• 回答数

    7

  • 浏览数

    147

媛姐姐丶
首页 > 学术期刊 > 关于活塞式空压机研究现状的论文

7个回答 默认排序
  • 默认排序
  • 按时间排序

姐的烂手机

已采纳

结构及工作原理 1、活塞式无油润滑空气压缩机 活塞式无油润滑空气压缩机由压缩机主机、冷却系统、调节系统、润滑系统、安全阀、电动机及控制设备等组成。压缩机及电动机用螺栓紧固在机座上,机座用地脚螺栓固定在基础上。工作时电动机通过连轴器直接驱动曲轴,带动连杆、十字头与活塞杆,使活塞在压缩机的气缸内作往复运动,完成吸入、压缩、排出等过程。该机为双作用压缩机,即活塞向上向下运动均有空气吸入、压缩和排出。 2、螺杆式空气压缩机 螺杆式空气压缩机由螺杆机头、电动机、油气分离桶、冷却系统、空气调节系统、润滑系统、安全阀及控制系统等组成。整机装在1个箱体内,自成一体,直接放在平整的水泥地面上即可,无需用地脚螺栓固定在基础上。螺杆机头是1种双轴容积式回转型压缩机头。1对高精密度主(阳)、副(阴)转子水平且平行地装于机壳内部,主(阳)转子有5个齿,而副(阴)转子有6个齿。主转子直径大,副转子直径小。齿形成螺旋状,两者相互啮合。主副转子两端分别由轴承支承定位。工作时电动机通过连轴器(或皮带)直接带主转子,由于2转子相互啮合,主转子直接带动副转子一同旋转。冷却液由压缩机机壳下部的喷嘴直接喷入转子啮合部分,并与空气混合,带走因压缩而产生的热量,达到冷却效果。同时形成液膜,防止转子间金属与金属直接接触及封闭转子间和机壳间的间隙。喷入的冷却液亦可减少高速压缩所产生的噪音。 螺杆式空压机的主要部件为螺杆机头、油气分离桶。螺杆机头通过吸气过滤器和进气控制阀吸气,同时油注入空气压缩室,对机头进行冷却、密封以及对螺杆及轴承进行润滑,压缩室产生压缩空气。压缩后生成的油气混合气体排放到油气分离桶内,由于机械离心力和重力的作用,绝大多数的油从油气混合体中分离出来。空气经过由硅酸硼玻璃纤维做成的油气分离筒芯,几乎所有的油雾都被分离出来。从油气分离筒芯分离出来的油通过回油管回到螺杆机头内。在回油管上装有油过滤器,回油经过油过滤器过滤后,洁净的油才流回至螺杆机头内。当油被分离出来后,压缩空气经过最小压力控制阀离开油气筒进入后冷却器。后冷却器把压缩空气冷却后排到贮气罐供各用气单位使用。冷凝出来的水集中在贮气罐内,通过自动排水器或手动排出。 特点 1、活塞式无油润滑空气压缩机 无油润滑空气压缩机气缸内的活塞环和填料装置内的填料均采用具自润滑特性的填充聚四氟乙烯作为密封元件。因此,气缸和填料装置无须注入润滑油润滑,正常情况下经过压缩后的气体基本纯净不含油污,无需增加除油装置。该机的缺点为电机功率偏大,排气压力不够稳定,排气温度高,噪音偏大,检修工作量大,维修费用偏高。 2、螺杆式空气压缩机 螺杆式空气压缩机阴、阳转子间以及转子与机体外壳的精密配合减小了气体回流泄漏,提高了效率;只有转子的相互啮合,无气缸的往复运动,减少了振动和噪音源。独特的润滑方式具有以下优点,凭借自身所产生的压力差,不断向压缩室和轴承注冷却液,简化了复杂的机械结构;注入冷却液可在转子之间形成液膜,副转子可直接由主转子带动,无需借助高精密度的同步齿轮;喷入的冷却液可以增加气密的作用,减低因高频压缩所产生的噪音,还可吸收大量的压缩热,因此,单级压缩比即使高达16也可使排气温度不致过高,转子与机壳之间不会因热膨胀系数不同而产生磨擦。因此,螺杆式空气压缩机具有振动小,无需用地脚螺栓固定在基础上,电机功率低、噪音低、效率高、排气压力稳定、且无易损件等优点。该机的缺点为所压缩出来的空气含油,其含油量为1~3×10-6,对压缩气含油量要求严格的工序需增加除油装置。该厂的压缩空气系统就增加了两级除油装置。由于ADC工序的压缩空气直接与产品ADC发泡剂接触,因此对空气的质量要求更加高,ADC工序用气增加了三级除油装置。压缩机性能参数对照情况见表1。 主要故障 1、活塞式无油润滑空气压缩机 该机活塞环和填料装置均无需注油润滑。正常情况下经过压缩后的气体基本纯净不含油污,但由于刮油环经常刮油不彻底,密封不好,导致常常有油跑到填料装置甚至活塞环上,以致压缩气含油。另外,排气温度高,有时高达200℃;冷却器堵塞,以致冷却效果不好;活塞环沾到油污,特别容易磨损;阀拍漏气;缸套磨损等。 2、螺杆式空气压缩机 螺杆式空压机的故障很少,只要定期保养油气分离器、空气及油过滤器等,就能保证其正常运行。使用的2台10m3螺杆机保养外的检修为排污管堵塞、控制面板故障,2年来,主机系统运行一直正常。 结束语 从使用效果看,螺杆式空压机具有活塞式空压机无可比拟的优点,不仅减轻了操作工的劳动强度,而且不用配备维修工,大大降低了维修费用。另一方面,使用活塞机时偶尔会出现排气压力过低而导致离子膜控制系统报警,改用螺杆机后将其排气压力设定在,压力保持稳定,还没有出现过排气压力过低而导致离子膜控制系统报警的现象,从而保证了离子膜系统的安全生产。

203 评论

月兮月兮

各有各的优缺点,不能单纯的说谁好。

268 评论

麦兜爱李公主

制冷是为了适应人们对低温条件的需要而产生和发展起来的。下面是我为大家精心推荐的高级制冷技师职称论文,希望能够对您有所帮助。

制冷技术分析

摘要 制冷技术是为了适应人们对低温条件的需要而产生和发展起来的。制冷技术是使某一空间或物体的温度降到低于周围环境温度,并保持在规定低温状态的一门科学技术,它随着人们对低温条件的要求和社会生产力的提高而不断发展。制冷的 方法 很多,常见的有以下四种:液体气化制冷,气体膨胀制冷,涡流管制冷和热电制冷。其中液体汽化制冷的应用最为广泛,它是利用液体汽化时的吸热效应而实现制冷的。蒸汽压缩式,吸收式,蒸汽喷射式和吸附式制冷都属于液体汽化制冷方式。本文重点介绍蒸汽压缩式制冷的工作原理及几种形式。

关键词蒸汽压缩式制冷压-焓图理想制冷循环制冷系数ε 绝热膨胀

双级蒸汽压缩制冷循环

中图分类号: TB6文献标识码: A

一、蒸汽压缩式制冷的工作原理 蒸汽压缩式制冷系统由压缩机,冷凝器,膨胀阀,蒸发器组成,用管道将其连成一个封闭的系统。

工质在蒸发器内与被冷却对象发生热量交换,吸收被冷却对象的热量并汽化,产生的低压蒸汽被压缩机吸入,经压缩后以高压排出。压缩过程需要消耗能量。压缩机排出的高温高压气态工质在冷凝器被常温冷却介质(水或空气)冷却,凝结成高压液体。高压液体经膨胀阀时节流,变成低压,低温湿蒸汽,进入蒸发器,其中的低压液体在蒸发器中再次汽化制冷,如此周而复始。

液体转变为气体,固体转变为液体,固体转变为气体都要吸收潜热。任何液体在沸腾过程中将要吸收热量,液体的沸腾温度(即饱和温度)和吸热量随液体所处的压力而变化,压力越低,沸腾温度也越低。而且不同液体的饱和压力、沸腾温度和吸热量也各不相同。如下表一

例:在1 个大气压下

制冷工质 沸点 (℃) 气化潜热 r (kJ / kg)

水 100 2256

R717(氨) 1368

R22 375

据所用制冷液体(称制冷剂)的热力性质,创造一定的压力条件,就可以在一定范围内获得所要求的低温。 要实现制冷循环必须要有一定的设备,而且要以消耗能量作为补偿。 蒸汽压缩式制冷循环就是用压缩机等设备,以消耗机械功作为补偿,对制冷剂的状态进行循环变化,从而使用冷场合获得连续和稳定的冷量及低温。在制冷循环中,制冷剂经历了汽化、压缩、冷凝、节流膨胀等状态变化过程。为了分析,比较和计算制冷循环的性能,必须知道制冷剂的状态参数变化规律。对目前常用的制冷剂,这些状态参数间的关系已经制成各种图和表来表示。

制冷剂的热力性质图,常用的热力性质图有温熵(T-S)图和压焓(㏒p-h)图,形式如下图,图中x=0为饱和液体线,x=1为饱和蒸汽线,两线之间为湿蒸汽区,其中等干度线(x=……)。

由于定压过程的吸热量,放热量以及绝热压缩过程压缩机的耗功量都可再㏒p-h图上表示,利用过程初、终状态的比焓差计算,因此㏒p-h图在制冷循环的热力计算上得到了广泛的应用。由于制冷剂的热力参数h、s等都是相对值,因此,在使用上述热力性质表及图时,必须注意他们之间的h、s的基准点是否一致,对于基准点取值不同或单位制不一致的图或表,最好不要混用,否则必须进行换算和修正。

二、 理想制冷循环—逆卡诺循环

卡诺循环分正卡诺循环和逆卡诺循环,均是由两个定温和两个绝热过程组成,他们是一个理想循环。研究蒸汽压缩式制冷循环的主要目的,是为了分析影响制冷循环的各种因素,寻求节省制冷能耗的途径。 逆卡诺循环是使工质(制冷剂)在吸收低温热源的热量后通过制冷装置,并以外功作补偿,然后流向高温热源。逆向循环是一种消耗功的循环,制冷循环就是按逆向循环进行的, 在温—熵或压—焓图上,循环的各个过程都是依次按逆时针方向变化的。

逆卡诺循环设备示意图

2.实现逆卡诺循环必须具备的条件:

(1)高、低温热源温度恒定;

(2)工质在冷凝器和蒸发器中与外界热源之间无传热温差;

(3)工质流经各个设备时无内部不可逆损失;

(4)作为实现逆卡诺循环的必要设备是压缩机、冷凝器、膨胀机和蒸发器。

逆卡诺循环是可逆的理想制冷循环,它不考虑工质在流动和状态变化过程中的内部和外部不可逆损失。虽然逆卡诺循环无法实现,但是通过该循环的分析所得出的结论对实际制冷 循环具有重要的指导意义。

3.制冷系数ε

制冷循环常用制冷系数 ε 表示它的循环经济性能,制冷系数等于单位耗功量所制得的冷量。

ε=q/∑W

q: 1kg 制冷剂在T0温度下从被冷却物体吸收热量q (kJ/kg)

W:循环1 kg的工质消耗功

对于逆卡诺循环而言:

εc=T0/(Tk- T0)

T0:蒸发温度; Tk:冷凝温度

从公式可知,逆卡诺循环的制冷系数仅与高、低温热源温度有关,而与制冷剂的热物理性能无关。由于逆卡诺循环不考虑各种损失,而且压缩机利用了膨胀机对外输出的功,因此,在恒定的高、低温热源区间,逆卡诺循环的制冷系数最大,在该温度区间进行的 其它 各种制冷循 环的制冷系数均小于逆卡诺循环制冷系数。

所以,逆卡诺循环制冷系数可用来评价其它制冷循环的热力完善度。

三、蒸汽压缩式制冷理论循环及热力计算

1.理论制冷循环不同于逆卡诺循环之处是:

(1)制冷剂在冷凝器和蒸发器中按等压过程循环,而且具有传热温差;

(2)制冷剂用膨胀阀绝热节流,而不是用膨胀机绝热膨胀;

(3)压缩机吸入饱和蒸汽而不是湿蒸汽。

用膨胀阀代替膨胀机后的节流损失:不但增加了制冷循环的耗功量,还损失了制冷量。这两部分损失必然使制冷系数和热力完善度有所下降。

2.用干压缩代替湿压缩后的过热损失包括:

(1)用膨胀阀代替膨胀机后的节流损失导致后果:膨胀阀的节流是不可逆过程,节流前、后焓值不变;制冷剂干度增加,液体含量减少,制冷量减少,消耗功上升,制冷系数下降,其降低的程度称为节流损失。节流损失的大小与下列因素有关:与冷凝温度和蒸发温度差有关,节流损失随其增加而增大;与制冷剂的物性有关,一般节流损失大的制冷剂,过热损失就小;与冷凝压力有关,冷凝压力Pk越接近临界压力Pkr节流损失越大。

(2)用干压缩代替湿压缩后的饱和损失

原因:在制冷压缩机的实际运行中,若吸入湿蒸汽,会引起液击,并占有气缸容积,使吸气量减少,制冷量下降。过多的液体进入压缩机气缸后,很难全部汽化,这时,既破坏了压缩机的润滑,又会造成液击,使压缩机遭到破坏。因此,蒸汽压缩式制冷装置在实际运行中严禁发生湿压缩,要求进入压缩机的制冷剂为干饱和蒸汽或过热蒸汽,干压缩式制冷机正常工作的一个重要标注。如何实现干压缩,如下图,可在蒸发器出口增设一个液体分离器。分离器上部的干饱和蒸汽被压缩机吸走,保证干压缩,进入压缩机的制冷剂状态点位于饱和蒸汽线上。制冷剂的绝热压缩过程在过热蒸汽区进行。因此,制冷剂在冷凝器中并非定温过程,而是定压过程。

热力计算制冷剂在蒸发器中的单位质量制冷量:

q0 = h1-h4[kJ/kg]

压缩机的单位质量绝热压缩耗功量:

W= h2- h1 [kJ/kg]

制冷剂单位容积制冷量:

Qv= q0/V[kJ/m3]

理论制冷系数:ε= q0/ W

3.蒸汽压缩式制冷循环改善

为了使膨胀阀前液态制冷剂得到再冷却,可以采用再冷却器或回热循环。

(1)设置再冷却器对于同一种制冷剂,节流损失主要与节流前后的温差(Tk- T0)有关,温差越小,节流损失越小。一般可再冷凝器后增加一个再冷却器,使冷却水通过再冷却器,然后进入冷凝器。再冷却后可使液体制冷剂在冷凝压力下被再冷至状态点3′,图中3-3′是高压液体制冷剂在再冷却器中的再冷过程,再冷却所能达到的温度Tr,称为再冷温度,冷凝温度与再冷温度之差△Tr称为再冷度,这种带有再冷的循环称为再冷循环。

增加过冷可以使制冷系数提高:制冷剂R717每过冷1℃,制冷系数可提高;冷制冷剂R22每过冷1℃,制冷系数可提高。

(2)回热循环为了使膨胀阀前液体的再冷度增加,进一步减少节流损失,同时又保证压缩机吸气有一定过热度,可再在制冷系统中增设一个回热器。回热器的作用是使膨胀阀前的制冷剂液体与压缩机吸入前的制冷剂蒸汽进行热交换,使压缩机吸入的蒸汽有一定的过热度,由于过热(过热量△q)增加了压缩机的耗功量(△w)。因此,回热循环的制冷系数是否提高,视△q/△w的比值定。

下表示几种常用制冷剂采用回热循环后,制冷系数及排气温度的变化情况。

制冷剂 R717 R22 R502

制冷系数增减率% +

排气温度变化 ℃ →102 → →

由上表可看出采用,采用回热循环后制冷系数不一定增加,制冷剂R22采用回热循环后制冷系数降低不多但保证了干压缩金额热力膨胀阀的稳定工作,所以实际中采用回热循环。R502和R12适合采用回热循环。R11和R717因为制冷系数降低很多不适合采用回热循环。

四、双级蒸汽压缩制冷循环

对于活塞式制冷压缩机单级制冷循环,在通常的环境下,一般只能制取

-25℃~-35℃以上的蒸发温度。如果采用单级制冷循环制取较低的蒸发温度,将会产生很多有害因素,如:

(1)压缩机排气温度很高,不但加大了过热损失,使制冷系数下降,而且会恶化润滑油效果,影响压缩机的使用寿命和正常运行。

(2)压缩比(Pk/P0)增大,在正常环境温度下,当蒸发温度T0下降时,Pk/P0增加,压缩机容积效率降低,实际吸气量减少,制冷量下降,当压缩比达到一定值时,活塞式制冷机此时已不能进行制冷。

(3)节流损失增加,制冷剂单位制冷量减少,消耗功加大,制冷系数下降。

(4)过低的蒸发温度可能会使制冷系统的运行工况超过压缩机标准规定的设计和使用条件,造成不允许的危险情况发生。如活塞式压缩机(制冷剂R22)的压缩比,大能大于6(高温机)和16(低温机)压力差(Pk- P0)不能大于;螺杆式压缩机(制冷剂R22)排气温度不能高于105℃,制冷剂R22当压缩比≤10时,采用单级压缩, 压缩比>10时采用双级压缩;制冷剂R717当压缩比≤8时,采用单级压缩, 压缩比>8时采用双级压缩。因此对于活塞式压缩机,当T0低于-25~-35℃时,采用双极制冷循环能使上述不利影响得到改善。对于螺杆式压缩机,由于其具有良好的油冷却装置,排气温度比活塞式压缩机低,允许的压缩比和压力差均较大。因此,一般螺杆式压缩机单级制冷循环可制取-40℃左右的低温(Tk 在40℃~45℃时)。空气源热泵机组,其压缩机至少要能在蒸发温度为-15℃~+15℃(双级压缩可达-35℃)冷凝温度≤65℃的条件下正常工作。

下图是双级压缩制冷循环示意图:

双级压缩制冷循环通常采用闪发蒸汽分离器(节能器)和中间冷却器两种形式。下面介绍带有中间冷却器的双级压缩制冷循环。该循环式把来自蒸发器的制冷剂蒸汽,以串联的两台压缩机(有中间冷却器)或者同一台压缩机的两组气缸“接力”式压缩。每一级的压缩比、排气温度等都符合压缩机的使用条件,又可获得较低的蒸发温度T0,制冷系数比相同制冷能力的单级制冷循环大,因而比较经济。下面介绍常用的双级压缩制冷循环。

一次节流、完全中间冷却的双级压缩制冷循环,所谓完全中间冷却时指来自低压级压缩级的过热蒸汽在中间冷却器内完全冷却至饱和状态如下图:

由于氨制冷系统排气温度高,吸气过热不能大,因此这种循环形式广泛应用于氨双级制冷系统。这种系统的特点是由于采用完全中间冷却,可以减少过热损失,因此,耗功量较单级少,制冷系数较单级大。中间压力Pm=( )

氨双级压缩的最佳中间温度t佳= Tk+ ℃

T0:蒸发温度; Tk:冷凝温度

压缩比=Pk/P0 Pk:冷凝压力 P0:蒸发压力

当已知制冷量Q0,通过蒸发器的制冷剂质量流量Mr,则Mr= Q0/(h1-h8)

制冷循环压缩机的理论总耗功率为Pth, Pth= Pth1+ Pth2

Pth1为低压级压缩机的理论耗功率(KW)

Pth2为高压级压缩机的理论耗功率(KW)

则理论制冷系数εth= Q0/ Pth

五、结论

随着技术现代化的发展以及人民生活水平的不断提高,制冷在工业、农业、国防、建筑、科学等国民经济各个部门中的作用和地位日益重要。特别是人们对生活水平的要求提高,不同食品储藏温度不同,双级压缩可以满足更低温度要求,人们在任何季节都可以品尝到新鲜的食物。农牧业中,制冷用于对农作物种子进行低温处理;建造人工气候育秧室。制冷在医疗卫生方面和工业生产中发挥着日益重要的作用。总之通过本文的学习,对制冷系统原理有了全面认识,对如何提高制冷系数的 措施 有所了解。

参考文献

吴业正制冷原理及设备 西安交通大学出版社

尉迟斌实用制冷与空调工程手册机械工业出版社

点击下页还有更多>>>高级制冷技师职称论文

87 评论

成都安美

空调压缩机过载保护的研究321前言空调器压缩机易受电压、制冷系统工况的影响,在不良的使用环境中,压缩机容易烧毁。作为空调器成本最高的部件,压缩机的保护技术成为空调技术领域必须关注的一个重要课题。在现有的压缩机的保护技术中使用最多的是用电流互感器或温度传感器检测技术,前者是利用电流互感器感应压缩机主电路的电流,通过电流的检测获知压缩机电流,当电流超过设定值时,通过软件的控制断开主回路保护压缩机,电流互感器可以装在室内机或室外机中;温度传感器检测技术是在压缩机的表面安装一个温度传感器,通过检测压缩机的温度来保护压缩机,由于压缩机线圈在内部,其表面与外部的温升相差甚远,温度测量误差较大,在瞬间的过流中,保护效果不理想。以上两种技术需要单片机控制,而且在室内机与室外机之间要增加一至两条连接线,制造成本较高。从有关的实验中发现,压缩机烧毁往往出现在缺少制冷剂并在恶劣的使用环境工况下,压缩机线圈温度与进气压力、制冷剂的数量有关。本文主要讨论在常用的空调器室内机的软件、硬件不变的情况下,利用压力开关作为压力检测器件,在室外机的闲置的空间增加一个检测的电控板,通过对压缩机的压力检测实现压缩机的过载保护。采用这种方案,无需对空调器的原有电路进行更改,通用性极强,可应用于不同型号的空调器,而且室内机无需变化。2控制方案及实现方法电路原理压缩机压力检测电路原理包括:在压缩机的进气管安装压力开关,以及在室外机安装一个电控板,电控板主要包含5个部分:阻容降压电路、压缩机延时电路、外风机转换电路、压力开关转换电路、三极管控制电路,利用压缩机、外风机、压力开关的信号,通过硬件电路自动实现压缩机进气压力过低等不正常的压力保护,在保护的过程中,不影响空调的启动和空调的除霜。图1为压缩机保护装置检测结构方框图,图2为压缩机保护装置电气原理图。阻容降压电路主要由电阻、电容、压敏电阻、稳压二极管组成,输入端与压缩机线相连接,其作用是将220V的交流电转为低压的12V直流电,作为各电路的供电电源,输出端的12V供给比较器及其偏图1压缩机保护装置检测结构方框原理图置电路、三极管、压力开关等器件,阻容降压电路省略了变压器,成本极低。压缩机延时电路。该电路是保证压缩机运行的前5分钟能正常运行,由于压缩机刚开启的头3分钟,进气管的压力偏低,压力开关打开,压力开关转换电路会出现低压保护信号。压缩机延时电路与压力开关转换电路为并联关系,图3为压缩机延时电路控制逻辑示意图。压缩机开启后,阻容降压电路输出12V供给压缩机延时电路,由于C 3 0 7正在充电,IC304A的2脚输出低电平,当压缩机得电后约5分钟,C307充满电,IC304A的2脚输出由低电平转为高电平,这样压缩机延时电路相当于一个延时5分钟的开关,在压缩机开启头5分钟闭合,超过5分钟后打开,这样保证了压缩机开启的头3分钟能正常运行。外风机转换电路:压缩机除霜时间一般为8至10分钟(如图2),大功率的压缩机除霜期间,进气口处于低压力的时间较长,致使压力开关打开,然而压缩机延时电路只能延时5分钟,这样会出现压缩机除霜超过5分钟后不能除霜的现象,所以需要加入一个外风机转换电路。以比较器芯片为主构成的外风机转换电路相当一个非门电路,图4为外风机转换电路控制逻辑示意图。当外风机线得电时,转换电路输出为高电平;反之转换电路输出为低电平。正常的制热或制冷工况下,外风机得电,IC303光耦PC817导通,IC305C的14脚为高电平;在除霜期间外风机关闭,IC303光耦PC817截止,IC305C的14脚为低电平,这时不论压力开关转换电路处于何种工作状态,压缩机仍可运。压力开关转换电路。将压力开关的进气孔和出气孔串接在压缩机低压的进气管路中,当制冷剂泄漏造成不足,且空调器运行在恶劣的环境工况中,造成压力过低时,压力开关打开,反之,压力开关闭合,有图与我索取全文免费

192 评论

zhang太太

一、概述 可编程控制器(PLC)是一种新型的通用控制装置,他将传统的继电器控制技术、计算机控制技术和通信技术融为一体,专为工业控制而设计,具有功能强、通用灵活、可靠性强、环境适应性好、编成简单、使用方便、体积小、重量轻、功耗低等一系列优点。近年来,随着可编程控制器的日渐成熟,越来越多设备的控制都采用PLC控制器来代替传统的继电器控制,并取得了很好的经济效益。空气压缩机使矿山生产重要的四大固定设备之一,它生产压缩空气,用以带动凿岩机、风动装岩机等设备及其他风动工具。其能否安全运行直接影响着煤矿生产的产量和效益问题。影响其安全生产的要素主要有空压机的超温、超压、断水、断油等因素。随着煤矿现代化的发展,矿山对矿山设备的要求越来越高,建设本质安全性矿山已成为煤矿生产建设的核心。矿山设备不断更新,不断进步,可靠性、易操作性、可监视性、易维护性等已是最基本的要求了。用继电器搭成的控制电路具有可靠性差、不易维护、不易监视,已不能适应当前的要求。现在迫切需要可靠性高、易维护、易操作、可监视并且价格不高这样的控制器来代替继电器搭成的电路。随着电子技术、软件技术、控制技术飞速发展,可编程控制器(PLC)发展迅猛,性能很高,价格较为合理,与继电器搭的控制电路比具有非常大的优势。许多矿山设备已选用了PLC来代替比较重要的设备控制。传统的保护主要采用分离仪表,其可靠性差、集程度低、费用高,不能有效的满足矿山设备投入的经济性和安全性的要求。本文笔者采用可编程控制器(PLC)作为核心控制器,通过检测仪器为PLC提供控制中所需要的信号参数对空压机进行自动巡回检测控制。进行监控的主要参数有空压机高低压缸温度、润滑油温度、电动机温度、风包温度、出水温度;高低压缸压力、风包压力、润滑油压力;高/低压、中/后冷却水断水检测等参数。二、控制功能和控制原理1. 保护控制功能⑴、 电机电流和电压的检测。⑵、 一二级缸、油压、风包压力检测。⑶、 一二级排气温度、油温、电机温度检测。⑷、 电动机的延时启动。⑸、 电机的无水运转。2. 保护控制原理在启动主机之前先将水源电磁阀和放空电磁阀都打开,在冷却水压和流量达到规定值条件下,可以进行空压机的空载起动,然后延时自动关闭放空电磁阀,空压机进行正常运行。启动时允许低油压启动,设置一定时间后对油压进行监控。在停机时,按复位按钮放空电磁阀打开,经30秒延时后切断主电源。实现空压机的停机,同时关闭水源电磁阀和放空电磁阀。在保户状态时,以上监控参数有一个在设定范围内发生故障,产生报警信号,同时打开放空电磁阀,压缩机减载运行,延时30秒故障不消除自动机停机。 ⑴. 控制分布图1-1压缩机控制分布图⑵. 控制通讯原理现场总线PROFIBUS可以实现数字和模拟输入/输出、智能信号装置和过程调节装置与可编程控制器PLC和PC之间的数据传输,把I/O通道分散到实际需要的现场设备附近。PROFIBUS一方面覆盖了传感器/执行器领域的通信要求,另一方面又具有单元级领域的所有通信网络通信功能。他支持高速的循环数据通信,以满足了实时监控的要求。1-2系统控制通讯图三、信号采集S7-200为每个本机数字量输入提供脉冲捕捉功能。脉冲捕捉功能允许PLC捕捉到持续时间很短的脉冲。而在扫描周期的开始,这些脉冲不是总能被CPU读到。当一个输入设置了脉冲捕捉功能时,输入端的状态变化被锁存并一直保持到下一个扫描循环刷新。这就确保了一个持续时间很短的脉冲被捕捉到并保持到S7-200读取输入点。本设计需对下列参数进行采集: (1)、压力信号分别为1级缸、2级缸及储风缸压力、润滑油压力4点; (2)、温度信号为1级缸排气温度、2级缸进气温度、风包温度、油温、电机温度以及冷却水出口温度共6点; (3)、电量信号为主电机电流1点,电源电压1点,共2个点。(4)、流量检测有高低/压端2点,中/后冷2点共4点。采集参数总计为4+6+2+4=16个。 对上述参数采集后,首先判断有关参数是否异常,然后形成动态数据表格进行实时巡回显示,并存储起来而供以后进行随机查询。四、系统软件设计本系统主要是以保护为主,根据《煤矿安全规程》的要求和空压机的保护原理,其控制的软件设计流如下。五、结束语该系统主要是以S7-200 为核心控制器,PROFIBUS作为通讯桥梁,通过检测元件为控制其提供检测信号,以此达到保护控制的目的。在本文的编写过程中,得到了张集矿机电科多位领导的大力支持,在此致以诚挚的谢意!同时感谢西门子(中国)有限公司自动化驱动集团提供的大量资料。

308 评论

小狼雪子

活塞式空气压缩机优点是出气压力更大,流量范围更大,能满足不同环境使用。设备体积占地面积大,适合大型的工况使用。螺杆式空气压缩机优点是小巧方便,操作维护简单,只能用在小型的车间工厂使用。两者的应用环境大不相同,没有什么可比性吧。

229 评论

爱照相的猫酱

优点 活塞式 1, 背压稳定,压力范围大2, 适应性强,单机能适应任意流量。3, 气流速度低、损失小、效率高。4, 一般压力范围内对结构材质要求较低。5, 价格较低。 缺点 1、 结构尺寸大,占地面积大2、 结构复杂,易损件多3、 运转时有震动4、 排气不连续、压力有脉动5、 气体质量较差,含油量大 适合高压力、中、小流量情况螺杆式 优点1、 没有往复运动的零件,结构简单、紧凑、重量轻,维修方便2、 容积流量不受排气压力影响,压力脉动小,不需要设立大容量储罐3、 运动部件的动力平衡好,可实现无基础运转,寿命长4、 自动化程度较高,可实现无人值班运转 缺点1、 转速较高、吸、排气口周期性想通一切断,产生强烈的空气动力噪声2、 运动部件与固定部件间密封困难3、 只适合中低压范围4、 加工精度要求高、造价贵5、 不能用于微型场合 适应于中小流量

353 评论

相关问答

  • 关于空压机的毕业论文

    我这边能帮有题目,

    艾米Amysweety 3人参与回答 2023-12-07
  • 关于活塞式空压机研究现状的论文

    结构及工作原理 1、活塞式无油润滑空气压缩机 活塞式无油润滑空气压缩机由压缩机主机、冷却系统、调节系统、润滑系统、安全阀、电动机及控制设备等组成。压

    媛姐姐丶 7人参与回答 2023-12-11
  • 关于万姓的研究现状论文

    万姓在大陆位列百家姓第八十六位,在台湾未列入百家姓前一百位。源出于姬姓。源自春秋时期的毕万。毕万是周文王的第十五个儿子毕公高的后代,在晋国作大夫,帮助晋献公治理

    1982吃货一枚 4人参与回答 2023-12-10
  • 关于幼儿户外活动现状研究论文

    多长的篇幅,格式的要求方便了就告诉我

    静香陈陈 3人参与回答 2023-12-07
  • 关于供应链论文的研究现状

    供应链弹性研究现状非常好。根据查询相关公开信息显示:智能供应链以全新客户体验促进业务增长,增强竞争力并创造可持续价值.面向未来的供应链网络帮助企业妥善平衡客户和

    健威wjw505 2人参与回答 2023-12-08