80年代之后
Excel 在经济数学模型中的应用 [2006年10月26日] 点击数:97 【字体:大 中 小】【双击滚屏】 提高企业的经济效益是现代化管理的根本任务,各个领域中的大量问题都可以归结为线性规划问题。近几十年来,线性规划在各个行业中都得到了广泛的应用。根据美国《财富》杂志对全美前500家大公司的调查表明,线性规划的应用程度名列前矛,有85%的公司频繁地使用线性规划,并取得了显著提高经济效益的效果。 线性规划的求解可以用单纯形法笔算求解,但计算量较大,尤其对多变量的规划求解,而且在敏感性分析中要做大量的重复性工作。它还可以用Matlab数学软件及上海理工大学或国防科技大学研究出版的运筹学软件包求解,但这类软件相对来说难以掌握,而且运用不便。而Excel提供了超强的数学运算、统计分析等实用程序,利用它的规划求解功能就可以快速、高效地求解线性规划问题。 以下仅以一具体实例来阐明Excel在经济数学模型中的应用。 原料配比问题 表 一原 料 药物 甲 乙 丙 丁 A 1 1 1 1 B 5 4 6 5 C 2 1 1 2 某药厂生产A、B、C三种药物,可供选择的原料有甲、乙、丙、丁四种,成本分别是每公斤5元、6元、7元、8元。每公斤不同原料所能提供的各种药物如表一所示。药厂要求每天生产A药品恰好100克、B药品至少530克、C药品不超过160克。要求选配各种原料的数量,即满足生产的需要,又使总成本最少。 求解方法: (1)建立简单的数学模型。根据题意,设X1、X2、X3、X4分别表示甲、乙、丙、丁原料的用量,易得到如下线性规划: 目标函数: Min Z=5X1+6X2+7X3+8X4 约束条件: X1+X2+X3+X4=100 5X1+4X2+5X3+6X4≥530 2X1+X2+X3+2X4≤160 X1≥0,X2≥0,X3≥0 (2)将该线性规划问题的数学模型按表二样式输入Excel中,在表二中,有关单元格所含公式如下: 单元格 公 式 C5 =D3*D5+E3*E5+F3*F5+G3*G5 C6 =D3*D6+E3*E6+F3*F6+G3*G6 C7 =D3*D7+E3*E7+F3*F7+G3*G7 C8 =D2*D3+E2*E3+F2*F3+G2*G3 (3)选择“工具”菜单中“加载宏”选项,在安装提示下装入“规划求解”(注意要插入安装盘)。也可以把安装盘中“Pfiles\Office\Library”下的Solver文件夹及其目录下的、复制到Office安装目录“Office\Library”下,然后加载即可。 (4)在“工具”菜单中选择“规划求解”,然后在弹出的“规划求解参数”对话框中通过点击C8单元格使“目标单元格”出现$C$8的绝对引址,并根据本题题意在其后的小框框内选择“最小值”。在“可变单元格”中通过从表格中选择D3:G3区域,使之在文本框内出现$D$3:$G$3。在“约束条件”处按“增加”,然后在出现的“增加约束”对话框中的“单元格引用位置”处通过点击C5单元格使之出现$C$5,在后面的框框内选“=”,“约束值”编辑为$B$5。类似地,第二、三、四个约束条件分别编辑为“$C$6≥$B$6”,“$C$7≤$B$7”,“$D$3:$G$3≥0”. 按“确定”退出。 (5)按“求解”按钮,在弹出的“规划求解结果”对话框内可根据需要生成运算结果、敏感性分析和限制范围的报告,然后按“确定”对模型进行求解。 (6)如发现数字解为小数,可按需要该为用整数表示,方法如下: ① 按住Ctrl键,分别选定需改为用整数表示的单元格D3、E3、F3、G3、C8。 ② 选取“格式”、“单元格… …”、“数字”、“科学计数”。 ③ 在“小数位数”中选定“0”格式。按“确定”退出。 (7)根据以上步骤,可得到本模型的计算结果如表三所示。从表三可以看出,当甲30公斤、丙40公斤、丁30>公斤而乙为0时,成本达到最小,最小成本为670元。表 二 A B C D E F G 1 甲 乙 丙 丁 2 数量 5 6 7 8 3 单价 1 1 1 1 4 约束条件 最适结果 5 a 100 1 1 1 1 6 b 530 5 4 5 6 7 c 160 2 1 1 2 8 总成本 表 三 A B C D E F G 甲 乙 丙 丁 2 数量 5 6 7 8 3 单价 1 1 1 1 4 约束条件 最适结果 5 a 100 100 1 1 1 1 6 b 530 530 5 4 5 6 7 c 160 160 2 1 1 2 8 总成本 670 用Excel的规划求解工具线性规划问题,简单易行,很容易掌握。其规律及技巧可归纳为:在实际的求解过程中,只需确定目标函数单元格及“可变单元格”区域位置两处单元格位置,然后正确地输入约束条件和确定所求的目标是最大还是最小即可求得正确结果。 利用Excel提供的规划求解法可以解运筹学中的许多问题,譬如线性规划、指派问题、运输问题、机器分配问题、人事安排… …等,只要是对生产、制造、投资、财务、工程等求最大利润、最小成本等问题,就基本上可以用规划求解法快速得到答案。
轻舞飞扬舞翩跹
参考论文: 我认为,一定要把教材看懂,我第一次微分方程部分来不及看,结果微分方程部分的题目不会做,就差4分,我如果做了一道微分方程的5分题就不用再考第二次了。 其次,一定要把书后的练习题做一遍,因为只有不断的练习(特别是理科类的课程)才能提高解题技巧和记住公式。我考了两次把书中的练习题做了两遍(当然,并不是所有的题目我都会做,我大概只会做80%的题目),做完之后就对着书后的答案看是否做错,做错在什么地方,通过分析就可以尽量避免在考试时犯同样的错误。 快考试前的一个月,我就做前几次考试的试题,了解一下考试出题的类型和看那一部分内容在考试中占的分数比较多,对于分数少而又比较难的部分,在时间不够时可以有选择地放弃(当然,全部都会及格的机会更大)。 我在看教材时,先把教材看完一节就做一节的练习,看完一章后,我特别注意书后的“结束语”部分,通过看小结对整一章的内容进行总复习,根据“本章的基本要求”和“对学习的建议”两部分的要求,掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容。 我强烈建议多看小结部分,可以使你学习的目的明确,有的放矢,不必花太多时间在次要(不要求掌握部分)内容上。我每看完一章就反复琢磨书后的小结(每一章的小结部分我差不多看了4、5遍),找准重点后再重新把书中的重点知识学习第二遍,力求一定掌握重点知识,并会做相应的习题。 对于书中不会做的题目或者是看不懂的例题,如果身边有朋友可以请教就请教,力求书中要求掌握的都会做。身边没有人可以请教,就与也报考这门课程的网友共同讨论,使大家在讨论中得到提高。 付出的劳动与成绩是成正比的,早日开始学习,多花一点时间学习,你通过的机会就越大。在此也祝愿大家在自考中一帆风顺!追问:关键我这个是写个论文就行 就是关于微积分的 我不知道怎么写好回答:什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。 (l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。 牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。 莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。 牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
数数看吧,面对利益、所需要的,它们俩也不吵架,我希望能让梦想成真,就这么不起来了…… 持续至今,也仅此而已,若不提前设想好未来,我相信人类经历了几千年进化的能力
Excel 在经济数学模型中的应用 [2006年10月26日] 点击数:97 【字体:大 中 小】【双击滚屏】 提高企业的经济效益是现代化管理的根本任务,各
我国经济社会发展论文1500字?
微观经济学侧重于基本概念、基本图形、基本理论的教授,使学生对市场运行机制的一般原理和规范行为等方面的内容有比较全面的了解。下面是我为大家整理的有关微观经济学论文
现在房价是合理的,因为从经济学角度来分析,一种商品能够变成货币,是最惊险的跳跃,楼市上的房子完成了这个跳跃,这说明它的价格是合理的。对于很多人来说,看到这样的说