不要忽略质疑提问重要性,在学习过程的最后引导学生引申、推广本课的数学问题,把问题的探索和解决的过程延续到课外和后继学习中去。小组合作学习模式致力于满足学生全面的社会需要,致力于改变低效的学习模式,致力于改善师生关系和生生关系,真正发挥集体在学习中的作用,强化学生与环境的交互意识,有效促进学生心理机能和社会交往能力的发展,达到培养学生合作研究,探索实践的能力。是研究-讨论式教学过程中的必不可少的重要手段。

240 评论

CISSYZHANG74

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。 数学发展史 此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。二、符号的出现 加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。 法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(×、·) 乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。 至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。 一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。 注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。 ③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)二、分数的历史与演变 分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。 在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。 在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。 公元前1850年左右的埃及算学文献中,也开始使用分数。200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数. 为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的. 最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。 《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法. 在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。几何一、公式1、平面图形正方形: S=a² C=4a三角形: S=ah/2 a=2S/h h=2S/a平行四边形:S=ah a=S/h h=S/a梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏半圆: S=∏r²/2 C=∏r+d= 顶点数+面数-块数=12、立体图形正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r² 其它柱体:V=S底h锥体: V=V柱体/3球: V=4/3∏r³ S表=4∏r²顶点数+面数-棱数=2数论一、数论概述 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0) 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 二、数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。三、数论的分类初等数论 意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。解析数论 借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。 代数数论 是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 计算数论 借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。 超越数论 研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。 组合数论 利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。四、皇冠上的明珠 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。 简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题…… 五、中国人的成绩 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。名著录《几何原本》 欧几里得 约公元前300年 《周髀算经》 作者不详 时间早于公元前一世纪 《九章算术》 作者不详 约公元一世纪 《孙子算经》 作者不详 南北朝时期 《几何学》 笛卡儿 1637年 《自然哲学之数学原理》 牛顿 1687年 《无穷分析引论》 欧拉 1748年 《微分学》 欧拉 1755年 《积分学》(共三卷) 欧拉 1768-1770年 《算术探究》 高斯 1801年 《堆垒素数论》 华罗庚 1940年左右 任意选一段吧!!!

147 评论

ddungmickey

我国思维科学的开拓者钱学森先生认为,人类思维可以分为三种:抽象(逻辑)思维、形象直感思维和灵 感(顿悟)思维。并建议把形象思维作为思维科学研究的突破口。什么是形象思维呢?所谓形象思维就是运用 头脑中积累起来的表象进行的思维。表象是我们以前知觉过的,而在头脑中再现的那些对象现象的映象。形象 思维具有间接性和概括性的特点。形象思维同抽象思维一样,是认识的高级形式——理性认识。 为什么要培养学生的形象思维能力呢?按照现代科学研究的最新成果,人的大脑左右两半球各有不同功能 ,左半球是语言中枢,主管语言和抽象思维,右半球主管音乐,绘画等形象思维材料的综合活动。两者相互配 合,相辅相成,相互促进,才能使个体得到和谐发展。 从儿童思维特点来看:小学生的思维是从具体形象思维为主要形式逐步向抽象逻辑思维过渡,但这时的逻 辑思维是初步的,且在很大程度上仍具有具体形象性。因此,培养学生的形象思维能力,既是儿童本身的需要 ,又是他们学习抽象数学知识的需要。 那么在小学数学教学中,如何培养学生的形象思维能力呢? 一、充分感知,丰富表象,为培养形象思维积累材料 儿童能够敏锐感知鲜明的、富有色彩、色调和声音的形象,善于用形象色彩和声音触发思维。表象是形象 思维的细胞,形象思维要依靠表象来进行思维,要发展学生的形象思维,必须打好基础,丰富表象材料的积累 。 1.动手操作,丰富表象 动手操作,使学生各种感官都参与到学习中来,从多方面,多角度观察事物。例如:教学余数概念,先让 学生动手分小棒:(1)9根小棒每2根为一份,可以分几份,还剩几根?(2)13根小棒,平均分给5 个人,每 个同学可以分几根,还剩几根?操作完毕,引导学生用语言表达操作过程,说说是怎样分小棒的,从而形成表 象,然后再让学生闭上眼睛,想想下面题目应该怎样分?①有7块饼干,每人分3块,可以分给几个人,还剩几 块?②有12支铅笔,平均分给5个人,每人可以分几支,还剩几支等。这样让学生在操作中思维,在思维中操作 ,理解了被除数是总数,除数和商分别是要分的份数和每份数,余数是不够一份而多出的数,余数要比除数小 的道理。在头脑中形成了正确清晰的表象,正确的思维才有牢固的基础。 2.直观演示,丰富表象 小学生无意注意占重要地位,任何新鲜事物的出现都会引发学生积极参与学习过程的兴趣。在教学过程中 ,用图片、教具或电教手段组织教学,把抽象知识形象化,让学生充分感知所学材料,有了定量的感性材料, 才能在脑中留下鲜明的映象。 例如:教学“长方体认识”,教师可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、 砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒……),通过感 知实物,学生对什么样的物体是长方体获得了初步的感性认识。在此基础上,教师再引导学生边观察模型,边 看书本,从不同的位置和方向认识长方体的六个面及相对的面的面积相等,十二条棱及互相平行的棱长相等的 特点;通过观察长方体的一个顶点和相交于这个顶点的三条棱长,认识长方体的长、宽、高;通过模型的平放 、侧放、直立三种形态,来说明长、宽、高相对说来是固定不变的,把知识讲“活”,这样学生在动口、动脑 的学习过程中建立了清晰深刻的表象,为思维的理性化提供了条件。 电教手段引入课堂,可变静为动,化近为远,并以它丰富多彩、灵活多样的教学形式,为学生提供反映思 维过程的演示,能充分调动学生的心理因素,取得较好的效果。例如:在教“求另一个加数的减法应用题”时 ,通过幻灯片的演示,使学生形象地理解总数与部分的关系,即总数-部分=另一部分。 教学中,要利用各种教学手段,让学生充分感知,在脑中建立清晰的数学表象,为提高学生的数学想象力 积累素材。 二、引导想象,发展形象思维 现代认知心理学认为,表象不但可以储存,而且可以对储存的表象痕迹(信息)进行加工改组,形成新的 表象,即想象表象,它也是进行形象思维的重要方式。所以,教师要善于创设课堂教学中的问题情景,如图示 情景、语言情景,激发学生参与探索的欲望,充分发挥学生丰富的想象力。 如:教完梯形知识后,可引导学生想象:“当梯形的一个底逐渐缩短,直到为0,梯形会变成什么形?当梯 形短底延长, 直到与另一底边相等时,它又变成什么形?”借助表象,能有机地把看上去似乎无联系的三角形 、平行四边形、梯形结合起来。还可以根据梯形面积公式记忆三角形和平行四边形的面积公式: 1 S[,梯形]=—(a+b)h 2 1 当a=0时,变成三角形,面积公式为:S=——ah 2 当a=b时,变成平行四边形,面积公式为:S=ah 三、数形结合,培养形象思维能力 数学是研究现实世界中数量关系和空间形式的学科,从总的来说,数学是数与形结合的学科。不同类型的 数学图形,提供了大脑形象思维的表象材料,调动了右脑思维的积极性和主动性,提高了形象思维能力,促进 了个体左右脑的协调发展,使人变得更聪明。 例如:课本中配合应用题的具体情节而设计的插图,开阔了学生形象思维的天地,增强了刻苦学习的意志 。又如课本中出示的例题和复习题,表示数量关系时,运用了绚丽色彩和各种小动物、植物、大河、山川,现 代的飞机、汽车、轮船、卫星、建筑,古代的文物、书籍、大脑后难以形成清晰的表象。如果采用数形结合的方法画出线段图,便可帮助学生建立正确的表象,使隐蔽 复杂的数量关系变得明朗。例如:“小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6,小新储蓄的是小华 的2/3,小新储蓄了多少元?”这题学生往往难以确立单位“1”的量。教学时, 可引导学生画出如下线段图 来分析数量关系: 根据线段图,同学可以很快列出算式:18×5/6×2/3-10(元) 所以说线段图具有半抽象半具体的特点,它既能舍弃应用题的具体情节,又能形象地揭示条件与条件、条 件与问题之间的关系,把数转化为形,明确显示出已知与未知的内在联系,激活学生的解题思路。这里线段图 的运用、数与形的结合,较好地激发了学生的再造性想象,不仅发展了学生的形象思维,而且实现了形象思维 与抽象思维的互补。

91 评论

Perfect颜

小学三年级的数学论文数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.

307 评论

lostinyoudaidai

我国思维科学的开拓者钱学森先生认为,人类思维可以分为三种:抽象(逻辑)思维、形象直感思维和灵 感(顿悟)思维。并建议把形象思维作为思维科学研究的突破口。什么是形象思维呢?所谓形象思维就是运用 头脑中积累起来的表象进行的思维。表象是我们以前知觉过的,而在头脑中再现的那些对象现象的映象。形象 思维具有间接性和概括性的特点。形象思维同抽象思维一样,是认识的高级形式——理性认识。 为什么要培养学生的形象思维能力呢?按照现代科学研究的最新成果,人的大脑左右两半球各有不同功能 ,左半球是语言中枢,主管语言和抽象思维,右半球主管音乐,绘画等形象思维材料的综合活动。两者相互配 合,相辅相成,相互促进,才能使个体得到和谐发展。 从儿童思维特点来看:小学生的思维是从具体形象思维为主要形式逐步向抽象逻辑思维过渡,但这时的逻 辑思维是初步的,且在很大程度上仍具有具体形象性。因此,培养学生的形象思维能力,既是儿童本身的需要 ,又是他们学习抽象数学知识的需要。 那么在小学数学教学中,如何培养学生的形象思维能力呢? 一、充分感知,丰富表象,为培养形象思维积累材料 儿童能够敏锐感知鲜明的、富有色彩、色调和声音的形象,善于用形象色彩和声音触发思维。表象是形象 思维的细胞,形象思维要依靠表象来进行思维,要发展学生的形象思维,必须打好基础,丰富表象材料的积累 。 1.动手操作,丰富表象 动手操作,使学生各种感官都参与到学习中来,从多方面,多角度观察事物。例如:教学余数概念,先让 学生动手分小棒:(1)9根小棒每2根为一份,可以分几份,还剩几根?(2)13根小棒,平均分给5 个人,每 个同学可以分几根,还剩几根?操作完毕,引导学生用语言表达操作过程,说说是怎样分小棒的,从而形成表 象,然后再让学生闭上眼睛,想想下面题目应该怎样分?①有7块饼干,每人分3块,可以分给几个人,还剩几 块?②有12支铅笔,平均分给5个人,每人可以分几支,还剩几支等。这样让学生在操作中思维,在思维中操作 ,理解了被除数是总数,除数和商分别是要分的份数和每份数,余数是不够一份而多出的数,余数要比除数小 的道理。在头脑中形成了正确清晰的表象,正确的思维才有牢固的基础。 2.直观演示,丰富表象 小学生无意注意占重要地位,任何新鲜事物的出现都会引发学生积极参与学习过程的兴趣。在教学过程中 ,用图片、教具或电教手段组织教学,把抽象知识形象化,让学生充分感知所学材料,有了定量的感性材料, 才能在脑中留下鲜明的映象。 例如:教学“长方体认识”,教师可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、 砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒……),通过感 知实物,学生对什么样的物体是长方体获得了初步的感性认识。在此基础上,教师再引导学生边观察模型,边 看书本,从不同的位置和方向认识长方体的六个面及相对的面的面积相等,十二条棱及互相平行的棱长相等的 特点;通过观察长方体的一个顶点和相交于这个顶点的三条棱长,认识长方体的长、宽、高;通过模型的平放 、侧放、直立三种形态,来说明长、宽、高相对说来是固定不变的,把知识讲“活”,这样学生在动口、动脑 的学习过程中建立了清晰深刻的表象,为思维的理性化提供了条件。 电教手段引入课堂,可变静为动,化近为远,并以它丰富多彩、灵活多样的教学形式,为学生提供反映思 维过程的演示,能充分调动学生的心理因素,取得较好的效果。例如:在教“求另一个加数的减法应用题”时 ,通过幻灯片的演示,使学生形象地理解总数与部分的关系,即总数-部分=另一部分。 教学中,要利用各种教学手段,让学生充分感知,在脑中建立清晰的数学表象,为提高学生的数学想象力 积累素材。 二、引导想象,发展形象思维 现代认知心理学认为,表象不但可以储存,而且可以对储存的表象痕迹(信息)进行加工改组,形成新的 表象,即想象表象,它也是进行形象思维的重要方式。所以,教师要善于创设课堂教学中的问题情景,如图示 情景、语言情景,激发学生参与探索的欲望,充分发挥学生丰富的想象力。 如:教完梯形知识后,可引导学生想象:“当梯形的一个底逐渐缩短,直到为0,梯形会变成什么形?当梯 形短底延长, 直到与另一底边相等时,它又变成什么形?”借助表象,能有机地把看上去似乎无联系的三角形 、平行四边形、梯形结合起来。还可以根据梯形面积公式记忆三角形和平行四边形的面积公式: 1 S[,梯形]=—(a+b)h 2 1 当a=0时,变成三角形,面积公式为:S=——ah 2 当a=b时,变成平行四边形,面积公式为:S=ah 三、数形结合,培养形象思维能力 数学是研究现实世界中数量关系和空间形式的学科,从总的来说,数学是数与形结合的学科。不同类型的 数学图形,提供了大脑形象思维的表象材料,调动了右脑思维的积极性和主动性,提高了形象思维能力,促进 了个体左右脑的协调发展,使人变得更聪明。 例如:课本中配合应用题的具体情节而设计的插图,开阔了学生形象思维的天地,增强了刻苦学习的意志 。又如课本中出示的例题和复习题,表示数量关系时,运用了绚丽色彩和各种小动物、植物、大河、山川,现 代的飞机、汽车、轮船、卫星、建筑,古代的文物、书籍……这些不仅对理解数量关系有利,而且对学生形象 思维能力的发展和审美能力的提高起着重要的作用。 再说应用题教学,由于应用题是事理、文理、算理三者的结合,所以应用题的原型比较复杂抽象,学生摄 入大脑后难以形成清晰的表象。如果采用数形结合的方法画出线段图,便可帮助学生建立正确的表象,使隐蔽 复杂的数量关系变得明朗。例如:“小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6,小新储蓄的是小华 的2/3,小新储蓄了多少元?”这题学生往往难以确立单位“1”的量。教学时, 可引导学生画出如下线段图 来分析数量关系: 根据线段图,同学可以很快列出算式:18×5/6×2/3-10(元) 所以说线段图具有半抽象半具体的特点,它既能舍弃应用题的具体情节,又能形象地揭示条件与条件、条 件与问题之间的关系,把数转化为形,明确显示出已知与未知的内在联系,激活学生的解题思路。这里线段图 的运用、数与形的结合,较好地激发了学生的再造性想象,不仅发展了学生的形象思维,而且实现了形象思维 与抽象思维的互补。

165 评论

醇香麦芽糖

合作——讨论式教学的成功标志 合作是一种比知识更重要的能力,是素质教育的重要内容。当今的时代是科技竞争的时代,而竞争的成败往往取决于人们的合作。一个人的能力是有限的,如果不善于和他人合作,将不同的知识加以交流、综合、提高和运用,就不能适应时代的发展要求。所以,在研究-讨论式教学中实施小组合作教学是研究-讨论式教学实验课题中的重要内容。数学小组合作学习是集体教学模式在小学数学中的应用,它是根据团体动力学的原理设计,旨在改变过去班级只是作为制约学生课堂行为的一种“静态的集体背景”,而使班级、小组等学生集体成为帮助学生课堂学习的一种“动态的集体力量”。所以,“小组合作学习”是一种很好的教学模式。这种模式有利于学生人人参与学习的全过程,学生学得生动活泼,人人尝试成功喜悦,它既能发掘个人内在的潜能,又能培养集体、团体的合作精神。 一、合理组建,增强合作学习效率 根据学生性格心理特征,合理组建学习小组是开展小组合作学习的重要开端。组建学习小组时,应先根据学生的知识基础、兴趣爱好、学习能力、心理素质、性格特征进行综合评定,然后搭配成若干学习小组,通常以4~6人为妥,由1人任小组长。小组长一般是学习基础较好,乐于助人,且有一定的合作创新意识、口头表达及组织能力较强的学生。要求各组间无明显差异,力求均衡,便于公平竞争。组建后,要求每个小组中的成员相互帮助、坦诚相见、民主平等。以达到增强合作学习效率的目的。 二、让合作小组主动参与教学过程 1.营造氛围,激发兴趣。 心境的好坏直接影响到学习效果。相比,教师要根据教材特点,充分发挥电教手段,营造一种宽松、愉快的合作学习氛围,让学生在这种气氛中充分发挥自己的智慧,激发他们合作学习的兴趣。如在“柱体的体积”复习教学中,抓住新旧知识的联系,充分尊重、相信学生,创设平等、民主、和谐的合作氛围,运用媒体、实物手段,出示一个“小博士”图象,并说明复习的方法,即看到一个图形可以就有关知识自问自答,你问我答或我问你答。接着逐个出示图形和长方体。要求以小组为单位,让每个小组说出自己知道的知识,还可以接着提出一个问题给下一组的同学回答,依次进行。这样小组成员积极配合,圆满地复习学过的知识,为新课教学做好准备。 2.创设情境,提高效率 合作学习中,教师要针对教学目标、教学内容及教材的重难点,结合班级学生实际,创设既能激起学生参与学习的动机效应,又能充分发挥小组合作学习的认知功能的情境,以提高同伴间合作的效率。 例如,在教学“基本数量关系”时可设计班级活动奖品购买计划,让学生自己挑选喜欢的奖品,制定喜欢的购买计划,激发学生参与学习的兴趣,在合作研究中掌握基本数量关系。在教学“旅游路线设计”时可以联系学生的旅游经历,说说旅游中的感想和体会,激发学生学习合理选择旅游路线的兴趣,掌握优化策略知识。 3.重视引导,合理组织 有效的引导和合理的组织是合作学习成功的保证,在课堂教学中根据问题的不同类别,鼓励学生灵活采用各种方法对新问题进行独立探究、多向思索,如阅读、操作、尝试、迁移、类比、分类等。教师做好巡视指导,特别对有困难的学生作适当启发与辅导。有益于教学的全面进行。因此,学生自主探索,合作成功与教师的激励和指导是密不可分的。当学生对新知识疑惑不解,产生问题时,就要抓住时机释疑,解决问题。合作讨论这个环节,就是为了激励学生积极地投入学习,调动全体学生动脑、动口、动手,自始至终参与教学全过程,积极主动地去学习。 从信息论的角度来讲,在课堂教学中学生、教师、教材三者之间的互相作用和信息交流才能优化课堂教学结构,提高课堂教学的效果。因此在课堂上让学生多说多议,有利于学生之间的相互作用和信息交流。但一节课40分钟有很多环节,最后还得保证学生练习的时间,而现在学生人数又多,让每个学生都来说一说是不可能的,于是合理组织各种形式的讨论在小组合作讨论中就非常重要。这些形式有同桌两人互相说说的,有4 人一组共同讨论的,有大组讨论的,也有师生共同讨论的,这样就使一些平时不大开口的学生都有了说话的机会。在组织学生分组讨论的过程中,还要注意培养他们怎样围绕中心,抓住重点来讨论。如讨论的时候,中等以下的学生,利用他们知识上的不完善把问题逐步展开,而中等以上的学生则在突破难点,运用知识的迁移,在概括新学的知识中尽量发挥作用,启发组内同学的理解。这样就调动了不同层次学生的学习积极性,还能使他们的思维开阔起来,发表不同的观点,从不同的角度来讨论。 比如,在讨论梯形面积计算公式为何是(上底+下底)×高÷2时,大多数学生都能用两个完全一样的梯形拼成一个平行四边形来推导,但也有一些学生把一个梯形通过割移论证,培养了思想的开阔性,掌握了学习的方法,知道了为什么要这样做的道理。 又比如教学“梯形”一课,可设计了下面的小组学习题: (1)什么叫梯形?下面哪些图形是梯形?哪些不是?为什么? (2)什么叫做梯形的底?指出上面梯形的底? (3)什么叫做梯形的腰?指出上面梯形的腰? (4)什么叫做梯形的高?梯形中有几条高? (5)在预先发的一个梯形图中,分别标出它的上底,下底,腰,作出它的高? 一些数学题有一定的难度,要解决它则如让学生跨上高一级台阶。这类题,优生就象弹跳力好的学生原地就可一跃而上;对于中等生来说,也可退后数步,再借助跑力量腾越而上;而对于学习有困难的学生,怎么办?我们利用小组学习题为其设置阶梯,降低坡度。经过小组学习,全体学生都能掌握学习。 小组间对探索结果进行交流。教师深入倾听或参与讨论。为全体学生,尤其是为学困生提供了更多的课堂参与机会,并将个人独立思考的成果转化为全组共有的认识成果,培养了群体意识和活动能力。在新课教学时要注意鼓励学生在独立思考的基础上,深入探讨,展开讨论,小组成员各抒己见,教师适时点拨指导,实现信息在群体间的多向交流,让学生尝试到合作学习的乐趣。 在教学“长方体、正方体特征”时,先出示实物模型长方体、正方体支架模型,让学生观察后在小组中合作探讨,看哪一小组的同学找到的特征最完整,并记录下来。这时学生热情很高,通过小组中的探讨合作,小组间的互相交流,很快得到了面、棱、顶点的各种特征。学习效果很好。使学生尝到了合作成功的快乐。 5、交流汇报,深入归纳 小组派代表向全班汇报讨论结果,教师引导各小组提出不同想法,鼓励发散思维。这种汇报,一方面为较多学生创造了“代表集体”的机会,开展有竞争的合作;另一方面将小组共同的认识成果转化为全班共有,能激发创新,拓展思维。 分组讨论充分调动了全体学生的积极性,在此基础上让各组派代表交流,论述本组的思路与观点,从而使学生能从具体到一般,从具体到本质,找出规律性的东西,找到解题的方法,同时还要培养他们用规范的数学语言加以论述,得到一个科学的结论。 学生通过分组讨论,对新的知识,解题方法有了初步的理解后,每组派代表发言,论述本小组对问题的分析,概括一个想法。起初,学生们的发言有表达不清、抓不住重点的现象,这时教师就应指导他们逐步掌握分析问题的方法,可以从条件出发,逐步求出问题,也可以从问题出来,寻求问题必须知道的条件。起初他们的论述都是用自己生活中的语言,后来逐步注意要利用数学语言,并注意了用词的准确,这样就使学生的归纳概括能力有了提高。还有的学生不满足已学的知识和口头的论述,则教师可以指导他们学写小论文,培养他们思维的创造力,如有个学生不满足于老师上课讲的“判断一个数能否被3整除”的方法,利用自己平时计算的经验写出了一篇学习小论文。在班上展示后大大增强了同学学习数学的兴趣。收到了很好的效果。 小组中学生相互交流解题过程、结果、方法,分析错误原因,交流解题心得,能使学生从别人的错误和解题中学到更多的知识。让学生自由发言,对全班已有的各种意见进行归纳小结。教师则营造适当氛围,让学生自觉、自由地展开争论,充分体现民主平等、自主创新的学习精神。同时,还要鼓励学生用自己的方法验证结论,培养思维的严密性和实事求是的态度。 三、让合作小组准确开展学习评价 学习评价是师生双方对学习过程、结果和态度进行肯定或否定的一种强化方式,具有激励和导向作用。评价的主要目的在于促进学生主体性的发展。评价体验的主要任务在于增强学生主动发展的动力,提高主动发展的能力。小组合作学习带给学生许多表现的机会,而合理的评价则能充分肯定学生的学习效果,进一步激发学生的学习热情。为此,教师在课堂教学中要重视对学生进行独立探究、合作发现、实践运用等学习活动中表现出的自主性、主动性、独创性等主体精神和品质进行评价,使学生获得主动探究获取知识的情感体验,增强学生学习的信心和动力。同时还可运用小组自评。学生在小组中回顾所学知识、技能,核对自定目标;反思自己的学习方法、解题思路,从而提高学习的自我监控、自我调节等元认知能力水平。 有时学生对来自同学的鼓励、帮助比来自于教师的更为有效。比如,为了促进学生自主学习,有时自拟几个题目,让学生进行测试,然后让小组长按标准给每位同学打分,再按小组总分进行评比。成绩好的同学感到他们只为自己的学习是不够的,成绩差的同学感到影响了本组成绩而有了压力,这样就使压力变成集体和个人的动力。评比后,小组里的那些学习有困难的学生,每天都有同学督促和帮助,学习成绩就会有明显的提高。因次,适当以小组为单位开展学习评比活动,有利于强化学生合作意识,全面提高学生的整体素质。最后,不要忽略质疑提问重要性,在学习过程的最后引导学生引申、推广本课的数学问题,把问题的探索和解决的过程延续到课外和后继学习中去。 小组合作学习模式致力于满足学生全面的社会需要,致力于改变低效的学习模式,致力于改善师生关系和生生关系,真正发挥集体在学习中的作用,强化学生与环境的交互意识,有效促进学生心理机能和社会交往能力的发展,达到培养学生合作研究,探索实践的能力。是研究-讨论式教学过程中的必不可少的重要手段。 1.营造氛围,激发兴趣。 2.创设情境,提高效率 4. 客观次序 3.重视引导,合理组织 5、交流汇报,深入归纳 随着信息化社会的到来,社会实践对数学的需求发生了变化,数学越来越成为人们进行交流的必不可少的一种工具。人们更需要的是收集、分析和处理数据、信息的能力,面对变化的情况迅速做出判断的能力,将获得的资料、数据转换成数学问题并加以解决的能力等。面对这样的社会需求,必须改变数学教学脱离实际的倾向,重视数学与社会实际的联系,较好地满足社会的数学需求。新修订的小学数学教学大纲明确指出:“要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。”这就要求数学教师结合学生的生活经验和已有的知识来设计富有情趣和意义的活动,使学生切实体验到身边有数学,用数学可以解决生活中的实际问题,从而对数学产生亲切感,增强学生学习数学的兴趣和信心,发挥自己的聪明才智,运用已有知识去创造性地解决新问题,提高解决实际问题的能力。 一、结合生活实际,培养学生的数学意识。 所谓数学意识,是指能用数学的观念和态度去观察、解释和表示事物的数量 、空间形式和数据信息,以形成量化意识和良好数感。新修订的《小学数学教学大纲》十分强调数学与现实生活的联系,在教学中增加了“使学生感受数学与现实生活的联系。”我感到作为一名数学教师,要结合生活实际,使学生养成主动地从数量上观察、分析客观事物的习惯,认识到数学符号、公式、图表是表示、交流和传递信息的工具,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到数学就在身边,使学生善于将实际问题转化成数学问题,感受数学的趣味和作用,体验数学的魅力。例如:教学轴对称图形时,引导学生观察实际的事物(树叶、蜻蜓、门窗等),分析它们的共同特征,让学生从熟悉的具体的事物中理解轴对称图形,形成轴对称概念。这样,可以使学生从抽象的概念教学中解脱出来,而且对轴对称图形的特征记得牢。 二、加强动手操作,渗透数学思想和方法 义务教育小学数学教学内容和教材中,已经注意了渗透思想和数学方法。而《新大纲》要求要加强渗透的力度,有些思想和方法完全可以以某种方式让学生较早地体会或初步了解,使小学生能通过数学学习活动积累科学思想、方法的感性经验,逐步形成灵活而缜密、具有创造性的思维品质。例如在三角形面积的计算教学中,通过图示和实际操作,先把两个完全相同的三角形叠在一起,然后以它们重合的一个顶点为中心,把上面的三角形旋转180度,再沿着一条边平移,直到与另一个三角形拼成一个平行四边形。这样不仅使学生清楚地看到三角形的底和高与所拼成的平行四边形的底和高的关系,而且还使 学生直观地了解一些平移和旋转的含义,以及对图形位置变化的作用,有利于发展学生的空间观念。 三、注重实践活动,培养学生发现数学问题的能力。 为了在学生学习数学知识的同时,初步接触和逐渐掌握数学思想,不断增强数学意识,就必须在数学教学进程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系与区别。例如,在教学《利息和利率》这一课时,可以利用活动课的时间带学生到银行去参观,并以自己的压岁钱为例,让学生模拟储蓄、取钱,这时学生的问题就出来了,“利率是什么啊?”“为什么银行的利率会不同啊?”、“储蓄哪种方式比较合理呢”……对于学生这些问题我微笑不答,表扬他们观察得很仔细,然后就让他们带着问题去预习新课,到上课的时候学生由于是自己发现的问题,自己来解决问题,兴趣浓厚,气氛活跃,轻轻松松地学习了新的知识,从而找到了符合实际需要的储蓄方式。这样学生培养了养成留心周围事物,有意识地用数学的观点去认识周围事物的习惯,并自觉把所学习的知识与现实中的事物建立联系。 四、创设生活情景,提高学生解决问题的能力。 目前的应用题教学仍未摆脱传统的应用题教学模式,所以仍然是小学数学教学的难点,占用了大量的教学时间,还是导致学生分化的主要内容。存在的主要问题是,就其内容而言,有的部分脱离学生的实际生活;就其能力训练的价值来看,侧重的是解习题的技能,而对运用数学知识解决简单的实际问题的能力的重视仍显不够。为了使学生更好地了解数学的思想方法,提高学生分析问题、解决问题的能力,教师必须善于发现和挖掘生活中的一些具有发展性、趣味性的问题。让学生从生活中学数学,激发学生学习的兴趣,提高解题的技巧,培养学生根据实际情况来解决问题的能力。例如在教学《工程问题》之后,我设计这样一道题:“老师带了一些钱去买跳绳和毽子,所带的钱如果全部买跳绳可以买50根,如果全部买毽子可以买60只,现在先买了30根跳绳,剩下的钱,还能买多少只毽子?”这道题突破了常规“工程问题”的命题方式,由于问题来自于生活,学生表现出了浓厚的兴趣,激起了学生创造性思维的“火花”,从不同角度提出了多种解决问题的方法,提高了解决问题的灵活性。 课程改革对我们数学教师的要求越来越高,教学中我们应该重视应用数学知识解决实际问题能力的培养,通过联系实际的教学内容,练习题,与现实背景相联系的教学过程,培养学生运用数学的观点观察周围事物的兴趣,提高学生运用数学的意识和解决简单实际问题的能力,从而让学生真正体会到数学学习的趣味性和实用性,在生活中发现数学,喜欢数学。

185 评论

Kinglijiji

怎样学好小学数学?

304 评论

肥肥肥肥啊

一、 教材内容介绍: 这册教材中,“数与代数”领域的内容有认识万以内的数、初步认识简单的分数;会计算两位数除以一位数、三位数乘一位数、两位数加减两位数、简单的分数加减法;常见的量要认识千克和克,以及24时记时法。重点:认数与四则计算;难点:24时记时法 “空间与图形”领域中要认识长方形和正方形的特征,简单物体的三视图,知道周长的含义,会计算长方形和正方形的周长。重点:周长意义与计算长方形、正方形周长的方法;难点:观察物体 “统计与概率”领域中教学事件发生可能性相等或不相等。重点:把收集的信息进行整理,能用统计表或条形统计图呈现;难点:正确描述事件发生的可能性 “实践与综合应用”领域安排4次操作型活动与1次场景型活动。重点让学生知道独立探索的同时要加强合作交流,明白“倾听”、“尊重”、“互补”会让问题解决得更好;难点:如何有效地组织活动。 二、教材特点分析: ⒈教学内容的选择 “数与代数”领域以万以内的认数和四则计算(笔算和估算两位数除以一位、三位数乘一位数以及两位数的加和减)为主线,结合安排了认识常量单位(克与千克、24时记时法)以及直观认识分数(一个物体或图形平均分得到几分之一和几分之几)。 “空间与图形”领域在二年级观察物体基础上,进一步教学物体的正面、侧面和上面,安排了从这三个角度观察一些简单的物体和由三个同样大的正方体摆成的物体(三视图);在一年级直观认识长方体与正方体的基础上,教学这两种平面图形的特点以及计算周长的方法。 “统计与概率”领域,在学生初步理解了“可能”“一定”“不可能”的基础上,教学事件发生的可能性有时大些、有时小些,学会用“经常”“偶尔”等词语描述事件发生的可能性。 “实践与综合应用”领域共安排了五次实践活动,其中《称一称》、《周末一天的安排》、《周长是多少》、《摸牌与下棋》都是操作型的活动,而《农村新貌》是场景型的活动。 ⒉教学内容安排 这册教材的教学内容里,把数学基础知识、基本技能与解决实际问题密切结合,并没有明显的区分。尽量把数学知识和自然科学、社会生活紧密联系,力求让数学思考、解决问题、情感态度等方面的培养目标在知识与技能的教学中得以落实,让教学内容更加有利学生全面、持续、和谐地发展。 把几个领域的教学内容交叉安排,有利于各领域的教学互相支持,形成有机体,这是个亮点,也是我们教学中所追求的。例如,数与代数领域中的许多数学活动方法,应用到其他领域的学习中同样能收到良好的效果;条形图与线段恰当地应用到数与代数领域,能直观地显示数量间的关系,有助于发现规律;统计与概率中对“可能性”的理解与把握,则有利于学生在学习其他领域的内容时,思考更全面。 ⒊教材的编写 选择学生身边的、感兴趣的、富有数学内容的事情作为教学材料,并以现实的、有意义的和富有挑战性的方式呈现在教材中,让学生知道数学源于生活,就在我们身边,并不陌生,从而激发学生对学习数学的愿望与热情,激活学生已有的数学活动经验,让学生主动获取数学知识。例题的编写着力于安排教学活动的内容、线索与呈现方式,给创造性地“教”与“学”留出了必要的空间。例题一般不直接呈现和现成的解题方法,而是突出情景中的数学内容、指向解决问题的操作与实践活动,以及学生独立探索后的相互交流。练习的编写注意到学生掌握和巩固新知识需要适当的练习量,同时避免机械地模仿、记忆与重复训练。经常设计一些题组,让学生对同组的几道题进行比较,分析异同,自主构建认知结构;教材中还出现不少的开放性题目,提高学生灵活思考问题、综合运用知识的能力。 从本册教材开始,教材增设了“你知道吗”栏目,结合教学内容,适当介绍一些数学史料,以及和数学有关的科普知识,使学生了解数学知识的产生与发展首先源于人类生活的需要,体会数学在人类发展历史中的作用,感受现实生活中处处有数学,激发学生学习数学的兴趣。本册中,出现了适量的提高题,体现教材的弹性,满足学生的不同学习需求,使全体学生都能得到相应的发展。 三、教学建议: ⒈紧扣学生实际,从学生已有经验入手 数学课程标准强调学生的数学学习必须从学生的生活经验和已有知识体验出发,创设生动、有趣的教学情境,引导学生通过观察、操作、类比等活动掌握基本知识和技能。如在教学三位数乘一位数时,由于其算法与两位数乘一位数基本相同,[1] [2] [3] 下一页 09—10学年三年级上册数学教学计划学生运用已有的学习经验容易实现有效的迁移。教学时,教师不必呈现具体的计算过程,可以提出适当的问题,引导学生在新旧知识之间建立联系,独立思考、自主探索。再如在教学除法验算时,也不把知识直接告诉学生,而是通过例题的教学让学生想到:乘法可以验算除法。这样把除法验算的教学建立在学生已有经验的基础上,不但有利于他们体会乘、除法之间的关系,理解乘法可以验算除法,而且有利于学生养成验算的好习惯。 ⒉关注学生探索与合作交流能力,培养学生的创新精神 在数学活动中,学生是学习的主体,教师要转变角色,依据学生的认识特点,创造性地设计一些探索性和开放性的问题,放手给学生提供动手实践、自主探索与合作交流的机会,让学生的创新得以落实。如在教学口算整千数加、减整千数,整千数加整百数及相应的减法时,不出示例题,而是在认数后的“想想做做”中出示相应的练习,教师给学生充分探索的时间与空间,通过让学生算一算、比一比、说一说等方式,让学生探索算法,交流体会。在教学两位数加、减两位数口算方法时,让学生先尝试口算出结果,再在小组中交流自己是怎样算的,使自己的算法得到确认或修正;教学长方形和正方形时,教师可引导学生把长方形、正方形折一折、量一量、比一比,探究长方形、正方形和角的特点,在认识周长的基础上,探索和交流一般平面图形周长以及长方形、正方形周长的计算方法。这样的安排有利于引导学生主动地去探索、去思考,学生可以运用自己的思考方式和知识经验,经历知识的形成过程,主动建构自己的认知结构。 ⒊培养学生“数感”,发展估算意识,提高估算能力 “数感”是对数和数的关系的一种良好的直觉,它是一个潜移默化的过程,需要用较长的时间逐步培养,学生“数感”的发展需贯穿于教学的全过程。估算可以发展学生对数的认识,同时具有重要的实用价值,可以结合生活实际说明这一点。因此,在教学中,应着力培养学生的“数感”和估算能力。例如为了让学生能够体验万以内这些较大的数的实际含义,可以通过数正方体上的小方块、拨计数器等方法来理解数的组成,让学生感受不同方式表示的万以内数的实际意义和大小,培养学生的“数感”。在现实生活中,许多地方需要估计。如购买一些物品用100元或用200元够不够等等。教学中,应结合有关教学内容或开发设计一些与学生生活密切联系的问题或习题让学生去估计。如第40页的第6题,先估计谁走的路近,再算一算;第42页的第5、6题,都是让学生先估计结果,再计算。有了这样的安排,特别是通过估计解决实际问题,有利于培养学生的估计意识和估算能力,也让学生觉得估算有用。 ⒋重视学生解决实际问题过程,发展应用意识 教学活动中,首先应让学生获得从“数学”的角度来认识和理解问题的机会,让学生在学习时善于从“数学”的角度提出问题、发现问题。其次,让学生学会运用已有的知识与技能,用多种方法解决问题,发展多样化的解题方法。教学中,教师应注意结合所学的内容,在“想想做做”、练习及复习中适当安排了一些实际问题,引导学生运用所学的知识去解决,发展应用意识。如教学用“连乘”解决的实际问题时,可创设有趣的场景,让学生收集有效信息,由学生自由地提出问题,让学生独立解决“买6袋球一共要用多少元?”然后组织学生交流明确解决问题的基本思路,体会解决问题策略的多样化。在单元的最后,安排的实践活动,让学生综合运用所学的知识,根据情境中提供的各种信息发现问题、提出问题、解决问题,进一步培养学生发现问题、提出问题和综合运用所学知识解决问题的能力。 ⒌促进学生形成良好的情感、态度、价值观 孩子对自然与社会现象的好奇心、求知欲是一种重要的素质。要让学生学会用数学的眼光看身边的事物,培养学习数学的自信心、意志力,感受数学的严谨,形成质疑和独立思考的习惯。教学中,教师必须注重组织丰富多彩的数学活动,如让学生积极主动地参与操作和观观察活动,让学生在课堂中有成功的体验,让学生合作交流的机会,分享同学的活动成果。 ⒍让教学评价的方式多样化 在课堂观察时,教师不仅要关注学生知识、技能的掌握情况,还要关注学生其它方面的表现。例如,既要评价学生对乘法、除法计算方法等知识技能方面的理解和掌握,也要评价学生在学习过程中的自主探索和合作交流等

273 评论

相关问答

  • 小学数学口算课题研究论文

    一个人的数学计算能力主要包含三个方面:1、计算结果的准确性;2、计算方法的技巧性;3、计算速度的快捷性。要想提高小学生数学计算能力,要从下面四个方面下功夫:一、

    扬帆飘舟 4人参与回答 2023-12-10
  • 小学数学课题研究论文题目

    研究的主题往往有三个来源:一是自己的教育实践中遇到了某些问题,需要通过研究来解决这些问题;二是在阅读他人的研究成果或听课时发现有待进一步研究的问题;三是研究者本

    陌茉默墨 7人参与回答 2023-12-09
  • 小学数学课题申报研究论文

    小课题研究报告----如何使小学数学教学生活化一、课题的提出“数学是人们生活、劳动和学习必不可少的工具”,“对数学的认识不仅要从数学本质的观点去领悟,更要从数学

    余文文214 4人参与回答 2023-12-07
  • 小学数学小课题研究报告论文

    为了更好地提升小学数学研究品味,集中研究力量突破研究难点,参考浙江省小学数学课题研究选题,我为你搜集到了以下的小学数学教研课题总结,希望对你有所帮助。 小学数学

    于海丽888 5人参与回答 2023-12-08
  • 小学数量关系课题研究论文

    合作——讨论式教学的成功标志合作是一种比知识更重要的能力,是素质教育的重要内容。当今的时代是科技竞争的时代,而竞争的成败往往取决于人们的合作。一个人的能力是有限

    可乐你不乖 8人参与回答 2023-12-10