汤汤小朋友
第一作者:Chi Chung Lee
通讯作者:Yilin Hu,Markus W. Ribbe
通讯单位:加州大学欧文分校
论文DOI:
全文速览
钼固氮酶在常规环境下催化还原 N2 到 NH3 发生在 M 团簇处。该团簇是一种复杂的辅助因子,包含两个由间隙碳化物连接的金属硫部分立方烷和三个带硫。最近的一项晶体学研究表明,N2 的结合是通过 M 簇的带硫在转换时的位移来实现的。然而,在催化过程中 N2 结合和带硫移动的直接证据仍然没有发现。该研究工作表明 N2通过电子和硫的消耗被捕获在 M 簇上,并且 N2-捕获状态在生成 NH3 方面具有催化能力。此外,本文证明只有当亚硫酸盐与还原剂一起提供时才会发生产物释放,亚硫酸盐作为硫化物插入到带硫置换的位置,并且在催化过程中存在带硫的动态进出。总之,这些结果确立了辅因子带硫的移动作为固氮酶反应的关键。
背景介绍
固氮酶是一种复杂的金属酶,与农学、环境和能源等领域有着密切的关系。作为全球氮循环中的一个关键步骤,固氮酶在催化大气 N2 转化为生物可利用 NH3 方面的作用广为人知,固氮酶还可以在模拟环境反应中将 CO 和 CO2 还原为碳氢化合物(例如,CH4、C2H6、C3H8),用于生产碳燃料。除了 N2和 CO,固氮酶还能够还原多种替代底物,包括 C2H2, CN , N3 和 H+,进一步说明了这种重要金属酶的催化多功能性。传统钼 (Mo) 固氮酶的催化是通过一个双组分系统完成的,该系统利用还原酶组分将电子传递给催化组分以进行底物还原。还原酶成分,称为铁 (Fe) 蛋白,是一种同源二聚体,包含一个亚基桥接 [Fe4S4]簇和每个亚基内的 ATP 结合位点;被称为催化成分的钼铁(MoFe) 蛋白是一种α2β2-异四聚体,其在每个 α/β-亚基界面含有一个 P-簇([Fe8S7]),以及在每个 α-亚基内含有一个 M-簇 (或 FeMoco; [( R -homocitrate)MoFe7S9C)。在底物转换过程中,钼固氮酶的两种成分蛋白相互形成功能复合物,使 ATP 依赖的电子从 Fe 蛋白的 [Fe4S4] 簇通过 P 簇转移到 M 簇。MoFe 蛋白,一旦积累了足够数量的电子,就会发生底物还原。
固氮酶的功能重要性和与生俱来的复杂性,激发了几代研究人员对这种酶促 N2 还原机制进行研究;Lowe-Thorneley 模型是迄今为止最知名的动力学描述,用于解释质子的蛋白内传递和电子到 M 簇以进行底物结合、活化和还原。另一方面,由于这些结合物种的瞬态特性,研究人员已证明固氮酶的底物或中间结合状态表征极具挑战性。在这方面的研究中,冷冻淬火光谱技术与钼固氮酶活性位点基因修饰相结合,已被用于表征这种酶的某些状态,这些状态可能与催化相关。然而,获得 Mo-固氮酶配体结合状态分子描述的一个非常重要步骤来自于 MoFe 蛋白的 CO 结合形式的高分辨率晶体结构,它揭示了 μ2-CO 配体桥接在 M 簇的 Fe2 和 Fe6 之间,代替了带状硫 (S2B)。这一结果令人兴奋,因为它指出了一种机制,涉及通过取代辅助因子的带硫产生活性 Fe 物质。更有趣的是,在 S2B 位点进行的后续晶体脉冲追踪研究表明辅助因子的整个带区域可能参与催化。
图文解析
图1. N2 结合的 Av1* 的GC-MS 和频率选择性 NMR 分析。a、b,产生的C2H4 的 GC 洗脱曲线 (a) 和 GC-MS碎裂模式 (b);条件分别为在 D2/C2H2下的 Av1(灰色)、N2/D2/C2H2下的 Av1(蓝色)和 D2/C2H2下的 Av1*(棕色),基于 H2O 的反应。c,在 Av2、MgATP 和连二亚硫酸盐存在下,在 Ar 下转换时,由 Av1(实心蓝色)、14N2 制备的 Av1*(实心红色)和 15N2(实心棕色)制备的 Av1* 生成 NH4+ 的频率选择性 1H NMR 光谱。
图 2. 各种 Av1 蛋白种类的 EPR 和 GC-MS 分析。a-j,垂直模式(a-e) 和平行模式 (f-j) 的 EPR 光谱,用于测试静息态 Av1 (a,f),N2 结合的 Av1* (b,g),连二亚硫酸盐重新激活的 Av1* (TOD) (c,h)、Eu(II)-EGTA/亚硫酸盐再活化 Av1*(TOS) (d,i) 和 Eu(II)-EGTA/亚硒酸盐再活化 Av1*(TOSe) (e,j)。k-o,对 Av1 (k)、Av1*(l)、Av1*(TOD) (m)、Av1*(TOS) (n)和 Av1*(TOSe) (o) 酸淬灭后释放的 15N2 进行 GC-MS 分析。
图 3. 底物转换对亚硫酸盐物种的要求。a,在含有 Av2、MgATP 和Eu(II)-EGTA 的体外活性测定中,在不存在 (-S) 或存在各种硫源(+S2-,+SO42 和 +SO32 )或亚硒酸盐 (+SeO32-) 的情况下,Av1* 的活性。b,在含有 Av2、MgATP 和 Eu(II)-EGTA 的体外测定中,Av1* 的 C2H2 还原活性与亚硫酸盐 (SO32-)或亚硒酸盐 (SeO32-) 浓度的滴定关系。c,使用 2mM SO32-(实心绿色固体)或 NFE(空心圆圈)作为硫源,在 C2H2 还原中,Av1* 活性与时间的关系。
图 4. Av1*(TOS) 的晶体学分析。Av1*(TOS) 的链-A/B (P-团簇(A/B)) (a) 和 链-C/D(P-团簇(C/D)) (b) 界面处的P-团簇结构。原子颜色编码:Fe,橙色;S,黄色;O,红色;N,蓝色。c-f,链-A(M-簇(A))(c,e)和链-C(M-簇(C))(d,f)中,M-团簇的结构。c,d,侧视图;e,f,沿M-团簇(A) (c,e) 和 M-团簇(C)(d,f) 的 Fe1-C-Mo 轴的视图。
图 5. 带状硫与催化相关的移动。a,各种 Av1 蛋白或蛋白链中单个硫或硫基团的相对电子密度。b,c, GC-MS 分析 Av1*(TOS) (b) 及其分离的 M-簇 (c) 中酸不稳定、簇结合的 34S2- 离子的释放。d, ICP-OES 测定从不同样品提取的 M 簇中的 Se/Mo 比。
图 6. Av1*(TOSe) 的XAS/EXAFS 分析。a-g,对 Av1*(TOS) 在过量 SeO32 中转换10min(指定为 Av1*(TOSe),黑色),Av1* (TOSe) 在过量 SO32 中转换 5min(指定为 Av1*(TOSe)5min,蓝色)和 Av1*(TOSe) 在过量 SO32 转换 60min(指定Av1*(TOSe) 60min,红色),获得的Fe (a-d) 和 Se K-edge XAS 分析 (e-g)。
图 7. SO32-的配位和还原。a-c,由 SO32- 或 NH3配位的 M 簇的 DFT 优化模型。d,两种SO32-配位情况下的反应能,假设耦合的 e-/H+ 转移发生在初始配位步骤之后。e,在两种SO32-配位情况下,硫掺入的累积反应能。
总结与展望
基于上述结果,本文结合使用生化、分析、光谱和结构方法来证明 N2 在电子和硫耗尽条件下被捕获在 M 簇上,并且这种 N2 捕获状态与催化相关,能够产生 NH3。此外,研究表明产物释放仅在亚硫酸盐和还原剂存在的情况下发生,亚硫酸盐作为硫化物插入到带硫置换的位置,并且在催化过程中存在带硫的动态流动。这些证据共同指出带硫的移动是固氮酶机制的一个新的关键因素。
绿草泱泱
近日,我校理学院薛绍林教授课题组与香港城市大学合作,在制备高质量的光催化剂及光催化降解四环素水污染领域取得新进展。相关成果以《制备主要曝露{110}晶面的四方棱柱形γ-In2Se3及其光催化降解四环素》(Synthesis of Tetragonal Prismatic γ-In2Se3 Nanostructures with Predominantly {110} Facets and Photocatalytic Degradation of Tetracycline, DOI: )为题,发表于环境、化工领域著名期刊《应用催化B-环境》(Applied Catalysis B - Environmental)。该论文第一作者为硕士研究生魏晓帆,通讯作者为薛绍林教授。近年来,社会快速发展,一系列环境污染问题涌现。其中倍受关注的问题之一是抗生素造成的水污染。例如,四环素(TC),一种典型的抗生素,由于其能够治疗细菌性疾病,被广泛应用到药物和饲料添加剂中,在抗生素生产和使用中排名第二。但是,只有很小一部分四环素会被人或动物吸收代谢,其余全部以排泄物或本身存在于环境中,对生态系统造成严重威胁。因此去除多余四环素,保护环境刻不容缓。研究表明半导体催化剂可以利用太阳能对四环素进行彻底降解,无二次污染,可长效多次使用。因此,寻找高效的半导体催化剂是解决四环素污染引起的环境问题的关键。γ-In2Se3纳米材料具有良好的可见光和紫外光的光学吸收性能,关于其在光催化降解水污染领域的研究并不多见。此外,由于晶体生长过程的驱动力来自于总表面能的降低,自然条件下晶体倾向于沿高能晶面方向生长以降低其表面能,导致高能晶面的含量通常较低,而高能晶面通常具有较高的光催化活性。因此,对半导体材料进行晶面调控,曝露晶体特定晶面以增大纳米材料的光催化活性,可以通过此策略调整光催化剂表面原子结构,而进一步增强、优化光催化性能,引起了科研人员关注。研究课题组通过EDTA(ethylenediaminetetraacetic acid)辅助,合成了主要曝露{110}晶面的四方棱柱形γ-In2Se3,如图1所示。EDTA在水中作为桥状络合物,当其加入反应体系后会迅速电离成阴阳离子。在In2Se3纳米颗粒聚集并沿高能晶面生长的过程中,溶液中由EDTA电离形成的阴离子-COO-可以与In3+结合形成络合物,γ-In2Se3{110}晶面最外层原子为In3+,EDTA可以吸附在{110}晶面,当EDTA的量充分时,可以有效抑制晶体沿{110}面的生长,使{110}晶面得到曝露。
近日,南方 科技 大学量子科学与工程研究院(简称“量子研究院”)、物理系在量子机器学习研究中取得重要进展。量子研究院助理研究员辛涛、副研究员李俊、物理系副教授鲁
sci期刊,是指被sci数据库收录的全球范围内自然科学领域中质量非常好的正规期刊。而只要是正规期刊,都必须有唯一的期刊号。那么,sci期刊号怎么查询?本文介绍5
1、相对论和爱因斯坦质能方程 爱因斯坦在论文《论运动物体的电动力学》里提出了狭义相对论的两个基本公设:“光速不变”,以及“相对性原理”,按照这两个基本公设对于经
 WIKI资讯资讯  搜索分析测试百科网 WIKI资讯 抑郁症:谁喂养了这只“沉默的羔羊”抑郁症:谁喂养了这只“沉默的羔羊”高校应该建立一种机制,定期为
《西安交通大学学报(医学版)》 (原名《西安医科大学学报》)创刊于1937年,是由国家教育部主管、西安交通大学主办面向国内外公开发行的国家级综合性医学学术刊物。