妖妖小雯雯
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
我叫马三顺
数学与应用数学毕业论文篇3 浅谈离散数学的应用及教学 我国传统数学教育模式内容相对陈旧、体系单一、知识面窄、偏重符号演算和解题技巧,脱离实际应用,缺乏应用数学知识解决实际问题的实践意识和能力,创新精神和创新能力不足。然而,高科技信息时代的迅速发展对学生的数学素质又提出了新的要求,现有教育模式所培养的学生在某种程度上已经不能适应社会的需要。实践表明,数学研究化图论能激发学生学习欲望,是培养学生主动探索、努力进取的学风和团结协作精神的有力 措施 ;是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和 创新思维 、锻炼创新能力、培养高层次人才的一条重要途径。因此高校教师在实际的教学过程中要把数学研究化图论的思想、方法及内容融入到当今的大学数学教学中去,是一种行之有效的素质教育方法。本文主要从以下几个方面对图论部分的教学进行了讨论: 一、整合教学资源,重视双基学习,激发学生兴趣 图是一类相当广泛的实际问题的数学模型,有着极其丰富的内容,是数据结构等课程的先修内容。学习时应掌握好图论的基本概念、基本方法、基本算法,善于把实际问题抽象为图论的问题,然后用图论的方法解决问题。那在实际的教学过程中,要充分利用课堂上的时间让学生掌握好这些基本概念、基本方法、基本算法则是显示一名大学教师基本功的时候。因此,教师在讲解最常用的概念如:无向图,有向图,顶点集,边集,n阶图,多重图,简单图,完全图,图的同构,入度,出度,度,孤立点等时,要细讲而精讲,要讲到根上,不仅要帮助学生理解每个概念的具体含义,更重要的是要引导学生总结规律,探索方法,培养能力。教师要充分相信学生,注意从学生的思维角度去剖析问题,运用设疑、讨论、启发、诱导等方式,给他们充分的时间去思考、体会和消化。 图与网络有个自然的对应关系,网络设计和分析中的许多问题可以归结图论问题。因此,图论是网络设计和软件分析的最有力的数学工具。图论数学是应用最广的数学分支之一,不仅在网络设计和软件分析中有着重要的应用价值,在 企业管理 ,交通规划,战争指挥,金融分析等领域都有重要的应用。因此在图论数学的教学中不能仅仅注重讲授概念、定理,还要用实例使学生对图论数学产生兴趣,进而解决生活中出现的一些简单的图论数学问题,以达到培养能力为主的教育目标。例如,我在讲解通路、回路、图的连通性时,为了更好的让学生理解这些概念,我提出一个问题:人、狼、羊、菜用一条只能同时载两位的小船渡河,“狼羊”、“羊菜”不能在无人在场时共处,当然只有人能架船。这种情况下怎样安排才能达到最优的状态呢?这个问题的提出,极大的激发了同学们的兴趣,他们努力思索问题的解决之道。在此基础上,我进一步引导他们建立图模型:顶点表示“原岸的状态”,两点之间有边当且仅当一次合理的渡河“操作”能够实现该状态的转变。起始状态是“人狼羊菜”,结束状态是“空”。问题的解决:找到一条从起始状态到结束状态的尽可能短的通路。最后得出这样的结论:在“人狼羊菜”的16种组合中允许出现的只有10种。即下图所示: 这样我就完成把单纯的图论概念和实际生活相结合的转变。同学们在这个过程中通过自己动手具体分析、积极思索,提高了分析问题、解决问题和运用数学的能力。 二、积极采用多媒体教学,使抽象复杂的内容变得具体形象 大学教材中关于图论部分的定义、定理很多,而且内容比较抽象。在教学中,如果教师沿用传统的教学方法,即:介绍定义——引入定理——证明定理,这种讲课方法不仅时间长,而且也不能吸引学生的兴趣。再加上该课程具有较强的抽象性与推理性,一些问题无法在黑板上讲清楚。因此,在数学化研究图论教学中,在继承传统教学的基础上适当使用现代教育技术进行辅助教学,可以把语言、文字、声音、图形、动画、视频图象等多种媒体有机地集成一体,制作和应用多媒体课件。使学生通过多个感觉器官来获取相关信息,提高教学信息传播效率,把抽象问题具体化和形象化,有效地激发学生的学习兴趣,使得教学效果更加形象、生动、具体、准确。 例如,教师在讲授关于“中国邮递员问题”的知识时,可以先用PPT 展示一个实心的正十二面体,20个顶点标上邮递员途经街道的名称,要求邮递员从邮局出发,遍历各街道一次,最后回到邮局。给学生一段时间寻找路径后,用动画显示出寻找路径的过程。然后教师引导学生将上述的中国邮递员问题建立成一个数学模型即:在一个赋权连通图上求一个含所有边的回路,且使此回路的权最小。显然,若此连通赋权图是 Euler 图,则可用 Fleury 算法求 Euler 回路,此回路即为所求。给出Euler 图的定义以及Fleury 算法,从中让学生归纳演示Fleury 算法。这些知识都掌握以后,可以向学生介绍一下赋权连通图在计算机网络布局中的应用,学生在对赋权连通图的认识从具体—抽象—具体的过程中达到了对赋权连通图的深刻理解。 当然制作一个多媒体课件并不是简单的把书本上的概念和定理照搬到PPT 上,而是用具体形象的媒体冲击同学的感官视觉效果,使其能从中更加深刻体会抽象的概念和定义。例如,在讲解图的相关概念时,对于每一种图可以用具体的图形来演示说明,这样学生可以通过形象的图形对抽象的文字有更加深刻的理解。除了教学课堂上使用多媒体之外,教师还可以通过网络辅导学生课后的学习以及布置与指导,通过电子信箱、BBS讨论等多种形式和手段提供学习支持服务。 三、加强师生课堂互动,调动学生学习的主动性图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论数学知识的 应用无所不在,在教学过程中, 我们可根据教学内容结合学生熟悉的生活、生产、科技和当前商品 经济中的一些实际问题如利息、股票、利润、人口等,引导学生从生活中熟悉的方面入手开始学习数学。 图论的教学决不能只是告诉学生现有的结论,然后让他们死记硬背一些公理算法之后,就希望他们立马可以解答出理论很深奥、算法很复杂的数学问题。为了调动学生主动学习的积极性,我在实际的教学过程中会利用好课堂提问这个环节。上课前几分钟的提问,可以通过学生的回答来了解他们对上节课程的掌握程度。而课堂上的提问,可以让学生不宜走神、时刻保持警惕、仔细认真听讲老师讲课的每一个环节,可以积极促使学生在课堂上通过回答教师的提问而解读信息,实施对信息的加工,进而加深对信息的理解。当然教师的提问不应该是随意的、盲目的,而应该是精心准备的,紧扣课堂上所讲授内容的重点及学生最容易混淆、模糊的环节。对于当代大学生而言,老师提问的问题应当有一定的深度和广度,能引导学生深入思考, 把课堂上被动的吸收知识、填鸭式的教学模式变成主动的思考问题、积极回答问题的过程。学生主体参与是数学图论教学的核心,教师主导作用是数学图论教学的保障。在数学图论教学中,通过提问可以引发学生进行深入思考,充分调动他们的积极性,发挥他们的潜能,这样就可以使学生的能动性、自主性、创造性得到长足的进步。 四、加强学生的图论数学思想及运用 网络工具 图论的数学教学实际上就是帮助同学们形成把现实问题转化成点和线的数学思维过程。而教师在具体的教学过程中,就要有目的的引导学生运用数学思想来认识世界。通过这样的教学过程,可以增加学生对图论知识的了解,培养他们提高运用数学图论思维的能力。比如,我在讲解图论之前会给同学们介绍图论问题的由来,即追溯到1736年哥尼斯堡七桥问题,或给学生介绍中外数学名家的光辉 事迹 与献身精神。让他们在加强数学思想的同时,不忘加强自身思想品德的 教育。 图论即形象地运用一些点以及点与点之间的连线构成的图或网络来表示具体问题。利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。图论就是研究图和网络模型特点、性质和方法的理论。图和网络之间存在密切的 联系,因此,教师要创设条件, 因材施教,例如运用一些优秀的数学软件如Matlab,MathCAD, 几何画板等,充分利用网络画图的能力来培养学生的数学思维逻辑能力,使每个学生都得到不同程度的 发展和提高,同时培养学生的思想品德和世界观, 让学生的综合素质得到提高。 总之,若教师通过知识的载体,对学生实施能动的 心理和智能的引导教学,提高了学生的数学素质,培养了他们创造性应用的能力,这就算是一种成功的教学。当然教师的职责是通过教学培养学生数学思想,并把这种思想应用到实际的生活中。但传统的教育模式已经根深蒂固的深入到我们的思想当中,尤其是教师也是传统教育模式培养出来的,所以,要想跳出这个怪圈,教师和学校都需要努力去思索和探讨。根据新时代的需求,培养出适应新时代发展的具有自学能力乃至科研能力的更高的人才,这需要我们共同的努力。 猜你喜欢: 1. 应用数学专业论文 2. 数学与应用数学毕业论文 3. 应用数学毕业论文题目 4. 应用数学系毕业论文 5. 数学应用数学本科毕业论文
甜心小葡萄499
谈数学困难生的辩证施教摘要:目前中职生数学学业不良学生的比例很大,如何转化数学学业不良学生便成为教师普遍关注的紧迫课题。文章结合教学实践,提出了要转化数学学业不良现象必须做好的几个方面。关键词:学困生;改革模式;辩证施教;学法指导 初中后期被遗忘的一群孩子基本上都进入了中职学习,他们基础差,特别是数学这门学科基础更差。如何转化数学学业不良学生便成为我们教师普遍关注的紧迫课题。这些学生由于缺乏良好的学习习惯,不能认真地、持续地听课,有意注意的时间相当短;缺乏正确的数学学习方法,仅仅是简单的模仿、识记;上课时,学习思维跟不上教师的思路,造成不再思维,不再学习的倾向;平时学习中对基础知识掌握欠佳,从而导致在解题时,缺乏条理和依据,造成解题思路的“乱”和“怪”;心理压力较大,不敢请教,怕被人认为“笨”。要想打破这个局面,必须做好以下几个方面: 一、树立所有学生都能教好的观念 现代教学观告诉我们,每个人均有独特的天赋和培养价值,关键在于要按照他们所表现出来的天赋,适应其特点进行教育。有材料表明,大多数学业不良学生的某些指标不仅在学生总体中具有中等水平,有的还具有较高水平,这为教师端正教学观,改革教育教学工作提供了实证性依据。数学学业不良学生的困难是暂时的,必须承认通过教育的改革,他们能够在原有的基础上得到适当发展。 (一)耐心疏导增强主动性 学习困难生在数学学习上既有困难又有潜能,因此教学的首要工作是转变观念,正确地对待学习困难的学生,认真分析学生学习困难的原因,有意识地“偏爱差生”,允许学生数学学习上的反复,从中来激发他们学习数学的自信心。中职生在过去的数学学习中受到鼓励的相当少,因此要积极创造条件让他们获得学习成功的体验,充分地鼓励肯定他们,促使他们对数学产生兴趣,使他们感到自己能学好数学。(二)成功教育树立自信心 数学学业不良是一个相对长期的过程。学生由于在以前的学习中屡遭失败,使他们心灵上受到严重的“创伤”,存在着一种失败者的心态,学习自信心差。教师只有充分相信学生发展的可能性,帮助学生不断成功,提高学生自尊自信的水平,逐步转变失败心态,才能形成积极的自我学习、自我教育的内部动力机制。如实施成功教育,创设成功教育情境,为学业不良学生创造成功的机会。事实上,每个学业不良学生都有自己的理想和抱负,只不过因各种原因冲淡而已。因此,教师必须引导学业不良学生在教师的“成功圈套”中获得能够实现愿望的心理自我暗示效应,从而产生自信心,进而感到经过努力,自己完全可以实现自己的抱负,达到转化数学学业不良学生的目的。(三)情感唤起学习热情 数学学业不良学生的转化涉及到生理学、心理学、教育管理、教学论等多个方面。教师不光是知识的传授者,还肩负着促进学生人格健康发展的重任。学业不良学生有多方面的需要,其中最迫切的是爱的需要、信任的需要,他们能从教师的一个眼神、一个手势、一个语态中了解到教师对他们的期望。因此,教师要偏爱他们,平时要利用一切机会主动地接近他们,与他们进行心理交流,和他们交朋友。哪怕是对他们的微微一笑,一句口头表扬,一个热情鼓励的目光,一次表现机会的给予,都可能为其提供热爱数学,进而刻苦钻研数学的契机,都会给学生一种无形的力量。二、实施“低、多、勤、快”的教学模式 帮助学生树立起学习数学的信心,为他们学好数学准备了条件,但单靠有信心,还是不够的。因此在学生树立起学习数学的自信心后,更重要的工作是创造条件使学习困难的学生真正地学习和掌握数学知识,让他们感到是自己学好了数学。要做到这一点就必须立足于课堂教学的改革,实行“低起点、多归纳、勤练习、快反馈”的课堂教学方法,培养学生学习的能力。(一)低起点——引导学生积极参与 多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习,因此教学的起点必须低。教学中将教材原有的内容降低到学生的起点上,然后再进行正常的教学,教学中主要采用以下几种“低起点”引入法:1.直接使用教材中易于接轨的知识作为起点。如 “不等式的性质与证明”、“三角函数”等内容,按教材中引入法为起点。 2.以所授内容中最本质的东西作为教学的起点。如在“不等式的解法”教学中,将“区间分析法”作为掌握的重点,并以“区间分析法”为主线进行教学。首先从验证一元一次不等式开始,进而到一元二次不等式、高次不等式、分式不等式的解法。这就是抓住本质降低起点。 3.以已学内容的运算法则,基本方法为教学起点。由于数学知识的逐步复杂及深化,原先的数学概念其含意会变化发展,但运算法则不变。例如因式分解的概念随着数域的变化而变化;关于一元二次方程的根的概念,随着数的概念的扩充而发生变化;幂的运算法则,其定义开始在正整数范围内,随着负整数、分数指数和根式的引入,幂指数便扩大到任意实数,其运算法则照常适用。4.以基本原型作为教学的起点。数学概念一般不同于其他概念,对于通过抽象思维活动总结出来的概念,应尽可能通过直观教学。例如棱柱概念的掌握,先让学生观察实物,在具体直观认识的基础上,观察其主要特征,抽象概括出:“有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。这些面所围成的几何体叫做棱柱。”这就是在具体性基础上抽象出来的概念。把抽象的概念具体化,学生感到直观形象,记忆深刻,应用起来也比较方便。 5.以已学过的知识、例子作为起点,通过新旧知识的雷同点进行类比教学。如“解不等式”可以与“解方程”进行类比;“解二元二次方程组”可以与“解二元一次方程组”;“分式”可以通过“分数”;“相似形”可通过“全等形”进行类比引入教学。
广告学毕业论文 艰苦的大学生活即将结束,众所周知毕业生要通过最后的毕业论文,毕业论文是一种有计划的、比较正规的检验学生学习成果的形式,我们该怎么去写毕业论文呢?
随着新课改的全面推进,一场更新 教育 观念,改革教学内容、 教学 方法 的运动正在兴起。教育呼唤教师教学方式的转变,对学生自身的学习能力也提出
北京大学本科优秀毕业论文的水平要求非常高,要求学生能够深入探讨一个问题,提出有说服力的观点,并能够准确、系统地表达出来。
国内有中国优秀博士论文数据库、中国优秀硕士论文数据库、中国学位论文全文数据库、国外有PQDT全文数据库。
王建波,武汉大学物理学院教授、博士生导师、电镜中心副主任;中国电子显微学会常务理事、物理与材料专业委员会委员,湖北省电镜学会理事;获教育部“新世纪优秀人才支持计